
Chapter 21
Next-Generation Enterprise Modeling

Bas van Gils and Henderik A. Proper

Abstract In the Western world, digital has become the new normal, both in our
daily lives and at our work. Additionally, Western countries have seen a transition
from a goods-oriented economy to a services-oriented economy. Whereas, in the
recent past, it was already the case that change was the only constant, these inter-
twined, and mutually amplifying, trends even further increase the pace of change.
As a result, enterprises are confronted with a need to transform (continuously)
accordingly.

During any enterprise transformation, coordination among the key stakeholders
and the projects that drive the transformations is essential. A shared understanding,
agreement, and commitment are needed on (1) what the overall mission/vision of
the enterprise is, (2) the current affairs of the enterprise and any ongoing changes,
(3) the current affairs of the context of the enterprise, and (4) what (given the latter)
the ideal future affairs of the enterprise are.

Models, and ultimately enterprise (architecture) modeling languages and frame-
work, are generally considered as an effective way to support such (informed)
coordination. In the past, different frameworks and languages have been developed
to this end, including the ArchiMate language. The latter has evolved to become a
widely accepted industry standard.

The objective of this chapter is threefold: (1) we intend to illustrate some of
the key challenges which the digital transformation, and the two intertwined trends
that drive it, puts on enterprise (architecture) modeling languages, (2) assess to
what extent ArchiMate meets these challenges, and (3) draft the outline of a next-
generation enterprise (architecture) modeling language (framework) that may be
more suited to meet the challenges of these trends.

B. van Gils
Strategy Alliance, Amersfoort, the Netherlands
e-mail: bas.vangils@strategy-alliance.com

H. A. Proper (�)
Institute of Information Systems Engineering, TU Wien, Vienna, Austria
e-mail: henderik.proper@tuwien.ac.at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. A. Proper et al. (eds.), Digital Enterprises, The Enterprise Engineering Series,
https://doi.org/10.1007/978-3-031-30214-5_21

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30214-5protect T1	extunderscore 21&domain=pdf
https://orcid.org/0000-0003-2434-0547
http://orcid.org/0000-0002-7318-2496

 885 52970 a 885 52970 a

mailto:bas.vangils@strategy-alliance.com
mailto:bas.vangils@strategy-alliance.com
mailto:bas.vangils@strategy-alliance.com
mailto:bas.vangils@strategy-alliance.com

 885 56845 a 885 56845 a

mailto:henderik.proper@tuwien.ac.at
mailto:henderik.proper@tuwien.ac.at
mailto:henderik.proper@tuwien.ac.at
mailto:henderik.proper@tuwien.ac.at
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21
https://doi.org/10.1007/978-3-031-30214-5_21

280 B. van Gils and H. A. Proper

21.1 Introduction

In the Western world, digital has become the new normal, both in our daily lives
and at our work. Computers continue to shrink in size, while their computing powers
increase. Furthermore, all these computers have become increasingly interconnected
(e.g., the Internet of Things Weber & Weber, 2010). Even the smallest light bulbs
have become connected.

It seems as if every aspect of our lives is being impacted on by this trend. Letters
are all but replaced by email, and books are digitized, while we track our health
through digital/wearable technology (leading to the so-called quantified self Swan,
2012). With the increasing popularity of dating sites, it seems that even our love
life is increasingly becoming digital. The same holds for organizations. Whereas
IT originally was a mere supportive tool for administrative purposes, it is safe to
say that nowadays IT has become an integral part of an organization’s primary
processes. If the people working in an organization go on strike, then this is likely
to lead the organization to come to a grinding halt. However, when IT systems fail,
most organizations will come to an abrupt halt.

According to a recent publication (Brown, 2017), we should even prepare for
new forms of diversity in the workforce, where humans should learn to collaborate
better with non-humans (e.g., agents, robots, etc.). Human actors, and digital actors,
will increasingly work close together.

From a management perspective, this means that considering only the alignment
between business and IT (Henderson & Venkatraman, 1993) is no longer sufficient.
The difference between business and IT is increasingly fading; they have been
“fused” into one. This has given rise to a wide range of management approaches
that are considered to be more “holistic” and consider all aspects of the enterprise;
this includes, e.g., information systems architecture (Scheer, 1992; Zachman, 1987)
and enterprise architecture (EA) approaches (Pereira & Sousa, 2005; Op ’t Land
et al., 2008a; Dietz, 2008; van Gils & van Dijk, 2014). Companies, such as Amazon,
Airbnb, Uber, Netflix, Spotify, Bitcoin, etc., illustrate how IT and business have
indeed become fused. The CEO of a major bank, such as the ING Bank, can even be
quoted as stating “We want to be a tech company with a banking license” (Hamers,
2017).

In parallel, Western countries have seen a transition from a goods-oriented
economy to a services-oriented economy. Marketing sciences (Vargo & Lusch,
2008; Grönroos & Ravald, 2011; Lusch & Nambisan, 2015; Vargo & Lusch, 2016)
suggest that the notion of economic exchange, core to the economy, has shifted from
following a goods-dominant logic to a service-dominant logic. While the former
focuses on tangible resources to produce goods and embeds value in the transactions
of goods, the latter concentrates on intangible resources and the creation of value in
relation with customers. It should be noted that a goods-dominant logic is not only
adhered to when selling goods. For example, when buying a train ticket, one (might
think to) buy a service to get from A to B. At the same time, numerous travelers

21 Next-Generation Enterprise Modeling 281

have experienced that a train ticket is not a guarantee to get from A to B at all, let
alone on time to make it to an important face-to-face meeting.

Service dominance puts the continuous value co-creation between providers and
consumers at the core. For instance, in the airline industry, jet turbine manufacturers
used to follow a classical goods-dominant logic by selling turbines to airlines.
However, since airlines are not interested in owning turbines, but rather in the
realization of airtime, manufacturers nowadays sell airtime to airlines instead of
jet turbines. As a result, value co-creation is shaping up as a key design concern for
modern-day enterprises.

Both of these trends are highly intertwined while also amplifying each other. The
digital transformation enables new ways of doing business that also enables more
value co-creation, resulting in the development of a plethora of new digital services.
Conversely, the desire of enterprises to co-create value results in a need for more
integrated IT solutions, to, e.g., better understand the precise needs of customers
and better integrate them in the design/delivery process (Grönroos & Ravald, 2011).

Whereas, in the recent past, it was already the case that change was the
only constant, the combination of these trends even further increases the pace of
change. Ever since the Industrial Revolution, change has often been driven by
the introduction of new technology. It seems that the organization that is best at
levering technology wins in the marketplace—meaning that keeping up (or even
ahead) of developments has become a crucial capability for modern organizations.
The plethora of changes that the digital transformation has brought about, and the
many more that we are not even aware of yet or have not even been thought of
yet, provides organizations with deep and fundamental challenges. How to excel
as an organization, while everything is changing constantly? There are hardly any
securities left; traditional business models are continuously challenged by digitally
inspired and empowered startups.

We consider the trends of business-IT fusion and the shift to value co-creation,
as being the key challenges to enterprises (be they companies, governmental
agencies, or organizations) which aim to thrive (or at least survive) in the digital
transformation of society.

