Evolving Information Systems:
Meeting the ever-changing environment

J.L.H. Oei', H.A. Proper?, E.D. Falkenberg?
June 23, 2004

!University of Twente 2University of Nijmegen
Dept. of Computer Science Faculty of Mathematics and Informatics
P.O. Box 217, 7500 AE Enschede Toernooiveld, 6525 ED Nijmegen
The Netherlands The Netherlands
E.Proper@acm.org

PUBLISHED AS:

J.L.H. Oei, H.A. Proper, and E.D. Falkenberg. Evolving Information Systems: Meeting the
Ever-Changing Environment. Information Systems Journal, 4(3):213-233, 1994.

Abstract

To meet the demands of organisations and their ever changing environment, information systems are
required which are able to evolve to the same extent as organisations do. Such a system has to support
changes of all time- and application-dependent aspects. In this paper, requirements and a conceptual
framework for evolving information systems are presented. This framework includes an architecture for
such systems, and a revision of the traditional notion of update. Based on this evolutionary notion of up-
date (recording, correction, and forgetting) a state-transition-oriented model on three levels of abstraction
(event level, recording level, correction level) is introduced. Some examples are provided to illustrate the
conceptual framework for evolving information systems.

1 Introduction

Due to the dynamic behaviour of organisations, and their environment, organisations have to deal with
rapidly changing information needs. Given the fact that information is gradually becoming a production
factor of more and more importance, it becomes crucial to have information systems which can easily be
adapted to the same extent as these information needs change. However, organisations are increasingly
faced with the problem of obsolete information systems. As a result, information needs are not met, not
adequately met, or not met in time. The absence or overdue arrival of correct information makes adequate
management impossible and rightly irritates the user. Besides the problem of the indadequate supply of
information, the rise of automation costs (with regard to development, production and maintenance) is also
increasingly causing concern ([VW91]).

Thus, in order to cope with rapidly evolving application domains, information systems are needed
which are more flexible than the current generation of information systems are. These information systems,
which are able to evolve on-line, are called evolving information systems ([FOP92a], [FOP92c]). A further
requirement for evolving information systems is, that they do not forget any information ever fed to them
(unless they are explicitly asked to do so).

This paper discusses the need, the requirements, and a conceptual framework for a generalized evolving
information system. This framework for evolving information systems includes fundamental concepts, and
an architecture for such systems, in which a distinction is made between a part which is both application-
independent and time-invariant, and a part which is not. The description of the first part is contained in
the meta model, while the latter part is described in the application model. The conceptual framework as

presented in this paper, forms the basis for the meta model for such a generalized evolving information
system. This meta model deals with all conceptual aspects of evolution. In this paper the meta model
and the corresponding specification language(s) are assumed to be stable. Changes are restricted to the
application model only. Conform the terminology introduced in [OHFB92] this means that in this paper we
restrict ourselves to information systems supporting first-order evolution. Second-order evolution involves
changes of the meta model. This becomes particularly important for large organizations with various sorts
of applications, in which furthermore new sorts of applications may become necessary from time to time.

The need for the support of evolution in information systems has already been recognized by others.
However, most of them restrict themselves to evolution of only part of the application model, eg. schema
evolution ([MS90], [Ari91], [Rod91]). In [MS90] a relational algebra is presented in which relational
tables are allowed to evolve, e.g. change their arity. In this paper, we take a more conceptual approach
to evolution of information systems. Furthermore, we do not restrict evolution to the data model (and its
population) only. Others discuss support of evolution by version management (eg. [BCGT87], [Kat90],
[IMSV92]). The existence of versions assumes a series of replacements of system versions by new ones,
thus allowing interruption of the organization processes. In our evolving information systems, however,
only one system version exists at any time, capturing the complete history of information recorded as well.
Updates of any part of the application model in this system have to be performed on-line.

In our approach to evolving information systems, there is no essential difference between the develop-
ment phase of an information system, and the operation and maintenance phase. Our evolving information
systems approach is characterized by an iterative life cycle having the length of the organisation’s exis-
tence. Starting from an empty system, the application model of the system is built up and maintained
by processing update requests. These update requests are caused by changes in the organisation and/or
changes in the (user) requirements. This evolving information systems approach distinguishes itself from
other approaches by making no essential difference between development and operation and maintenance
phase, and the additional requirement that adjustments of the information system have to be made without
the need to interrupt any processes in the organisation.

