
A Modeling Approach supporting Access Control
Delegation in a Disaster Management Context

Khaled Gaaloul1 and Henderik A. Proper1,2

1Public Research Centre Henri Tudor, Luxembourg
2Radboud University Nijmegen, the Netherlands

{khaled.gaaloul,erik.proper}@tudor.lu

Abstract—Disaster management can be defined as the orga-
nization and management of resources and responsibilities for
dealing with all humanitarian aspects of emergencies. This paper
is about organizational policies when assigning responsibilities
during a flood scenario. Specially, we focus on dynamic access
control policies supporting delegation. Delegation is a dynamic
behavior involving a user passing his access control authoriza-
tions to other users within organizations. This defines one aspect
of collaboration at the organizational level.

In this paper, we propose to model the delegation access
control approach from the flooding business process modeling
to its deployment. In doing so, we describe the delegation
process, define the access control model, and implement the
authorization policies within a disaster management framework.

Keywords: Disaster management, Business processes, Access
control, Task delegation.

I. INTRODUCTION

Coordination between many highly independent organiza-

tions is still a challenging topic in disaster management.

Strategic coordination in disaster management means that

many highly independent organizations are coordinated to-

wards a common goal within a complex process network

([1]). Different highly independent organizations execute and

change their plans frequently, and have to interact in an ad-

hoc fashion. These interactions between business processes

can hardly be predefined and planned.

In this ad-hoc environment, disaster management applica-

tions have to deal with exceptions which are difficult to foresee

when modeling inter-organizational processes. One specific

approach for exceptions handling is that of task delegation

[2] within organizations. An important requirement of task

delegation is to support organizational flexibility for governing

emergent process planning and enactment in the disaster

response. Such a requirement implies dynamic authorization

when delegation access control rights, and has to be integrated

following the business/IT alignment of the organization.

Enormous amounts of data flow along business processes

and are shared by many different users. Protecting application

data through access control policies has been widely discussed

([3], [4], [5]). Sandhu et al. proposed a series of access control

models ([6]): RBAC96 models where the central idea is that

access rights are associated with roles, to which users are as-

signed in order to get appropriate authorizations. Chadwick et

al. ([7]) investigated how an authorization management system

based on the eXtensible Access Control Markup Language

(XACML) can be extended to support delegation mechanisms.

Authors focused on the administration side of the authorization

policy while overriding access control in XACML. Adminis-

trating delegation policies is, however, stateless and lacks of

reactivity to support policy’s change when delegating a task

in a business process.

The contribution of the paper is to model the delegation

access control approach using a flooding simulation scenario,

then, to integrate the delegation process within a disaster

management framework. The idea is to model the delegation

interactions and to leverage this model’s specifications (i.e.

concepts, relations) to derive security requirements supporting

delegation in the main framework. To that end, we model

the flooding process and identify the delegation requirements.

This step will be important when delegating resources and

so expressing access control over task delegation. Once the

delegation process modeled and secured, its concepts and

relations have to interact with the overall picture of the disaster

management framework. This final step is about delegation

policies (authorization policies) deployment within the frame-

work.

The remainder of this paper is organized as follows. Section

2 presents a disaster management case study and discuss

delegation motivations and constraints. In section 3 we model a

task-based access control model supporting secure delegation.

Section 4 presents the integration of the delegation process

within the crisis management framework. Section 5 presents

related work. In section 6 we conclude and discuss future

work.

II. CONTEXT AND PROBLEM STATEMENTS

To understand the motivation of our research, we present a

chemical plant protection scenario from the SoKNOS project1.

A Fire brigade unit will need assistance to isolate a contami-

nated zone and protect civilians. They will require geograph-

ical analysis of current situations by external partners. The

scenario is defined using a BPMN model (see figure 1). A

fire brigade command center Si needs information regarding

expected flooding simulation from experts at the University.

Si issues a request for assistance to the expert Ei. The request

1More information on the publicly funded SoKNOS project can be found
at: http://www.soknos.de

2014 IEEE 23rd International WETICE Conference

978-1-4799-4249-7/14 $31.00 © 2014 IEEE

DOI 10.1109/WETICE.2014.37

263

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 07:40:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A business process for flood simulation

message includes information related to the situation, a link

to the geographical resources including respective rights and

time constraints (e.g. 30 minutes for a confirmation reminder).