There are no simple answers to these challenges: a truly wicked problem (Camil-
lus, 2008). We observe how approaches for digital transformation increasingly gain
popularity, in order to manage the complexity that arises around digitization and the
increased speed of change (Gouillart & Kelly, 1995; Rouse & Baba, 2006; Berman,
2012; Westerman et al., 2014). In line with the definitions provided in Chap. 1, we
consider transformation to be “the coordinated effort to change the architecture of
an enterprise” and digital transformation to be “a transformation of the enterprise
with a major impact on its digital resources.”

Key in the latter definition is the phrase coordinated effort: the actors that make
up the enterprise coordinate their efforts not only to fulfil the goals of the enterprise
but also coordinate their efforts in ongoing, deliberate change initiatives. During
an enterprise transformation, coordination (Proper et al., 2018c) among the key
stakeholders and the projects that drive the transformations is indeed essential.
A shared understanding, agreement, and commitment are needed on (1) what the

282 B. van Gils and H. A. Proper

overall mission/vision of the enterprise is, (2) the current affairs of the enterprise
and any ongoing changes, (3) the current affairs of the context of the enterprise, and
(4) what (given the latter) the ideal future affairs of the enterprise are. Borrowing
the terminology from architecture frameworks such as TOGAF (The Open Group,
2011), this refers to the development of a shared vision, a baseline architecture, and
a target architecture, respectively.

Given the speed of change, it remains to be seen whether a true “target
architecture” can be developed in light of the fact that it is hard to make predictions,
especially about the future. As such, it may be wiser to depart from using the
term “target architecture” and refer to it in more open terms, such as “directional
architecture,” to clarify that it expresses a desired direction of development, rather
than a specific target. This would also require a departure from the traditional style
of defining a target architecture in terms of a rather “instructive” style in terms
of typical “boxes and lines” diagrams toward a more “directional”/“regulative”
approach using, e.g., (normative) architecture principles (Greefhorst & Proper,
2011a).

Models, and ultimately enterprise (architecture) modeling languages and frame-
work, are generally considered as an effective way to support such (informed)
coordination. Many languages and frameworks have indeed been suggested as a
way to create and capture a shared understanding of the desired future affairs.
Examples include DEMO (van Reijswoud et al., 1999; Dietz & Hoogervorst,
2007), BPMN (Freund & Rücker, 2012), UML (Object Management Group, 2010),
ArchiMate (Band et al., 2016; Lankhorst et al., 2017), 4EM (Sandkuhl et al., 2014),
and MERODE (Snoeck, 2014). The latter approaches are applicable in the context
of capturing an enterprise’s current affairs in terms of its baseline architecture.
However, as argued above, for an (open!) future-oriented “directional architecture,”
these “boxes and lines”-based approaches may have to be complemented with
a “directional”/“regulative” approach using, e.g., (normative) architecture princi-
ples (Greefhorst & Proper, 2011a).

It appears that ArchiMate is rapidly becoming the industry standard for enterprise
architecture modeling1 and has, as such, a key role to play in the coordination
of (Proper et al., 2018c) enterprise transformations. Based on our experience from
research and practical work in the field, however, we hypothesize that there are
serious challenges with the existing ArchiMate language in light of the needs to
support digital transformation efforts (van Gils & Proper, 2018; Proper et al., 2020;
Proper, 2020; Proper & van Gils, 2019). As we will see below, these challenges are
not only limited to the “instructive” vs. “directional” issue.

The objective of this chapter is therefore threefold: (1) we intend to illustrate
some of the challenges that the digital transformation puts on enterprise architecture
modeling languages, (2) assess to what extent ArchiMate meets these challenges,

1 The support for this claim lies in the steady growth of the number of certified professionals http://
archimate-cert.opengroup.org/certified-individuals as well as the popularity of the ArchiMate topic
on Google trends https://trends.google.com/trends/explore?date=all&q=archimate.

http://archimate-cert.opengroup.org/certified-individuals
http://archimate-cert.opengroup.org/certified-individuals
http://archimate-cert.opengroup.org/certified-individuals
http://archimate-cert.opengroup.org/certified-individuals
http://archimate-cert.opengroup.org/certified-individuals
http://archimate-cert.opengroup.org/certified-individuals
http://archimate-cert.opengroup.org/certified-individuals
https://trends.google.com/trends/explore?date=all&q=archimate
https://trends.google.com/trends/explore?date=all&q=archimate
https://trends.google.com/trends/explore?date=all&q=archimate
https://trends.google.com/trends/explore?date=all&q=archimate
https://trends.google.com/trends/explore?date=all&q=archimate
https://trends.google.com/trends/explore?date=all&q=archimate
https://trends.google.com/trends/explore?date=all&q=archimate
https://trends.google.com/trends/explore?date=all&q=archimate
https://trends.google.com/trends/explore?date=all&q=archimate
https://trends.google.com/trends/explore?date=all&q=archimate

21 Next-Generation Enterprise Modeling 283

and (3) draft the outline of a next-generation architecture modeling language
(infrastructure) that may be more suited to meet the challenges of the digital
transformation. In line with this, the remainder of this chapter is structured as
follows. We start, in Sect. 21.2, by more closely investigating the challenges that
the digital transformation may have on enterprise architecture and the modeling
languages used. Based on this, we will then, in Sect. 21.3, present a critical
reflection of the suitability of the ArchiMate language in light of these findings.
This is followed, in Sect. 21.4, by an outline of a possible “digital transformation-
ready” next-generation architecture modeling language (infrastructure). We end this
chapter, in Sect. 21.5, with conclusions and directions for future research.

Throughout this chapter, we will use small examples to illustrate key points. Most
of these examples derive from real-world projects that have been conducted over the
last few years.

21.2 Challenges for Enterprise Modeling

The aim of this section is to identify some of the key challenges on enterprise
(architecture) modeling in the context of digital transformation and the increasing
focus on value co-creation. The resulting challenges will be used, in Sect. 21.3,
as a base to critically reflect on the extent to which ArchiMate already meets
the challenges brought forward by these fundamental trends, as well as reflect on
possible modifications to ArchiMate to make it better meet the challenges (see
Sect. 21.4).

We have grouped the challenges in three classes. First, we discuss challenges
pertaining to the expressiveness of the modeling language used in light of the
digital transformation and value co-creation. The digital transformation and value
co-creation trends push for further specialization and domain specificity of modeling
languages. Therefore, the second class of challenges zooms in on the need to be able
to manage the resulting spectrum of modeling concepts. The final class of challenges
concerns the earlier made observation that the digital transformation fuels the speed
of change in organizations and their enterprises.

21.2.1 Expressiveness of the Modeling Language

21.2.1.1 Objects Can Be Operand and Operant

Objects (including humans) in the world around us can play different roles.
Sometimes, they play an active role, in the sense that they become the operant
actor, which (co-)enacts a certain activity. They may even become the actor bearing
the social responsibility for the enactment of such an activity (Dietz et al., 2013).
Objects may also play a passive role, in which case they can actually be the

284 B. van Gils and H. A. Proper

operand/subject of an activity. Key is that it is natural for the same objects to play
different roles in the course of time or even in parallel.