Empty system

Validate
system

Specify update
requests

Update system

automaticall .
(y) increment

System
Complete &
Correct?

Figure 1: Evolving Information Systems approach

A major consequence of the requirements for evolving information systems, is that the notion of time
has to be introduced in the meta model. Even more, at least two distinct notions of time have to be
distinguished. Events occuring in the organisation will have to be recorded together with their time of
occurence (the event time). In order to be able to perform corrections, a roll-back operator is needed
(see section 3). This roll-back operator enables us to restore a former state of the information system.
To accomplish this, the point of time at which recordings of events take place in the information system
are needed. These point of times are called the recording time of events. Our notion of event time and
recording time is identical to the notions of valid time, and transaction time, respectively, in [SA86]. The

reason for the renaming is that the new names correspond better to the three level architecture we will
introduce in section 3. The classification of information systems which is made in [SA86] is based on the
basis of support of valid and transaction time. Conform this classification (which distinguishes snapshot-,
historical-, rollback-, and temporal systems), evolving information systems are temporal systems because
of the fact that both valid and transaction time are supported. However, it should be noted that not all
temporal systems are evolving information systems. As we have seen in this section, evolving information
systems have to meet additional requirements.

2 The Architecture for Evolving Information Systems

In this paper, information systems are considered to be information systems in which the only actor per-
forming information processing activities is computerized. This computerized actor is called the informa-
tion processor. The restriction to a computerized actor performing information system processing activities,
corresponds to what has been defined in [Ver89] as an information system in the narrower sense ‘IS(N)’.
In this section, a general architecture for information systems is presented (see also [FOP92a], [FOP92c]),
by means of which the distinction between traditional and evolving information systems is explained.

The information processor in an information system accepts input messages (requests), which may
reflect changes of a state (events) in the universe of discourse, triggering the information processor to
perform activities. As a result of these activities, the information processor may produce output messages
(responses). These output messages are received in turn by the universe of discourse, which is embedded
in the environment of the information system.

In an information system, the description of that part which is consulted by the information processor
to process user requests, is called the processing model. (The description of the user requests themselves is
not considered to be part of the processing model). The processing model can be divided into a part which
describes a particular universe of discourse, the application model, and a part which describes the language
(technique) in which this application model is specified and can be manipulated. The latter part is the meta
model, and provided in a particular information system once and for all. Conversely, the application model
must be built up and maintained for each new application.

The building-up and maintenance of an application model is done by the information processor, which
acts on, or reacts to events in the universe of discourse (after receiving input messages) by consulting
both the meta model and application model. Thus, unlike the meta model, the application model is not only
input, but also output of the activities of the information processor. Besides update of the application model,
information can be retrieved from the application model as well. Messages are correspondingly classified
into update and retrieval messages. The language for formulating such messages in an information system
are based on the meta model of that particular information system. The architecture discussed is depicted
in figure 2.

An application model can be subdivided further. On the one hand, we need a model of that part of
the perceived world (universe of discourse) where the interaction between the information system and the
environment is about. This model is called the world model. Many techniques for describing world models
distinguish in their language an information structure, a set of constraints defined upon the information
structure, and a population of the information structure, conforming to these constraints (eg Entity Rela-
tionship Modelling ([Che76]), NIAM ([NH89], [Win90]) or PSM ([HW93], [HPW92]).

On the other hand, rules are needed which determine the actions of the information processor. These
rules are specified in what is called the action model. The action model can be subdivided into a part
that specifies activities - we call it the activity model - and a part that describes the (trigger-) relations
between the activity model and the world model. We will refer to this latter part as behaviour model. In the
behaviour model the relationship between events in the universe of discourse and the activities performed
by the information processor in the information system is described. In other words, the behaviour model
contains the description of when activities, under which conditions, and what activities should be performed
by the information processor, whereas the activity model specifies how these activities should be performed.
Examples of modelling techniques for the activity and behaviour model are Data Flow Diagrams ([GS86])
the A-schemas in ISAC ([LGN81]), or Task Structures ([HN93], [WHO92]). The subdivision of the proces
model, is illustrated in figure 3.

Information System

Meta Model
Information
Processing
Information

Processor

Application
Model
Legend
A Activity
Actor

Requests

Responses

()

Universe of
Discourse

Actor performing Activity

~— Information-flow

Figure 2: An (Evolving) Information System and its Environment

World
Model

Activity
Model

Behaviour
Model

Action
Model

Meta
Model

Application
Model

Figure 3: The Structure of the Processing Model

It is only obvious, that the world model should provide a unified conceptual model of the application.
Recently, some unified conceptual modelling techniques have been proposed, such as Telos ([JMSV92]),
and TMT ([Hof93]). TMT is an integration of the data modelling technique PSM, and the Task Structures
activity modelling technique.