The Message Engine will send the request. Ei confirms the

request acceptance and returns results. In addition, Ei informs

about the end of execution and resources will be revoked

automatically.

In this scenario, the task ”Prepare flooding simulation”

is assigned to the user Ei with the rights to access task’s

resources (e.g. geographical resources). These rights define

access control permissions as facts defined in the authorization

policy. Facing an unexpected situation where Ei is unavailable

to execute this task. This expert decides to delegate the task

”Prepare flooding simulation” to the user at the command

center Si. The policy is updated so that user Si is now allowed

to access and complete this task. As such, users Ei and Si
are here the delegator and the delegatee, respectively. User Si
claims the task, and issues an access control request, is granted

access, and executes the task.

In traditional access control frameworks however, no mech-

anism support task delegation requirements ([8], [5]). At

present, we can enforce delegation access rights via policy

adaptation (i.e. permitting the delegatee to perform the dele-

gated tasks). If however, the delegation request does not meet

task assignment requirements, it is difficult to foresee it in

the policy. Existing models in which users get permissions

through roles do not permits users to get permissions from

tasks and so ignore task context awareness. This inquires the

need to support specific interactions and the access control

architecture that they run on. Specific interactions are meant

to be delegation constraints over access control models.

Returning to the example, with a constrained access control

model for delegation, User Si would be automatically verified

based on task’s resources requirements. His required autho-

rization (permissions) against task assignment request will be

computed and validated for authentication and authorization

purposes. Moreover, users are granted privileges just at the

start of tasks, which are revoked as soon as the tasks are

finished. So privilege leakage caused by granting permission

too early or revoking permission too late have to be avoided.

Hence, securing delegation requires the integration of a task-

based access control model within the existing framework

while taking into account the business process specification.

In the following section, we motivate the need of an

access model supporting task delegation and explain how

such a model interacts with existing components in SoKNOS

framework.

III. A TASK-BASED ACCESS CONTROL MODEL

We propose a task-based access control model to support

authorization requirements. Authorization information will be

inferred from access control data structures, such as user-

role assignment and task-role assignment relations ([6], [9]).

We leverage the different task requirements regarding human

and material resources and model it in a set of relationships

building our model (see figure 2).

A. Model definition

Formally, we define sets U, R, OU, T, P, S and TI as a set

of users, roles, organizations units, tasks, permissions, subjects

and task instances respectively.

Definition 1: We define P is a set of permissions. A permis-

sion p is a pair (f,o) where f is a function and o is a business

object: p ⊆ f × o.

P defines the right to execute an operation on a resource type.

Definition 2: We define RH (Role Hierarchy), where RH is

a partial order on R. (ri, rj) ∈ R, RH denotes that ri is a

role superior to rj , as a result, ri automatically inherits the

permissions of rj .

Definition 3: We define RM (Role Mapping), where RM is

a partial order on R belonging to a set of roles defined in the

involved organizations hierarchies (OU), where:

rk ∈ OUk and rl ∈ OUl, RM denotes that rl is a role mapped

to rk, as a result, rl automatically inherits the permissions of

rk.

264

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 07:40:04 UTC from IEEE Xplore. Restrictions apply.

� �
��� ���

�

���

� ��

	
��
����
�

����������

���
�����
� �

���

�� ��

��
��

��

�������� �����������
������� ����

����
��� ������
���!�������
������ ����

���!�������
�� �����
��"�!�������
������ ����

���
��"� �����
��"��
������� ����

����
��"����
���� �������#��
��
������� ����

������#��
 �������#��
���������� ����

$� ���

Fig. 2. Task-based access control model

RM defines external roles accessing distributed resources

cross-organizations.

Definitions of Map Relations:

• URA ⊆ U×R, the user role assignment relation mapping

users to roles they are member of.

• RPA ⊆ P × R, the permission role assignment relation

mapping roles to permissions they are authorized to.

• TPA ⊆ T × P , the task permission relation mapping

tasks to permissions. This defines the set of permission

required to execute a task.

• TRA ⊆ T ×R the task role assignment relation mapping

roles to tasks they are assigned to.

Definitions of Functions:

• SU : S → U a function mapping a subject to the

corresponding user.

• SR : S → 2R, a function mapping each subject to a set

of roles, where SR(si) ⊆ {r|(SU(si), r) ∈ URA} and

subject si has the permissions;

∪{r∈SR(si)}{p|(p, r) ∈ RPA}.