In traditional views on enterprise architecture, it was more or less assumed that
objects were either passive (operand) or active (operant) for their entire life. One
would certainly not mix these types of roles. This simplification might have indeed
worked in former times. However, in the context of the digital transformation, this
simplification becomes increasingly difficult to uphold.

Objects, in particular the digital ones, are created and manipulated by other
(human and/or digital) objects. In the digital world, objects can be both operand
and operant, even at the same time. An enterprise architecture modeling language
used in digital transformations should therefore be able support this plurality of the
roles played by objects:

Challenge 1 Objects should be allowed to play operand and operant roles.

21.2.1.2 Information Versus Reality

Digital transformations also result in an increased reliance on the quality of
(digitally represented) information in terms of the correctness at which it represents
the world around us. As a result, it becomes increasingly important to remain aware
of, and thus explicitly capture, the distinction between elements in the real world
and the information that stands model for those real-world elements.

Enterprise (architecture) modeling languages should, therefore, also clearly
reflect such a distinction: for example, in terms of a clear distinction between
business objects as they exist in the real world and business information objects
that represent information about the former objects. An example of an architecture
framework which already supports such a distinction is the Integrated Architecture
Framework (Wout et al., 2010). This results in the following challenge for enterprise
modeling languages:

Challenge 2 Clear separation between objects that represent“things” in the real
world and objects representing information about the real world.

21.2.1.3 Natural Duality of Human and Digital Actors

As also discussed in the introduction, according to a recent publication (Brown,
2017), a consequence of the digital transformation is that we should prepare for
new forms of diversity in the workforce, where humans should learn to collaborate
closely with digital actors (e.g., agents, robots, etc.). In line with (Dietz et al., 2013),
we take the position that the social responsibility of activities should remain with
human and/or organizational entities. We are, for example, not (yet) expecting that
robots can be taken to court, to account for their actions, and possibly be punished
when breaking societal rules. Underlying this is the well-known question: When an
autonomous car causes an accident, who is responsible?

21 Next-Generation Enterprise Modeling 285

Modern-day enterprise modeling languages should, therefore, be able to deal
more naturally with the duality of human and digital actors while making explicitly
clear where the ultimate social responsibility and accountability of the actions by
these actors lie:

Challenge 3 Ability to deal naturally with the duality of human and digital actors.

21.2.1.4 Identification Management

A key aspect in traditional (conceptual) data modeling is the notion of unique
identification: in other words, the ability to specify how objects in the real world
can be distinguished from one another.

The ability to uniquely identify the (passive and/or active, operand/operant)
objects around is indeed quite convenient, even though not all applications will
need it. Depending on the application context, we may need unique identification.
In some cases, it might even be illegal, e.g., due to privacy considerations, to have
such a unique identification. For example: Is there a need to uniquely identify all
water molecules in the stream of water coming from a well with mineral water?
Probably not. Is there a need to identify each individual bottle of water filled
with water from this well? Probably yes, as well as the date when it was filled.
Is there a need to identify each individual traveler on a public transport system?
Would probably be useful for optimization purposes, as well as monitoring possible
“terrorist” activities. Is it allowed/desirable from a privacy perspective? Probably
not.

At the same time, even when a unique identification mechanism is available
and is allowed to be used, there may be limits regarding its completeness and
uniqueness. In a business network involving multiple partners, one may have to use
multiple, partially overlapping, identification mechanisms. Even more, one may not
have control over the creation of objects, which may (accidentally or maliciously)
end up having the same properties as used in the identification.

For enterprise modeling languages, this makes it important to be able to specify
if objects can, should, and/or are allowed to be uniquely identified and, if so, to what
extent this unique identification can indeed be assumed to cover the entire (possible)
population of such objects:

Challenge 4 Ability to specify if objects can, should, and/or are allowed to be
uniquely identified.

21.2.1.5 Optional Modalities on Relationships

Most enterprise modeling languages do not allow for detailed modalities (manda-
tory, optional, one-to-one, one-to-many, etc.) on relationships. In general, this
has been a deliberate choice by the language designers. In practice, however,
this decision is challenged. It has been debated extensively—for example, in the

286 B. van Gils and H. A. Proper

LinkedIn group for ArchiMate as well as during training and coaching sessions—
how useful it would be to be able to specify modalities, in particular, in the context
of privacy and security, two concerns that become even more important in digital
transformation(s).

One may argue that such modality rules are “too detailed” to be included at an
architecture level. At the same time, there are many cases where there is a need
to specify (even at an architecture level) the rules governing relationships in more
detail. A typical example would be the four-eyes principle, where two roles must be
fulfilled when performing a certain task. It is expected that such modeling constructs
will be needed frequently, in the context of privacy and security. We suggest that,
although one should not categorically require architecture models to use modalities
on relationships, this should be addable when needed:

Challenge 5 Ability to specify modalities on relationships.

21.2.1.6 Orientation Toward Value Co-creation

Western countries have witnessed a transition from a goods-oriented economy to
a services-oriented economy. Digital transformation triggers the development of a
plethora of new digital services, even further boosting the dominance of services in
Western economies.

Several studies (Vargo & Lusch, 2004; Lusch & Vargo, 2006; Vargo & Lusch,
2008; Maglio et al., 2009; Grönroos & Ravald, 2011) observe a fundamental
paradigm shift from, what they call, a goods-dominant logic to a service-dominant
logic. While the former focuses on the production of goods, the latter concentrates
on the delivery of services using resources and/or goods in doing so. These studies
motivate this shift by observing that it is ultimately the customer who attributes
value to a good or a service. Goods and services, “at rest,” only have a potential
value to a customer. The actual value is experienced when the resources/goods are
actually used by the customer to some purpose.

In parallel to the shift from a goods-dominant logic to a service-dominant logic,
one can observe a growing awareness that a conventional enterprise-centric (inside-
out) view of value creation is now being challenged by a newer customer-centric
(outside-in) view of value creation (Prahalad & Ramaswamy, 2000; Priem, 2007;
Lepak et al., 2007; Priem et al., 2013). This leads to the perspective that value results
by way of a process of co-creation between producer and consumer, involving the
integration of their resources (Vargo & Lusch, 2008).

To achieve strategic advantage, service-providing enterprises must be able to co-
create value for their customers, at a higher level of quality than the competition
does (Bettencourt et al., 2014). This also entails a need for enterprises to broaden the
scope of their enterprise architecture, more specifically, from a focus on the design
of efficient, reliable, and flexible (IT-supported) business processes to a broadened
one, with a more prominent place for the design of value co-creation with partners
and customers.

21 Next-Generation Enterprise Modeling 287

The digital transformation not only brings about a new wave of digital services,
but it also acts as an enabler that allows providers of goods and service to better
optimize the co-creation of value with their customers: for example, by being
able to (1) more swiftly create, and manage, on-the-fly business processes and (2)
tune/customize their products and services to the needs of specific users (in their
context of use) and (3) based on detailed (digital) profiles of the needs, preferences,
and habits of the users.

As a consequence, enterprise architecture modeling languages need to include
constructs to explicitly express the (potential) value(s) of products and services to
customers, in particular in terms of value in use and resource integration, and how
this results in value co-creation between providers and consumers of services.