Example 2.1 To illustrate the subdivision of processing models, a possible subdivision of the processing
model of an information system supporting the calculation and registration of scholarships for Dutch stu-
dents is presented. In the Netherlands, every student receives a scholarship from the government. The
height of this scholarship depends on the fact whether students live on their own or with their parents, the
income of the parents, and also the amount of their extra earnings.

In figure 4 three different modelling techniques are used for describing the application model of this
universe of discourse. The world model part is described in an Entity-Relationship modelling technique,
the activity model part uses A-schema’s of ISAC ([LGNS81]), whereas Event Decomposition Diagrams of
Yourdon ([You89]) are used for describing the behaviour model part. The language(s) used for specification
of the application model are based on the meta model of the information system. Though we can use the
same techniques for describing its meta model, in figure 4 the (partial) meta model is described in another
modelling technique (NIAM [NH89]).

World Model Activity Model Behaviour Model
triggers
is-output-of
Meta
: Model
is-part-of
. . is-i _of recedes
jonship is-input-of p
Student Extra Parental Resi- E t
earnings income dence vents
A \A Change Charilge Application
scholarship Residence Earnings Model
R R Scholar- Calculation Calculation
esi- shi shi
Amount ship Scholarship Scholarship
dence

Figure 4: The processing model for the Dutch Scholarship Information System

On the basis of this architecture, the distinction between a traditional information system and an evolv-
ing information system can be explained more specifically. In a traditional information system, in which
the schema vs. instance dichotomy ([BF91]) is applied, only the instances can be updated. That is, schema
specifications, as well as activity and behaviour specifications (which are usually hidden in programming
procedures), cannot be updated in traditional information systems. The intention of an evolving informa-
tion system, however, is that the complete application model is updatable.

In the scholarship system example, the need for update of all specifications in the application model
is apparent, as the laws of the scholarship system in the Netherlands appear to change frequently. For

instance, due to subsequent cuts in the total budget, maximum study time has been increasingly limited
over the last few years. Another illustrative example of an evolving application domain, is provided in
section 4. A more detailed, and formal, treatise of the notion of schema evolution can be found in [PW93].

Given a meta model for evolving information systems, a software environment for these evolving in-
formation systems can be developed which is time-invariant and independent of any universe of discourse.
Such an environment is called an evolving information system shell (EIS-shell). Application models de-
scribing different domains can be ‘plugged’ into the EIS-shell. Furthermore, an EIS-shell has to be de-
signed in such a way that it is independent of any software environment, i.e. independent of any database
mananagement system and/or operating system.

3 Update in Evolving Information Systems

In [FOP92a] and [FOP92c] a conceptual framework for update in evolving information systems has been
introduced. This framework has been formalised in [FOP92b]. In this section, the framework is explained
and illustrated by means of our running example.

First of all, the notion of update in evolving information systems is summarized. The traditional notion
of update, viz. addition, deletion, and modification is replaced by an evolutionary one which is based on
the possible causes for update requests rather than internal database operations. Three kinds of updates
are distinguished, viz. recording, correction and forgetting. Recording of an event is the processing of an
update request caused by a change of state in the universe of discourse. Update requests are formulated in
a language which is based on the meta model of the system. They are communicated to the system by the
user.

During the operation phase of the system incorrect recordings may take place. These incorrect record-
ings are caused by accidental mistakes in the formulation of update requests, or due to incorrect or incom-
plete information available to the users. Incorrectnesses of these kind can only be detected by empirical
validation. An information system reflects an organisation correctly, if and only if there exists an iso-
morphism between the states in the information system and the states in the organisation system being
modelled. The order in which the events occured in the organisation has to be preserved by this mapping
([FOP92a]). The order of processing update requests is of importance because of possible interrelation-
ships between events (as will also be shown in our example). For that reason, whenever it is detected that
this constraint is violated, a correction should take place. To accomplish this correction, an operator has
been introduced which retrieves a former state. This operator is called the roll-back operator. The use of
this roll-back operator is explained in one of the following subsections.