• instanceof : TI → T , a function mapping a task in-

stance to its task type.

• claimedby : TI → S, a function mapping a task instance

to a subject to execute it, where:

claimedby(ti, si) = {ti|instanceof(ti, t), (r, u) ∈
URA|(SR(si) = r

∧
SU(si) = u), (t, r) ∈ TRA}.

Definitions of Constraints:

Here we discuss Separation of duty (SoD) and Binding of

duty (BoD) constraints. We define exclusive relation between

tasks for SoD, and binding relation between tasks for BoD as

follows:

TTSOD = {(ti, tj) ∈ T |ti is Exclusive with tj} ⊆ TxT

TTBOD = {(ti, tj) ∈ T |ti is Binding with tj} ⊆ TxT, where

ti ≤ tj .

If (t1, t2) ∈ TTSOD, then t1 and t2 cannot be assigned to the

same subject, and if (t1, t2) ∈ TTBOD, then t1 and t2 must

be assigned to the same subject.

B. Task Assignment Conditions

We model permission assignment relations for task and

role in order to support both human and material resources.

(P,T,R) specifies TRA, TPA and RPA many-to-many relation-

ships which are specifics to the task execution context. The

remaining relations are generic relations based on the role-

based access control model: RBAC ([6]).

Definition 4: A task can only be assigned to a role if

and only if: (t, r) ∈ TRA ⇒ {p ∈ P |(t, p) ∈ TPA} ⊂
{p|(p, r) ∈ RPA}.

The main contribution is to specify the task assignment

conditions based on the RPA and TPA requirements (see

Definition 3). Two conditions have to be verified to satisfy the

TRA relation. The first condition is related to task resources

requirements. The user’s permissions defined in RPA need

to satisfy the permissions defined in TPA. If this condition

is satisfied, the task is executed if and only if the user is

assigned to it.

C. Delegation Constraints

Task delegation is aligned with the task assignment condi-

tions (see Definition 4). We remind that the user who performs

a delegation is referred to as a delegator and the user who

receives a delegation is referred to as a delegatee.

265

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 07:40:04 UTC from IEEE Xplore. Restrictions apply.

Definition 5: We define a task delegation relation RD =
(T,u1,u2,C), where T is the delegated task, u1 the delegator,

u2 the delegatee, and C the delegation constraints. Constraints

refer to the condition of delegating accordingly to the global

policy.

We provide an optimized method to compute the delegated

privileges based on the current requirements of the task

instances (resources requirements). The aforementioned

access control model (see figure 2) defines the list of

potential delegatees (RPA) that may satisfy the delegated task

requirements (TPA). For instance, u1 and u2 are members of

roles r1 and r2 respectively:

(t,u1,u2,C) ∈ RD iff (t, r2) ∈ TRA ⇒ {p ∈ P |(t, p) ∈
TPA} ⊂ {p|(p, r2) ∈ RPA}.

Returning to the example, the task ”Prepare flooding simu-

lation” is assigned a set of permissions (e.g. query(), update())
via the TPA relation in order to carry out this task. Once this

task is claimed, TRA is assigned to roles that are authorized

to claim it. If a different user from another command center

defined in the list of the external partners, the access control

model will enforce another access constraints to see whether

this user belongs to the TRA set and so he will be assigned

in the authorization policy of the business process.

IV. INTEGRATING DELEGATION WITHIN SOKNOS

FRAMEWORK

In this section, we integrate the delegation process within

SoKNOS framework. We develop a delegation component

interacting with the existing components when issuing a

delegation request. We present a delegation protocol that

depicts the dialogue between a delegator and his corresponding

delegatee under the specific constraints defined in section 3.C.

We model the protocol using UML sequence diagrams and

colored in grey the main components supporting the delegation

process (see figure 3).

The integration context of our delegation prototype is

composed of two main components namely the Delegation

Component (DC) and the external Delegation Access Point

(DAP) acting respectively as back-end and proxy component.

Furthermore, we develop a fine grained access control so-

lution to support delegation. The Authorization Component

supports policy decision-making based on the access control

mechanism defined in section 3. Furthermore, we need to

authenticate and then to authorize the requester, in this case

the delegatee, who will accept and perform the request.