Challenge 6 Ability to capture (potential) value(s) of products and services and
how this results in value co-creation between providers and consumers of services
by way of resource integration.

21.2.1.7 Implementation and Design Choice Awareness

Given the speed of technological developments that drive the digital transformation,
it is increasingly important for organizations to be aware of the essential design
choices shaping the essence of their business2 activities, as well as choices with
regard to their implementation by means of different platforms and technologies.
The latter includes choices such as the use of (business process) outsourcing,
software platforms, hardware platforms, cloud computing, division of labor between
human and computer-based actors (also see Challenge 3), etc.

For enterprise (architecture) modeling languages, this means that one should
be able to express the design of the enterprise (including its use of information
technology) at different levels of specificity with regard to implementation deci-
sions, as well as enable the capturing of the associated design decisions and their
motivation (Plataniotis et al., 2015b, 2014b).

Challenge 7 Express the design of the enterprise at different levels of specificity
with regard to implementation decisions.

Challenge 8 Capture design decisions and their motivation.

2 When using the word “business,” we do so in the sense of “a particular field of endeav-
our” (Meriam–Webster, 2003); i.e., we are specifically not only referring to “commercial
businesses.”

288 B. van Gils and H. A. Proper

21.2.2 Managing the Spectrum of Modeling Concepts

21.2.2.1 Managing the Set of Modeling Concepts

An enterprise (architecture) modeling language typically features a rich set of
modeling concepts. As a natural consequence of the use of such a language, and
as a corollary to the law of entropy, there is a tendency to continue adding concepts
to modeling languages (Bjeković et al., 2014), in particular when such a language
has the status of being a standard.

Digital transformation, due to its deep impact and multifacetedness, is likely to
further fuel the entropic forces, likely leading to a further increase in the number of
modeling concepts. Some of the challenges listed above actually also point toward
a desire to extend existing modeling languages. Next to that, specific concerns,
such as security, privacy, value co-creation, etc., are likely to play a stronger
role in digital transformation and thus also trigger a need for dedicated modeling
concepts (Bjeković et al., 2014).

At the same time, an ever-increasing set of modeling concepts will lead to a
modeling language that will be hard to learn (Moody, 2009; Krogstie et al., 1995)
while also endangering the overall consistency of the set of modeling concepts.

This leads to the following challenge on enterprise (architecture) modeling
language (frameworks):

Challenge 9 A way to manage the set of modeling concepts, balancing the needs
of domain, and purpose, specificity, the need for standardization, and comprehensi-
bility of the modeling language.

21.2.2.2 Consistent Abstraction Layer Structures

Enterprise architecture modeling languages typically involve different abstraction
layers. Examples include the business, application, and technology layer as used
in ArchiMate (Lankhorst et al., 2017); the essential and implementation layer
as suggested by Enterprise Ontology (Dietz & Hoogervorst, 2007); the function
and construction perspective as suggested by the same; the business, information
systems, and technology layer from TOGAF (The Open Group, 2011); the business,
information, information systems, and technology infrastructure columns from
IAF (Wout et al., 2010); as well as the conceptual, logical, and physical layers of
the same.

In line with the earlier discussion on implementation and design choice aware-
ness (Challenges 7 and 8), using such abstraction layers for digital transformations
is indeed wise. At the same time, we observe in practice (both in using such
frameworks and teaching about them) that confusion about the precise scoping of
the used abstractions exists. In this regard, one can even distinguish changes in the
interpretation of the business, application, and technology layer from ArchiMate
as intended originally (Lankhorst et al., 2017), where the technology layer was

21 Next-Generation Enterprise Modeling 289

purely intended as the (IT) technological infrastructure, to the current interpretation,
where it has evolved to include the entire (IT) technological implementation (Band
et al., 2016). As we will discuss in Sect. 21.3, this also leads to further challenges
regarding relationships between layers in the case of ArchiMate.

In general, one could say that abstraction layers (even in multiple dimensions,
as suggested by the IAF (Wout et al., 2010) and Zachman (Zachman, 1987)
frameworks) result from the design philosophy underlying the specific framework.
In this chapter, we do not aim to take a specific position with regard the question of
which design philosophy would be best. However, we do argue, in particular when
considering the challenges of digital transformations, that it is important that the
layer structure must use clear and consistent abstractions.

For enterprise (architecture) modeling language (frameworks), this leads to the
following challenge:

Challenge 10 Provide a structure that allows to consistently use abstractions
across relevant aspects of the enterprise.

21.2.2.3 Grounding Modeling

Enterprise (architecture) models play an increasingly important role. When develop-
ing/evolving an enterprise, models are used to capture the current affairs, as well as
articulate different possible future affairs. Even more, nowadays, it is quite common
that models are even part of the “running system,” in the sense that they are an
artifact that drives/guides day-to-day activities. This includes workflow models,
business rule sets, etc.

This makes it important that enterprise models also capture their meaning3 in
a way that is understandable to the model’s audience. We therefore posit that a
conceptual model should be grounded in the terminology as it is actually used
(naturally) by the people involved in/with the modeled domain. We see this as a key
enabler for the transferability of models across time and among people, in particular
in situations where the model needs to act as a boundary object (Abraham et al.,
2013a).

Most existing enterprise modeling languages (e.g., process models, goal models,
actor models, value models, architectural models, etc.) only offer a “boxes and
lines”-based representation that only provide a limited linkage to the (natural)
language as used by the model’s audience. In general, the only link in this regard are
the names used to label the “boxes.” Relationships are replaced by generic graphical
representations in terms of arrows and lines capturing relations such as “assigned
to,” “part of,” “realizes,” “aggregates,” and “triggers.”

3 In principle, we would prefer to use the word “semantics” here. However, since the word
“semantics,” in our computer science-oriented community, tends to be equated to only mean
“formal semantics,” we will use the word meaning.

290 B. van Gils and H. A. Proper

While these abstract, and more compact, notations of purpose/domain-specific
modeling languages enable a more compact representation of models, they offer
no means to provide a “drill down” to an underlying grounding in terms of, e.g.,
well-verbalized fact types that capture, and honor, the original natural (language)
nuances (Hoppenbrouwers et al., 2019). They leave no room for situation-specific
nuance or more explicit capturing of the meaning of the models in a way that is
understandable to the model’s audience (beyond engineers). The challenge therefore
is:

Challenge 11 How to ground enterprise models in terms of natural language like
verbalizations, without losing the advantages of having compact notations (as well).

21.2.3 Enabling a Regulative Perspective

As mentioned in the introduction of this chapter, an often used idiom is that change
is the only constant, while the digital transformation results in a further increase in
the rate of this “constant change.” In light of such rapid changes, the notion of the
traditional baseline architecture has its difficulties.

As a result of these rapid changes, the enterprise is in a constant motion, which
means that the baseline is not simply a “state,” but rather a “vector” (Proper &
Lankhorst, 2014). Hence, it is better to speak about capturing “current affairs,”
which includes past, and present, change trends, of the enterprise and its environ-
ment. As a consequence, the traditional concept of a “target architecture” needs to
be reconsidered as well. Of course, in terms of TOGAF and ArchiMate, this concept
has been extended toward a multi-stage version in terms of “plateaus” toward
the future. Nevertheless, it remains to be seen how specific such plateaus/target
architectures can be developed in light of the fact that it is hard to make predications,
especially about the future.