Based on this notion of update, a conceptual framework is presented which distinguishes different
types of state transitions on different levels of abstraction in the context of update in evolving information
systems. The levels distinguished are called the event level, the recording level, and the correction level,
respectively. State transitions on the event level take place due to events occuring in the organisation, state
transitions on the recording level are caused by recordings of these events, whereas corrections of previous
recordings cause state transitions on the correction level.

3.1 The event level

It is generally assumed that the universe of discourse described in an information system, contains a set of
stable states, and that there are a number of actions that result in a change of state (state transitions) (see eg
[HW93]). The states and state transitions in a universe of discourse are modelled in an information system.
The state of an organisation at a particular point of time is modelled by a set of modelling constructs which
we call application model elements. This set of application model elements constitute the application model
state. Note that the types of application model elements (eg. objects, entities, relationships, activities,
events, triggers etc.) are dependent on the used modelling technique.

A state transition in the organisation is modelled in the information system by means of a transition of
the application model state. A transition of an application model state can include more than one elementary
transition of an application model element. The elementary transitions involved in a particular application

model state transition depend on the trigger relationships between the elementary transitions invoked by
the transition in the organisation.

A transition in the organisation taking place at a particular point of time is called an (organisational)
event. The point of time at which such an event occurs in the organisation, is called the event time of that
event. These events are considered to occur on the organisational level ([FOP92a]). The corresponding
transitions in the information system are considered to occur on the so-called event level. A sequence of
these application model state transitions is called an application model history (see figure 5).

€1 €2
atty atto

Figure 5: Application Model State (AMS) transitions on the event level

Example 3.1 To illustrate our conceptual framework for update we now continue our example of the Dutch
Scholarship Information System. First of all, the application model is specified in a more detailed way.

World Model:
The information structure of our universe of discourse can be specified in LISA-D ([HPW93]) as follows:

e ENTITY-TYPE Student, Amount, Residence
LABEL-TYPE Residence-status HAS-DOMAIN {‘Parents’, Independent’}
BRIDGE-TYPE Residence HAS Residence-status

e FACT-TYPE Scholarship:(getting-scholarship: Student, being-scholarship-of: Amount),

FACT-TYPE Earnings:(having-earnings: Student, being-earnings-of: Amount)

FACT-TYPE Living:(living-at: Student, being-residence-of: Residence)

e FACT-TYPE Parental-income:(having-parents-with: Student, being-parental-income-of: Amount)

Behaviour Model:

There are some rules concerning the calculation of a student’s scholarship. One of them is, that when you
live with your parents you receive Dfl 300, wheras you receive Dfl 400 when you live on your own. Another
rule states that the scholarship is cut whenever you have some extra earnings above a certain amount
(200). This can be specified in the behaviour model as follows:

¢ WHEN BIRTH(Student s living-at Residence r)
IF r ='Parents’
THEN
CREATE(Student s getting-scholarship Amount 300)
ELSE
CREATE(Student s getting-scholarship Amount 400)
Fl

e WHEN BIRTH(Student s having-earnings Amount y)
IF y > 200 AND Student s getting-scholarship Amount z
THEN ReduceScholarship(s,y,z)

Activity Model:
The way how the scholarship is reduced in case of extra earnings above Dfl 200 is specified in the activity
model as follows:

e ACTIVITY ReduceScholarship (s,y,old)
BEGIN new := old — 0.75 x (y — 200)
CHANGE (Student s getting-scholarship Amount old)
INTO (Student s getting-scholarship Amount new)
END

From now on the history of a student called Jim is observed. From the information we obtained from
the environment two events concerning Jim’s scholarship has occured. The first event is that Jim started
living at his own at January 1st 1990. The second event says that one year later Jim found a job providing
him extra earnings of Dfl 300. The application model history caused by these events can be derived from
figure 5 by using the following substitutions:

e e1=(BIRTH('Jim’ living-at ’Independent’) AT 01/01/90)
e2=(BIRTH('Jim’ having-earnings 300) AT 01/01/91)
t1=01/01/90

e t2=01/01/91

AMS,={initial state}

AMS; =AMS, U FACT('Jim’ living-at "Independent’)
U FACT('Jim’ getting-scholarship 400)
(

AMS,=AMS; U FACT(‘Jim’ having-earnings 300)
— FACT('Jim’ getting-scholarship 400)
U FACT('Jim’ getting-scholarship 325)

Note that Jim’s scholarship had been reduced from 400 (living independently) to 325 (being: 400 — 0.75
(300 — 200)) because of his extra earnings. The substitutions in figure 5 for our example result in figure 6.