The Access Control Enforcement (ACE) component checks

the delegatee credentials. Once authenticated, rights are issued

to the delegatee and access request authorization is computed

in the the Policy Decision Point (PDP) engine. ACE compo-

nent implements the Central Authentication Service (CAS). It

is a single sign-on protocol for the web, its role is to permit

a user to access multiple applications while providing their

credentials (such as user ID and password) only once. The

PDP component is responsible for evaluating access decision

requests and returning a respective access decision response

(i.e. accept, deny). PDP engine implements the Java core class

for the access control engine, providing the starting point for

request evaluation.

We briefly detail the main blocks of the SoKNOS frame-

work integration as depicted in figure 3:

• Block 1: We determine the first interaction with the

existing components. The delegator is accessing the Geo-

graphical toolbox in order to select the required resources

to be delegated (see section II). The Geographical Infor-

mation (GI) system includes the GI component and the

GI Plugin that will set the URL link to be attached to

the request. Steps 1 to 4 summarize the first block of our

diagram.

• Block 2: The DC will secure the request. To that end,

DC creates a secure URL (SecURL) and the required

credentials in order to open the request. This step is very

important in the delegation process since it restricts the

access to the delegated resource from undesirable users

(see Definition 3 in section 3). This part is supported

using the ACE component. Delegation request is then

sent using the Message Plug-in of the main SoKNOS

architecture. Steps 5 to 10 summarize the second block

of our diagram.

• Block 3: The second delegation component (DAP) will

act as a proxy with the GI component. At this stage, the

request is accepted by the delegatee and an authentication

of the requester and a computing of his delegated privi-

leges need to be checked. This part is supported using the

PDP component (steps 11-17). Additional steps regarding

the tracing (the log file) and the forwarding of the request

execution (the GI component) in order to grant or reject

the authorization are developed in the delegation protocol

(steps 18-21).

Securing delegation architecture does not require major

modifications of the existing architecture components such as

the ACE and PDP components. It uses the different models

specifications such as the business process model, the access

control model, and the SoKNOS sequence diagram.

Note that revocation is an important process that must

accompany the delegation. It is the subsequent withdrawal

of previously delegated task. For simplification, our model

of revocation is related to the delegation model where a

revocation is issued from the delegator in order to cancel/end

the delegated privileges.

V. RELATED WORK

Sandhu et al. proposed a series of access control models

[6], [5]: RBAC96 models. Access rights are associated with

roles, to which users are assigned in order to get appropriate

authorizations. It also involves the role hierarchy that enables

the permission heritage. Since the roles in organizations are

relatively stable and the number of roles is much more

smaller than that of users, the work of administrators can be

greatly relieved by applying the concept of roles. Thus it is

more adaptable to dynamic environments to a certain extent.

266

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 07:40:04 UTC from IEEE Xplore. Restrictions apply.

GI Plugin

(4) Select geographical resources

Delegator

GI
Component

Delegation
Component

(8-a) Generate
secure URL

Delegatee

(5) Set URL Link

(6) Create Delegation request

Secure URL
and Login data

(7) Create
secure URL

(9) Send Delegation request with attached SecURL

Geographical
Toolbox

(1) Access to
external

location map (2) List location
map resources

(3) Call for resources selection

Message
Plugin ACE

(17) Isue Rights

(10) Send Message with Login data

(11) Call Secure URL and Login

(20) Fwd delegatee request access

(16) Store Confirmed request

Log File PDP

(8-b) Check
Login

(12) Authentication

External
Delegation
Access Point

(14) Acce
request

(15) Confirm delegation

(21) Check rights

Grant/Reject

(18) Delegation auditing

(19) Delegation
tracing

(13) Retrieve Delegation

Block 1

Block 2

Block 3

Fig. 3. Delegation integration within SoKNOS

However, there is no concept of tasks in RBAC, which makes

it difficult to support task delegation process [10].

There exists several attempts to support delegation in access

control models. In [5], [11], authors extend the RBAC model

by defining some delegation’s rules. Zhang et al. proposed a

flexible delegation model named Permission-based Delegation

Model (PBDM). However, PBDM supports only role-to-role

delegation, thereby ignoring task delegation constraints.

The eXtensible Access Control Markup Language

(XACML) was developed in order to provide a uniform

way of specifying access control policies in XML [4].