As such, it may be wiser to depart from using the term “target” and refer to
it in more open terms, such as “directional,” to clarify that it expresses a desired
direction of development, rather than a specific target. This would also require a
departure from the traditional style of defining a target architecture (or plateaus)
in terms of a rather “instructive” style in terms of typical “boxes and lines”
diagrams toward a more “directional/“regulative” approach using, e.g., (normative)
architecture principles (Greefhorst & Proper, 2011a).

When considering the motivation extension of the latest ArchiMate (Band et al.,
2016) version, and the increasing awareness of the role of architecture principles, it
seems sensible to identify three levels of enterprise architecture modeling:

Desires-oriented dealing with goals of stakeholders and their ensuing require-
ments. Model artifacts from this perspective should be owned (content-wise) by

21 Next-Generation Enterprise Modeling 291

the stakeholders and should be formatted in terms of what the stakeholders want
to do and achieve.

Constraints-oriented dealing with (normative) architecture principles, regula-
tions, constraints, etc., limiting the design space. Model artifacts from this
perspective should be owned by both stakeholders and architects/designers and
form a translation from the stakeholders’ desires to consequences/constraints
toward the actual design, without making concrete/specific design decisions yet.

Construction-oriented dealing with specific “instructions” on how (parts of) the
enterprise should actually be constructed (and implemented). This involves the
typical boxes and lines diagrams. Ownership lies with the architects/designers,
and design decisions should of course comply to what has been stated from the
constraints- and desires-oriented perspectives.

The resulting challenge for modeling languages is:

Challenge 12 How to balance a desires-, a constraints-, and a construction-
oriented perspectives on an enterprise, in light of constant change.

21.3 ArchiMate’s Readiness for the New Enterprise
Modeling Challenges

In this section, we start by providing a high-level introduction to the current
version of the ArchiMate language, including its development history.4 We then
continue with a discussion to what extent the current version of ArchiMate meets
the challenges of digital transformations, as identified in Sect. 21.2. This provides
the context for the discussion in the next section, where we propose improvements
of the language.

21.3.1 The Development of the ArchiMate Language

In line with (Hoppenbrouwers, 2000, 2003; Hoppenbrouwers et al., 2005b; Frank,
2013, 2011), we argue that a modeling language, and designed languages in general,
should reflect the actual (intended) use of the language.

A purposely developed language, such as an enterprise architecture modeling
language, is fundamentally an artifact in the design science research (Hevner et al.,
2004; van Aken, 2004; Peffers et al., 2007) sense. A design science process typically
follows an (iterative) design process in terms of requirements elicitation, design, and
development, followed by some form of testing/evaluation, while also allowing for

4 At the time of writing, ArchiMate 3.0.1 is available online.

292 B. van Gils and H. A. Proper

possible iterations. The process for the development of domain-specific modeling
languages as suggested by, e.g., (Frank, 2013) follows a similar pattern.

In line with this, it would be appropriate to use the design science research
process as suggested in, e.g., (Peffers et al., 2007) in the development of a language
such as ArchiMate. Even though at the time of the development of the initial
versions of the ArchiMate language (early 2000s), design science research had not
yet fully emerged (Hevner et al., 2004), the development of ArchiMate did follow a
basic design process. ArchiMate’s development started with the establishment of a
set of initial requirements (Bosma et al., 2002; Jonkers et al., 2003). Using further
input from enterprise architects from industrial partners involved in the research
project, the architecture of the ArchiMate language was then developed (Lankhorst
et al., 2010), and the final design of (the initial version of) the ArchiMate language
was created.

Since then, the ArchiMate language has gone through several itera-
tions (Lankhorst et al., 2017; Band et al., 2016). Based on real-world use of
the language, several refinements and improvements were made. In addition, the
tighter integration into TOGAF (The Open Group, 2011) also resulted in additional
extensions. As a result, the language has also grown considerably in terms of the
included concepts.

21.3.2 Overview of the ArchiMate Language

ArchiMate is a dedicated language for representing (enterprise) architecture models
that was originally developed by a consortium of organizations in the Netherlands
after which it was adopted by The Open Group as an (open) standard (Lankhorst
et al., 2017; Band et al., 2016). Its adoption has grown rapidly, both in terms of
the users of the language and the vendors that deliver software solutions based on
this language. A full discussion of ArchiMate (Lankhorst et al., 2017) is beyond the
scope of this chapter. However, for purposes of our analysis, we will present a rough
outline of the structure of the language.

The current version of the language supports five layers (strategy, business,
application, technology, and physical) and four aspects (active structure, passive
structure, behavior, and motivation). The core of the framework—and focus of this
discussion—consists of the business/application/technology layer, and all aspects
save the motivation aspect. The rationale for leaving out motivation and implemen-
tation aspects lies in the fact that these are crucial for the architecture process, but
are not used to describe the actual architecture of the enterprise. The layers in the
core have the same generic meta-model which is shown in Fig. 21.1. The later meta-
model is also contained in the specification of the ArchiMate standard (Band et al.,
2016), albeit with some additional details.

Services are used as a decoupling mechanism. They are used to specify what an
active structure element exposes to its environment and hide the complexity of how
the services are realized. Services can be used both within a layer (e.g., a department

21 Next-Generation Enterprise Modeling 293

Internal

External

Passive structure Behaviour Active structure

Active
structure
element

Passive
structure
element

Service Interface

Behaviour
element

Fig. 21.1 Generic ArchiMate meta-model, adapted from Lankhorst et al. (2017); ©2017 Springer-
Verlag Berlin Heidelberg; reprinted with permission

offering services to another or an application offering services to another) and across
layers (e.g., which processes are served by an application service).

A second abstraction mechanism in the language is the specialization relation,
which is to be interpreted as “is a kind off.” Some languages, such as ORM
and UML, distinguish between (a) specialization, (b) generalization, and (c)
type/instance relations (Halpin, 2001; ter Hofstede & van der Weide, 1993; Hay,
2011; Fowler, 2004). In ArchiMate, these are all captured by the same specialization
relation. Using this relation, it is possible to relate generic architecture constructs
(e.g., a process pattern) into more specific manifestations (e.g., distinguishing
between the regular manifestation of the process or the manifestation that is
followed during times of crisis).

An abstraction mechanism that was introduced in version 3 of the ArchiMate
language is the use of grouping. Previously, the grouping was a visual construct
only, which was intended to show on a view which concepts “belong together” for
some reason. Since ArchiMate version 3, the intended meaning is more rigorous:
the grouping is said to aggregate the concepts that are in it and thus functions as
a semantic whole. Groupings may be related to other concepts (including other
groupings). This makes it particularly well suited to use the grouping as a form
of building blocks along the lines of the TOGAF standard (e.g., The Open Group,
2011, Chapter 37).