Jim:
Lives: indep.

Jim:
Lives: indep.

at01/01/90 Gets: 400 at01/01/91 Eamns: 300

Gets: 325

Figure 6: Application Model History for our example

3.2 The recording level

A second level is introduced on which state transitions take place: the recording level. Whenever an
event occurs in the organisation, it should be communicated to the information system by means of an
update request. The processing of this update request, called the recording of an event, should result in
an appropriate state transition in the information system. The point of time at which the recording of an
event takes place in the information system, is called the recording time of that event. The resulting state
transition is more than a single transition of an application model state; it can be seen as a transition of
the complete application model history which modelled the history of the organisation up to the occurence
of the newly recorded event. A sequence of these application model history transitions due to successive
recordings is called an application model recording history. Such an application model recording history
reflects both the events occurring in the organisation, and the recordings of these events in the information
system. In figure 7, the graphical representation of an application model recording history is given.

AM Historyg AM History AM History2

% Rec(ep atty) i
.: :. '.:
5 B atTy 5

e1 % Recleg atty) [
ETTET P, >
atty : atTo 5

Figure 7: Application Model History (AMH) transitions on the recording level

Example 3.2 In our Dutch Scholarship Information System update requests are processed at the end of
every month. The recordings of the two events el and e2 are formulated in a language based on our
framework for update.

e RECORD e1(BIRTH('Jim’ living-at 'Independent’) AT 01/01/90) AT 31/01/90
e RECORD e2(BIRTH('Jim’ having-earnings ‘300’) AT 01/01/91) AT 31/01/91

The application model recording history resulting from these recordings is obtained by further substituting
T1=31/01/90 and T2=31/01/91 in figure 7. This results in an application model recording history for our
example, which is represented in figure 8.

AM Historyg AM History

Rec(eq at01/01/90) B Jim:
R SRR N > Lives: indep.
at31/01/91 - at 01/01/90 Gets: 400

Rec(en at 01/01/91) -

a31/01/91. "
AM Historyo

Jim:
Lives: indep.
Earns: 300
Gets: 325

Jim:

Lives: indep.
Gets: 400

at 01/01/90 at 01/01/91

Figure 8: Application Model Recording History for our example

3.3 The correction level

In the process of recording events, mistakes can be made. By validation it may appear that information
about events in the organisation which have been recorded in the information system are empirically wrong.
To perform corrections, an operation has to be introduced which makes it possible to go back in a sequence
of successive recordings. This operation is called the roll-back operation.

In all cases which need a correction, ie. the mapping between organisation system and information
system is not isomorphic, a roll-back should take place to the latest application model history which is
correct. A replacement, removal, and insertion of a recording of an event require a roll-back to the ap-
propriate application model history in the application model recording history of the information system.
After performing the appropriate roll-back, all correct (rolled-back) events have to be re-recorded. In the
case of a replacement and an insertion, the first event recorded after the roll-back is the replacing event, and
the event to be inserted, respectively. In figure 9, the performance of a correction by means of a roll-back
is represented.

A sequence of successive recordings, i.e. an application model recording history, can be seen as the
belief of the world (organisation) by the information system. A correction of this belief of the world is
performed by means of a roll-back, causing a transition of the current application model recording history
in the information system. A sequence of these application model recording history transitions due to roll-
backs is called the application model evolution which is said to take place on the correction level. In the
same way corrections requiring the removal or insertion of a recording of an event can be represented. In
[FOP92a] more examples are given and elaborated.

AM Recording History;

- CORRECT Rec(ey at t1)
TO Rec(e] atty) AT T3

AM Recording Historys y

- 'AM History AM History’, AM History,

; G Recefatty) f ¢ L Recfegatty) o m e
B FTTETOIE PO > FEETER AR T P > AMS(AMS) AMS :
B : at Ty B atty atTg B atty U attg

Figure 9: Application Model recording History (AMRH) transition on the correction level

Example 3.3 Suppose in our running example that at 31/01/92, it is detected that Jim did not live inde-
pendently when he became student at 01/01/90, but that he still lived with his parents. The update request
for correcting this mistake is formulated as follows:

e CORRECT RECORD e1(BIRTH('Jim’ living-at 'Independent’) AT 01/01/90)
BY RECORD e1/(BIRTH('Jim’ living-at 'Parents’) AT 01/01/90) AT 31/01/92