Policies comprising Rules, possibly restricted by Conditions,

may be specified and targeted at Resources, Subjects and

Actions. Seitz et al. [12] investigated how an authorization

management system based on XACML can be extended to use

flexible delegation mechanisms. They developed a separate

policy administration point component that specifies allowed

modifications on different elements of an XACML policy for

different users. Authors focused on the administration side

of the policy while overriding access control in XACML.

Administrating delegation policies remain, however, stateless

to support dynamic authorization when delegating task.

VI. CONCLUSION

In this paper, we have analyzed the need of a delegation

mechanism for governing emergent process planning and

enactment exceptions in the disaster framework. The analysis

depends on the roles of different components of the frame-

work. These components are described via models to express

their business interpretations. In doing so, we have represented

the different models involved in the delegation process: from

the business model (BPMN) to the access control model

(RBAC). These models interactions (UML sequence diagram)

aim to ensure the organizational flexibility and the dynamic

authorization thereby supporting business/IT alignment within

the disaster management system SoKNOS.
Future work will look also at extending our approach

to larger organizations views such as enterprise architecture

models. The goal is to illustrate the interrelationship of enter-

prise business, information, and technology environments. In

addition, the assessment of such alignment when integrating

new requirements such as auditing.

REFERENCES

[1] T. Drabek, Strategies for Coordinating Disaster Responses, ser. Program
on Environment and Behavior. Institute of Behavior Sciences, 2003.
[Online]. Available: http://books.google.lu/books?id=psaYAAAACAAJ

[2] K. Gaaloul, H. Proper, E. Zahoor, F. o. Charoy, and C. Godart, “A
logical framework for reasoning about delegation policies in workflow
management systems,” International Journal of Information and Com-
puter Security, vol. 4, no. 4, pp. 365–388, 2011.

[3] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo, “Fine-grained integration
of access control policies,” Computers & Security, vol. 30, no. 2-3, pp.
91–107, 2011.

[4] XACML-V3.0, “eXtensible Access Control Markup Language (XACML
v3.0), note = Standard, Organization for the Advancement of Structured
Information Standards (OASIS): http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-os-en.pdf,” 2013.

267

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 07:40:04 UTC from IEEE Xplore. Restrictions apply.

[5] X. Zhang, S. Oh, and R. Sandhu, “PBDM: a flexible delegation model in
RBAC,” in SACMAT ’03: Proceedings of the eighth ACM symposium on
Access control models and technologies. New York, NY, USA: ACM
Press, 2003, pp. 149–157.

[6] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” IEEE Computer, vol. 29, no. 2, pp. 38–47,
1996.

[7] D. W. Chadwick, S. Otenko, and T.-A. Nguyen, “Adding support to
xacml for multi-domain user to user dynamic delegation of authority,”
Int. J. Inf. Sec., vol. 8, no. 2, pp. 137–152, 2009.

[8] K. Gaaloul, E. Zahoor, F. Charoy, and C. Godart, “Dynamic authori-
sation policies for event-based task delegation,” in Advanced Informa-
tion Systems Engineering, 22nd International Conference, CAiSE 2010,
Hammamet, Tunisia, 2010, pp. 135–149.

[9] X. Liao, L. Zhang, and S. C. F. Chan, “A task-oriented access
control model for wfms,” in Proceedings of the First international
conference on Information Security Practice and Experience, ser.
ISPEC’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 168–177.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-31979-5 15

[10] K. Gaaloul, “A Secure Framework for Dynamic Task Delegation in
Workflow Management Systems. Ph.D. thesis, The University of Henri
Poincaré, Nancy, France,” 2010.

[11] L. Zhang, G.-J. Ahn, and B.-T. Chu, “A rule-based framework for role-
based delegation and revocation,” ACM Transactions on Information and
System Security, vol. 6, no. 3, pp. 404–441, 2003.

[12] L. Seitz, E. Rissanen, T. Sandholm, B. S. Firozabadi, and O. Mulmo,
“Policy administration control and delegation using xacml and delegent,”
in 6th IEEE/ACM International Conference on Grid Computing (GRID
2005), November 13-14, 2005, Seattle, Washington, USA, Proceedings,
2005, pp. 49–54.

268

Authorized licensed use limited to: Radboud University Nijmegen. Downloaded on April 23,2021 at 07:40:04 UTC from IEEE Xplore. Restrictions apply.