The last mechanism that is relevant to our discussion here is the notion of cross-
layer dependencies (Band et al., 2016, Chapter 12). The general idea is that elements
from one layer can be connected to elements of other layers using the serves
(previously: used-by) relation or the realization relation. Through this mechanism,
we can specify, for example, that a business process is realized by an application
process. Along the same lines, it allows us to specify that a group of elements (i.e.,
a building block) is realized by another group of elements (another building block).

Putting this all together leads to the example of Fig. 21.2 that illustrates the
concepts explained in this section. Starting at the top left, we see an architecture

294 B. van Gils and H. A. Proper

ar
ch

ite
ct

ur
e

bu
ild

in
g

bl
oc

k
-

se
m

i a
ut

om
at

ed

ar
ch

ite
ct

ur
e

bu
ild

in
g

bl
oc

k
-

ge
ne

ric
 p

at
te

rn
ar

ch
ite

ct
ur

e
bu

ild
in

g
bl

oc
k

-
st

ra
ig

ht
 th

ro
ug

h
ve

rs
io

n

so
lu

tio
n

bu
ild

in
g

bl
oc

k

F
ig
. 2

1.
2

A
bs
tr
ac
tio

n
m
ec
ha
ni
sm

s
in
 A
rc
hi
M
at
e,
 v
er
si
on

 3

21 Next-Generation Enterprise Modeling 295

building block that specifies a process pattern of three steps. Using the specialization
relation, we see two more specific building blocks at the bottom left (semi-
automated) and top right (straight through). Using the realization relation, we see
that these two together are implemented through a solution building block that ties
objects together.

21.3.3 Analysis in Light of the Identified Challenges

In this section, we briefly touch upon each of the identified challenges before
presenting a short reflection on the current “digital transformation readiness” of
ArchiMate.

Challenge 1 Objects should be allowed to play operand and operant roles.

The current ArchiMate language does not deal with this well due to the strict
distinction between active and passive structure elements. This challenge lies at the
heart of the ArchiMate language.

Challenge 2 Clear separation between objects that represent “things” in the real
world and objects representing information about the real world.

This challenge refers to the passive structure elements in ArchiMate. Currently,
there is no clear distinction between the two types of objects, other than the
observation that data objects/artifacts presumably are about the bits and bytes that
represent information. The ArchiMate specification does suggest that the business
object concept can be specialized but in the default language this has not been done.
What the specification does not mention is that additional relations may also be
required in order to present that informational business object A is about real-world
business object B.

Challenge 3 Ability to deal naturally with the duality of human and digital actors.

Here, the ArchiMate language, through its layering, does provide a fair attempt at
tackling this challenge since there are different concepts for, e.g., actor, information
system, and node. Some interesting challenges remain, however. First of all, only
(business) actors can be assigned a role in behavior; other structure elements cannot.
A second mismatch lies in the fact that collaborations in ArchiMate can only
be composed of structure elements from the same layer. This prevents us from
specifying that a human actor and computer actor collaborate to achieve a certain
task.

Challenge 4 Ability to specify if objects can, should, and/or are allowed to be
uniquely identified.

In ArchiMate, concepts are essentially “types,” representing the “instances” in
the real world. The ArchiMate concepts have a name to tell one apart from the
other. There is no mechanism to specify how the “instances” should be told apart.

296 B. van Gils and H. A. Proper

Challenge 5 Ability to specify modalities on relationships.

For this challenge, we can be short: ArchiMate has no support for this. Objects
are either related, or they are not.

Challenge 6 Ability to capture (potential) value(s) of products and services and
how this results in value co-creation between providers and consumers of services
by way of resource integration.

Evaluation of the current ArchiMate language against this challenge is somewhat
tricky. This is because the language does have the value concept, and it seems
possible to model value co-creation by using the collaboration/interaction concepts.
However, as discussed in, e.g., (Razo-Zapata et al., 2017, 2018), representing value
co-creation (Lusch & Vargo, 2006; Lusch & Nambisan, 2015), scenarios require
more dedicated modeling constructs.

Challenge 7 Express the design of the enterprise at different levels of specificity
with regard to implementation decisions.

Challenge 8 Provide a structure that allows to consistently use abstractions across
relevant aspects of the enterprise.

These challenges are closely related. The latest version of ArchiMate does indeed
provide some rudimentary support to tackle these challenges through the grouping
mechanism. It is now possible to express the fact that one group of concepts
(together) realizes another group of concepts. This allows the modeler to work from
a big picture level to a more detailed level, as well as from a functional level to a
more construction-oriented level.

Challenge 9 Capture design decisions and their motivation.

There is limited support in ArchiMate to address this challenge. We would argue
that using (a specialization of) the requirement concept could potentially work, but
is far from elegant. As an example of a more elaborate approach to the motivation
of design decisions, consider the work reported in (Plataniotis et al., 2014a, 2015a).

Challenge 10 A way to manage the set of modeling concepts, balancing the
needs of domain, and purpose, specificity, the need for standardization, and
comprehensibility of the modeling language.

Potentially, this challenge is addressed partially by means of the extension
mechanisms to tailor the language to local needs while keeping the core of the
language compact. This can be done by specializing existing concepts or by adding
properties to existing concepts. While it is good that the language indeed supports
this, being able to reuse extensions across toolsets of different vendors is not
straightforward. Even more, the extension mechanism is not really positioned as
a key feature in the standard either.

In addition, recent extensions of the language have been captured as so-called
extensions, such as the motivation extension and the implementation and migration
extension.

21 Next-Generation Enterprise Modeling 297

Challenge 11 How to ground enterprise models in terms of natural language like
verbalizations, without losing the advantages of having compact notations (as well).

ArchiMate has no support for this, neither in the language nor the modeling
process. Even more, there is no predefined modeling procedure such as ORM’s
CSDP (Halpin & Morgan, 2008), leaving (in particular novice modelers) to guess
how to master ArchiMate’s elaborate set of modeling concepts (Proper et al.,
2018b).

Challenge 12 How to balance a desires-, a constraints-, and a construction-
oriented perspectives on an enterprise, in light of constant change.

Support for this challenge is limited. ArchiMate does have the ability to model
different plateaus—which relates to different points in time—and it allows the
modeler to link concepts to motivational elements of key stakeholders. Full support
for balancing the different perspectives, however, is lacking.

21.3.4 Reflection

Building a modeling language that supports modelers to consistently solve chal-
lenges, and solve them well, is a difficult task indeed. After listing modeling
challenges and evaluating the current version of ArchiMate against these challenges,
we conclude that—even though ArchiMate has been around for a while and
has a strong conceptual framework—its support for the challenges of digital
transformation is fair at best. At first glance, it appears that several of the constructs
in the language need reconsideration in order to meet the listed challenges. How this
could play out is the topic of the next section.

21.4 Next-Generation Architecture Modeling Language

A full (re)design of the ArchiMate language is certainly beyond the scope of this
chapter. Instead, we provide (motivated) recommendations that could overcome the
challenges as discussed above.

21.4.1 Modular Language Design

modular As discussed in Sect. 21.3.1, the set of modeling constructs within
the ArchiMate language has grown considerably. Furthermore, as discussed in
Sect. 21.3.3, the use of ArchiMate’s extension mechanism indeed provides a good
starting point to better manage the resulting set of concepts. The positioning of

298 B. van Gils and H. A. Proper

recent additions to the language as extensions, such as the motivation extension and
the implementation and migration extension, indeed underlines this.