This correction is obtained from figure 9 by extending the substitutions of the previous figures with:

e T3=T4=T5=31/01/92 and

e AMS/|= AMS, U FACT('Jim’ living-at ‘Parents’)

U FACT('Jim’ getting-scholarship 300)
e AMS,= AMS/ U FACT('Jim’ having-earnings 300)

— FACT('Jim’ getting-scholarship 300)

U FACT('Jim’ getting-scholarship 225)

Note that this example shows that it is really important to roll-back the system to the latest correct state and
to perform the re-recordings of events afterwards. It is insufficient just to correct the latest state. Suppose
that we only replaced the FACT(‘Jim’ living-at ‘Independent’) by FACT(‘Jim’ living-at ‘Parents’) in the
latest application model state (AMS2), it would have cost the Dutch government a lot of money, because of
the fact that Jim would still have received a scholarship of 325 instead of the correct 225. The resulting
application model evolution for our running example is represented in figure 10.

This concludes the explanation of the conceptual framework for update in evolving information sys-
tems. It should be noted that the complete framework has been formalised ([FOP92b]). On the basis of this
formalisation a prototype of a generalised EIS-shell is being implemented.

10

AM Recording History1

AM Historyo

AM Historyo

AM Historyy

B Rec(eq at 01/01/90) R Jim:
................... > Lives: indep.
at 31/01/91 B at 01/01/90 Gets: 400

Rec(eg at 01/01/91) . *

at31/01/91 .

AM Historyo

Jim:

Lives: indep.
Earns: 300
Gets: 325

Lives: indep.
Gets: 400

at 01/01/91

at 01/01/90

CORRECT Rec(e; at 31/01/90)
. . TO Rec(e) at 31/01/92) AT 31/01/92
AM Recording Historyz

AM Historyy

Rec(eq at 01/01/90)

at 01/01/90

at 31/01/92

Rec(eq at 01/01/91) ,*

at31/01/92 .

AM Historyo

Jim:

Lives: par.
Earns: 300
Gets: 225

Lives: par.
Gets: 300

at 01/01/90 at 01/01/91

Figure 10: Application Model Evolution for our example

11

4 Schema Evolution in Evolving Information Systems

The framework for update in evolving information systems does not yet take the evolution of schemas into
consideration. Nevertheless, in [PW93], [PW95], [Pro94], a formal discussion of this topic is provided.
In this article we will only provide an example of schema evolution. It should be noted, however, that the
framework for update is applicable for updates of any part of the application model. An event can be any
change of state of the application model. That is, an event can also be a change of the schema, or the action
rules in the application model. In the following an example is provided of an evolving application domain,
which involves both changes of the schema, and the action rules.

Consider a rental store for audio records (LP’s). In this store a registration is maintained of the songs
that are recorded on the available LP’s. In order to keep track of the wear and tear of LP’s, the number
of times an LP has been lent, is registered. The information structure and constraints of this universe of
discourse are modelled in figure 11 in the style of ER, according to the conventions of [You89]. Note the
special notation of attributes (Title) using a mark symbol (#) followed by the attribute (# Title).

LP Song
Title Recording # Title
Artist # Author
Lending- Frequency
frequency # Times

Figure 11: The information structure of an LP rental store

An action specification in this example is the rule Init-freq, stating that whenever a new LP is added to
the assortment of the store, it’s lending frequency must be set to 0:

ACTION Init-freq =
WHEN ADD Lp:2 DO
ADD Lp:x has Lending-frequency of Frequency:0

After the introduction of the compact disc, and its conquest of a sizeable piece of the market, the rental store
has transformed into an ‘LP and CD rental store’. This leads to the introduction of object type Medium as
a generic term for LP and CD. The relation type Medium-type effectuates the subtyping of Medium into
LP and CD. In the new situation, the registration of songs on LP’s is extended to cover CD’s as well. The
frequency of lending, however, is not kept for CD’s, as CD’s are hardly subject to any wear and tear. As a
consequence, the application model has evolved to figure 12.

The action specification Init-freq evolves accordingly, now stating that whenever a medium is added to
the assortment of the rental store, it’s lending frequency is set to O provided the medium is an LP:

ACTION Init-freq =

WHEN ADD Medium:xz DO

IF Lp:xz THEN

ADD Lp:z has Lending-frequency of Frequency:0

After some years, the CD’s have become more popular than LP’s. Consequently, the rental store has
decided to stop renting LP’s and to become a CD rental store. This change in the rental store, leads to the
information structure as depicted in figure 13. As a result of this evolution step, the action specification
Init-freq can be deleted, since the lending frequency of CD’s is not recorded anymore.