In general, we suggest that modeling language standards should focus primarily
on providing a generic core of well-defined, and possibly even formalized (ter
Hofstede & Proper, 1998), modeling concepts. On top of this core, one could then
define refinement mechanisms that can be used to extend/tailor the core to the
needs at hand. This may involve both specializations of the core concepts and the
introduction of different abstraction layers.

In addition, a library of (meta-model) modules can be defined, which could
potentially even be (re)used across different language cores. For example, a generic
motivation module could be shared between ArchiMate, DEMO (Dietz, 2006),
and BPMN (OMG, 2011). At the same time, a modular approach would also
enable more flexibility in terms of, e.g., the layering of abstractions. For instance,
ArchiMate (and TOGAF) have a “hard-wired” layering of the so-called business-to-
IT stack involving business, application, and technology. Other frameworks, such as
Capgemini’s IAF (Wout et al., 2010), have a more refined layering “hard-wired” into
their structure, involving business, (business) information (systems), (computerized)
information systems, and technology.

When looking at the original architecture of the ArchiMate language as reported
in (Lankhorst et al., 2010), there are indeed ample opportunities for further
modularization of the ArchiMate language. For example, following (Lankhorst
et al., 2010), and as also confirmed by (Band et al., 2016), the core of the language
is formed by five key generic “active systems” modeling concepts: objects, service,
internal behavior, interface, and internal structure. All other concepts are explicitly
derived from these in terms of specializations (Lankhorst et al., 2010).

We argue that this specialization hierarchy has been left too implicit for far
too long and that an explicit re-factoring of the current ArchiMate language based
on this hierarchy is long overdue, more specifically, using language construction
mechanisms such as:

Meta-model modules: that allows for the expression of specific language func-
tionalities, such as motivation and migration planning. Each of such modules
should include the identification of an interface by which it can be connected to
other language modules.
For example, a motivation module could feature a generic design element as
a placeholder for the elements of design for which a motivation needs to be
provided. The motivation module can then be used to motivate designs in
different languages.

Layering mechanisms: involving a set of meta-model modules used to con-
nect multiple layers. For instance, ArchiMate’s business/application/technology
layers are typically connected by means of services-calls and realizations-
relations. Making these into more explicit modules allows users to adapt the
layering to the needs of their organization. For instance, as mentioned above,
IAF (Wout et al., 2010) suggests a more refined layering in terms of busi-
ness/information/(computerized) information systems/technology.

Concept specialization: in terms of, e.g., the existing extension mechanism.

21 Next-Generation Enterprise Modeling 299

21.4.2 Grounding Enterprise Modeling

Challenge 5 suggests that enterprise models should (unless they only serve a
temporary “throw away” purpose) include a precise definition of the meaning5 of
the concepts used in the model. We see this as a key enabler for the transferability
of models across time and among people (Proper et al., 2004; Hoppenbrouwers
et al., 2005a), in particular in situations where the model needs to act as a boundary
object (Abraham et al., 2013a).

In line with this, we posit that, to ensure that a model is understandable to its
audience, it should be grounded on an (underlying) fact-based model involving
verbalizations using the terminology as it is actually used (naturally) by the people
involved in/with the modeled domain (Hoppenbrouwers et al., 2019).

As exemplified in (van Bommel et al., 2007a,b; Tulinayo et al., 2013; Proper
et al., 2018b), fact-based models can be used to ground enterprise models that
are expressed in languages, such as ArchiMate, DEMO (Dietz, 2006), system
dynamics (Rouwette & Vennix, 2006), and BPMN (OMG, 2011), and architecture
principles (Greefhorst & Proper, 2011a), in terms of underlying fact models. In
doing so, the basic idea is to:

1. Consider an enterprise (be it an existing one or an imagined future one), including
all its aspects (in particular, the “business-to-IT stack”), as an active system (of
systems)

2. describe the structures and behavior of this active system in terms of (observable)
facts

The latter is fully aligned to ArchiMate’s roots on natural language structures
involving agens (active structure), patiens (passive structure), and verb (behavior).

When indeed observing an active system in terms of fact (types), one essentially
creates the (structure of a) fact-based logbook of what “happens” in the active
system (van Bommel et al., 1996).

Even though we strongly suggest to remain close to the terminology as it
is actually used (naturally) by the people involved in/with the modeled domain,
we do see the potential benefits of providing guidance in structuring/refining this
terminology based on, e.g., foundational ontologies (Guizzardi, 2006).

Grounding ArchiMate on fact-based models would also lead to a natural way
to deal with Challenge 1, i.e., the challenge that objects should be allowed to play
operand and operant roles. Indeed, when observing objects and expressing their
engagements in activities in terms of fact types, one can easily observe object to play
different roles in different facts (types), mixing between passive structure/active
structure/behavior roles. For example, a computer may be a passive element in the

5 In principle, we would prefer to use the word “semantics” here. However, since the word
“semantics,” in our computer science-oriented community, tends to be equated to only mean
“formal semantics,” we will use the word meaning.

300 B. van Gils and H. A. Proper

context of it being manufactured, but it may be an active element in a context where
it processes key processes at some company.

Based on (Proper et al., 2018b), the suggested solution would be to treat the
ArchiMate concepts as roles which an object may enact. This allows for a natural
way for an object, say the computer in the above example, to enact both the role of
an active and a passive element in the same ArchiMate model.

21.4.3 Adding More Semantic Precision

Both Challenge 4 and Challenge 5 require the ability to specify more semantic
specificity regarding objects and relations. Such properties, e.g., identification
mechanisms and cardinality constraints, have always been part of modeling lan-
guages such as ER (Chen, 1976), ORM (Halpin & Morgan, 2008), and UML (OMG,
2007). As such, it would be logical to “import” such mechanisms from these existing
languages into ArchiMate.

Needless to say, it is not required for architects to specify such constraints in all
situations. The key is to provide the ability to do so when required.

As an example, consider the situation as shown in Fig. 21.3. This is not a full
example, yet it illustrates the main line of thinking. The setting is risk management
and (quality) control in a production process. Suppose that we have a manual
production process that is tightly controlled with production guidelines, metrics,
controls, etc. In such a situation, there is a need to be able to represent the fact
that:

• Supervisor roles must be executed by a human actor who may, in some other
setting, also perform other tasks. The supervisor role may be played in one or
more processes. However, a production process must have one and only one
supervisor.

• Production roles must be fulfilled by a human actor also. The production role
may be played in many processes. Even more, a production process may have
more than one production role.

• We want to avoid that the supervisor role is played by the same human actor as
the production role.

In Fig. 21.3, we have chosen to use the UML-style notation of adding cardinality at
the association ends.