The three ER schemata, and the associated action specifications, as discussed above, correspond to three
distinct snapshots of an evolving universe of discourse. Several approaches can be taken to the modelling

12

Medium Song

Title Recording # Title
Artist # Author
Medium- cD
type

Lending- Frequency

LP
frequency

Times

Figure 12: The information structure of a LP and CD rental store

CD Song
Title Recording # Title
Artist # Author

Figure 13: The information structure of a CD rental store

of this evolution (see for a more elaborate discussion [PW93]). We consider evolution, or rather the time
axis, of an application model as a separate concept. The evolution of distinct application model elements
is maintained, thus keeping track of the evolution of individual object types, instances, methods, etc. This
approach enables one to state well formedness rules about, and query, the evolution of distinct application
model elements. Furthermore, a snapshot view showing the distinct versions of the application models in
the course of time, can be derived by constituting the application model version of any point of time from
the current versions of its components.

5 Conclusion

To meet the demands of organisations and their ever changing environment, this paper presented the re-
quirements and a conceptual framework for evolving information systems. An architecture was presented
which divided the processing model in an application-independent and time-invariant part, the meta model,
and a part which is application-dependent and/or time- variant, the application model. Another subdivi-
sion was made into a world model, activity model and behaviour model. Unlike traditional information
systems, evolving information systems allow update of all application dependent aspects, ie. the complete
application model, without the need to interrupt the processes in the organisation.

In order to handle temporal and evolutionary aspects in an evolving information system, we revised the
traditional notion of update, resulting in the triple: recording, correction and forgetting. With this notion of
update, we required the meta model to provide concepts and axioms supporting the update of all constituent
parts of the application model. Furthermore, we required an evolving information system not to forget any
aspect ever fed to the system, unless explicitly asked for. The notion of updating the application model was
clarified by introducing a state-transition-oriented model distinguishing three levels of abstraction (event,
recording and correction level). This framework was illustrated by a concrete example. The conceptual
framework proposed in this paper is the basis of a meta model for update in a generalized evolving in-
formation system. In this meta-modelling process, further work is being done. This work involves the

13

formalization of the meta model ([FOP92b], [PW93]), and the design of a language for manipulating and
specifying application models. Furthermore, a (prototype) information system shell based on that meta
model and that language is being implemented, and a design method is developed for the process of build-
ing up and maintaining an application model of an evolving information system based on the presented
evolving information systems approach.

Acknowledgements

The investigations were partly supported by the Foundation for Computer Science in the Netherlands
(SION) with financial support from the Netherlands Organization for Scientific Research (NWO).

References

[Ari91] G. Ariav. Temporally oriented data definitions: Managing schema evolution in temporally
oriented databases. Data & Knowledge Engineering, 6(6):451-467, 1991.

[BCG™87] J. Banerjee, H.-T. Chou, J.F. Garza, W. Kim, D. Woels, and N. Ballou. Data Model Issues for
Object-Oriented Applications. ACM Transactions on Office Information Systems, 5(1):3-26,
1987.

[BF91] S. Brinkkemper and E.D. Falkenberg. Three Dichotomies in the Information System Method-
ology. In PW.G. Bots, H.G. Sol, and I.G. Sprinkhuizen-Kuyper, editors, Informatiesystemen
in beweging. Kluwer, Deventer, The Netherlands, 1991.

[Che76] PP. Chen. The entity-relationship model: Towards a unified view of data. ACM Transactions
on Database Systems, 1(1):9-36, March 1976.

[FOP92a] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Conceptual Framework for Evolving Infor-
mation Systems. In H.G. Sol and R.L. Crosslin, editors, Dynamic Modelling of Information
Systems II, pages 353-375. North-Holland, Amsterdam, The Netherlands, EU, 1992. ISBN
0444894055

[FOP92b] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Metamodel for Update in Information Sys-
tems. Technical Report 92-05, Department of Information Systems, University of Nijmegen,
Nijmegen, The Netherlands, EU, 1992.

[FOP92c] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. Evolving Information Systems: Beyond Tem-
poral Information Systems. In A.M. Tjoa and I. Ramos, editors, Proceedings of the Data Base
and Expert System Applications Conference (DEXA’92), pages 282-287, Valencia, Spain, EU,
September 1992. Springer Verlag, Berlin, Germany, EU. ISBN 3211824006

[GS86] C. Gane and T. Sarson. Structured System Analysis: Tools and techniques. 1ST Databooks.
MacDonald Douglas Corporation, St. Louis, 1986.

[HNO93] A.H.M. ter Hofstede and E.R. Nieuwland. Task structure semantics through process algebra.
Software Engineering Journal, 8(1):14-20, January 1993.

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis, Univer-
sity of Nijmegen, Nijmegen, The Netherlands, 1993.

[HPWO2] A H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Data Modelling in Complex Ap-
plication Domains. In P. Loucopoulos, editor, Proceedings of the Fourth International Confer-
ence CAISE’92 on Advanced Information Systems Engineering, volume 593 of Lecture Notes
in Computer Science, pages 364—377, Manchester, United Kingdom, EU, May 1992. Springer
Verlag, Berlin, Germany, EU. ISBN 3540554815

14

[HPWO3]

[HWO93]

[JMSV92]

[Kat90]

[LGNS1]

[MS90]

[NH89]

[OHFB92]

[Pro94]

[PWO3]

[PWO5]

[Rod91]

[SA86]

[Ver89]

[VWO1]

[WHO92]

[Win90]

[You89]

A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of a conceptual

language for the description and manipulation of information models. Information Systems,
18(7):489-523, October 1993.

A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling.
Data & Knowledge Engineering, 10(1):65-100, February 1993.

M. Jarke, J. Mylopoulos, J.W. Schmidt, and Y. Vassiliou. DAIDA: An Environment for Evolv-
ing Information Systems. ACM Transactions on Information Systems, 20(1):1-50, January
1992.

R.H. Katz. Toward a Unified Framework for Version Modelling in Engineering Databases.
ACM Computing Surveys, 22(4):375-408, 1990.

M. Lundeberg, G. Goldkuhl, and A. Nilsson. Information Systems Development - A Systematic
Approach. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

E. McKenzie and R. Snodgrass. Schema evolution and the relational algebra. Information
Systems, 15(2):207-232, 1990.

G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact
oriented approach. Prentice-Hall, Sydney, Australia, 1989. ASIN 0131672630

J.L.H. Oei, L.J.G.T. van Hemmen, E.D. Falkenberg, and S. Brinkkemper. The Meta Model
Hierarchy: A Framework for Information System Concepts and Techniques. Technical Report
92-17, Department of Information Systems, University of Nijmegen, Nijmegen, The Nether-
lands, 1992.

H.A. Proper. A Theory for Conceptual Modelling of Evolving Application Domains. PhD
thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN 909006849X

H.A. Proper and Th.P. van der Weide. Towards a General Theory for the Evolution of Appli-
cation Models. In M.E. Orlowska and M.P. Papazoglou, editors, Proceedings of the Fourth
Australian Database Conference, Advances in Database Research, pages 346362, Brisbane,
Australia, February 1993. World Scientific, Singapore. ISBN 981021331X

H.A. Proper and Th.P. van der Weide. A General Theory for the Evolution of Application
Models. IEEE Transactions on Knowledge and Data Engineering, 7(6):984-996, December
1995.

J.F. Roddick. Dynamically changing schemas within database models. The Australian Com-
puter Journal, 23(3):105-109, August 1991.

R. Snodgrass and I. Ahn. Temporal Databases. IEEE Computer, 19(9):35-42, 1986.

A.A. Verrijn-Stuart. Some Reflections on the Namur Conference on Information Systems
Concepts. In E.D. Falkenberg and P. Lindgreen, editors, Information System Concepts: An
In-depth Analysis. North-Holland/IFIP, Amsterdam, The Netherlands, 1989.

Th.H. Visschedijk and R.N. van der Werff. (R)evolutionary system development in practice.
Journal of Software Research, pages 46-57, December 1991. Special Issue.

G.M. Wijers, A.H.M. ter Hofstede, and N.E. van Oosterom. Representation of Information
Modelling Knowledge. In V.-P. Tahvanainen and K. Lyytinen, editors, Next Generation CASE
Tools, volume 3 of Studies in Computer and Communication Systems, pages 167-223. I0S
Press, 1992.

J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice. Kluwer,
Deventer, The Netherlands, EU, 1990.

E. Yourdon. Modern Structured Analysis. Printice-Hall, Englewood Cliffs, New Jersey, 1989.

15