21.4.4 Abstraction Layers

Challenges 2, 4, and 10 are essentially all concerned with different ways to “separate
concerns.” As argued in Sect. 21.2.2, it is important to ensure a clear and consistent

21 Next-Generation Enterprise Modeling 301

Human actor

1

*

1

*

1

*

1 1 1

1* *

*

*

Supervisor role Production role

Production process

Production monitoring Production execution Smart device Intelligent behavior

Production manual Raw material

Material specificationInstructions

<internal structure>

<internal structure>

<internal structure> <internal structure>

<internal structure>

<internal structure><internal structure>

<internal structure>

<internal behavior> <internal behavior><internal behavior>

<internal behavior>

Information Assignment
Access

FlowComposition

Fig. 21.3 Example of the use of with modality and cardinality constraints

structure of abstraction layers. In this chapter, we do not aim to take a specific
position as regards the question of which design philosophy would be best.

When looking “across” different frameworks (ArchiMate Lankhorst et al., 2017,
Enterprise Ontology Dietz & Hoogervorst, 2007, TOGAF The Open Group, 2011,
IAF Wout et al., 2010, and Zachman, 1987), we posit that the following key
constructs for the creation of abstractions (in different dimensions) are used:

Function-construction—This involves a distinction between:

1. Function refers to how a system is intended to function in light of what users,
clients, and other stakeholders might deem useful.

2. Construction refers to how a system actually functions/is constructed to
realize the provided functions.

Note that there may be good reasons for a constructed system to deviate from
how it was specified from a functional perspective. For example, it may be more
cost-effective to purchase a system that provides additional functionality—which
was not originally specified—than to construct a system in line with what was
specified.

Informational functioning—This dimension concerns different levels (of aspect
systems (of systems)) that describe different levels of functioning of an enterprise

302 B. van Gils and H. A. Proper

in terms of informational support, leading to a business, an informational, and a
documental level.

Infrastructure usage—This concerns the fact that one system (of systems) can use
the functions of another system (of systems), where the actual construction of
the latter is of no interest to the (designers) of the former, except to the extent of
defining service-level agreements.

Implementation abstraction—This concerns the gradual/stepwise introduction of
details of the socio-technical implementation. For example, in IAF (Wout et al.,
2010), this corresponds to the distinction between a conceptual, logical, and
physical level, while in TOGAF (The Open Group, 2011), this corresponds to
the level of architectural and logical building blocks.
Making a clear implementation abstraction also provides a natural way to deal
with Challenge 3 pertaining to deal with the duality of human and digital
actors. At the highest level of implementation abstraction, one would need
to describe the workings of the enterprise independent of the question if it
will be implemented by means of human actors or computerized actors. The
immediate next level of implementation abstraction might then to make choices
with regard to human/computerized actors explicitly, even allowing for mixed
scenarios, while, e.g., also identifying which actors are ultimately responsible
and accountable.
Each of the above-discussed abstraction mechanisms has a potential added value,
also in the context of digital transformation. It is important to note that these
abstraction mechanisms should not be thought of as a set of orthogonal dimen-
sions. On the contrary, the function-construction mechanism and information
functioning or function-construction and infrastructural usage can easily be
mixed. We also do not want to suggest to “prescribe” a specific set of dimensions.
We do, however, argue that an enterprise modeling language (framework) should
ensure a consistent use of the above mechanisms within one dimension.
As discussed in Sect. 21.3, ArchiMate seems to have been mixing some of these
dimensions in an inconsistent way.

21.4.5 Value Co-creation

The increasing focus on value co-creation, resulting from the shift from a goods-
dominant logic to a service-dominant logic (Vargo & Lusch, 2008; Grönroos
& Ravald, 2011; Lusch & Nambisan, 2015; Vargo & Lusch, 2016), results in
Challenge 6, i.e., how to capture (potential) value(s) of products and services and
how this results in value co-creation between providers and consumers of services
by way of resource integration.

ArchiMate already provides value concept, and it seems possible to model value
co-creation by using the collaboration/interaction concepts. However, as mentioned
before, value, or even a value stream, is not the same as value co-creation. How

21 Next-Generation Enterprise Modeling 303

to best express this is still largely an open question. Some initial work/suggestions
have been presented in Razo-Zapata et al., 2016; Feltus & Proper, 2017a, 2017b;
Razo-Zapata et al., 2017).

The very nature of value co-creation also requires a shift from (only) architecting
the “internals” in an enterprise to co-architecting the collaboration (including
needed inter-organizational IT platforms) between multiple partners in the co-
creation network (Chew, 2016).

In further elaborating the set of needed concepts for value co-creation, our
recommendation (Proper et al., 2018a) is to (1) use the provider/customer roles
as identified in (Grönroos & Voima, 2013), specialized to more specific co-
creation activities taking place within the provider sphere, the joint sphere, or the
customer sphere, as a reference model, while (2) using the foundational premises as
articulated in (Vargo & Lusch, 2016) as design/architecture principles (Greefhorst
& Proper, 2011a) that will guide the design of service systems for value co-creation,
and (3) apply this in the context of real-world cases, to gain insight into the actually
needed modeling concepts.

21.4.6 Capturing Design Motivations

The current version of ArchiMate does provide a motivation extension. However,
as discussed in the previous section, it does not meet Challenge 8 in a satisfactory
way. Separate from the fact that, as suggested above, it would be good if such an
extension could be shared between, e.g., ArchiMate, 4EM (Sandkuhl et al., 2014),
and BPMN (OMG, 2011), the actual level at which design decisions remain rather
crude.

The work as reported in, e.g., Plataniotis et al. (2014a, 2015a) provides sugges-
tions on how to remedy this. This includes the ability to, e.g., capture trade-offs
between design alternatives and the actual decision-making process and the criteria
used to make decisions (including the identification of compensatory and/or non-
compensatory (Rothrock & Yin, 2008) criteria).

21.4.7 Managing Constant Change

As discussed in Sect. 21.2, the digital transformation requires enterprises to change
constantly. This makes it less realistic to capture an enterprise’s current affairs
and/or desired affairs in terms of traditional notions such as “baseline” architecture
and “target” architecture or even plateaus/transition architectures. Even though we
observe some ingredients toward solutions for this challenge, we would argue that
more research is certainly needed.

In an ideal world, the description of the current affairs would be maintained
continuously, preferably in an automated way (Proper, 2014). Approaches such as

304 B. van Gils and H. A. Proper

process mining (van der Aalst, 2011) and enterprise cartography (Tribolet et al.,
2014b) indeed provide good starting points.

Architectures capturing the desired affairs also tend to be specified using a rather
“instructive” of typical “boxes and lines” diagrams. This does not really invite archi-
tects to reflect on what the more endurable elements and assumptions and what the
less stable elements and assumptions are. This has also triggered the development
of the concept of multi-speed enterprise (IT) architectures (Abraham et al., 2012).
It also resulted in a stronger positioning of, e.g., (normative) architecture princi-
ples (Greefhorst & Proper, 2011a) as a way to complement the “instructive” style
(the “boxes and lines” diagrams) by a more “directional”/“regulative” perspective.

21.4.8 Consequences for the Meta-Modal

Modeling is a key aspect of how we, as humans, attempt to get to grips with reality.
Whether models are—as much as possible—an accurate representation of what
happens/should happen in the real world or whether they are “merely a hypothesis”
of what we believe to be true about the real world does not change the fact that the
modeling language must be precise enough to express what we want. In the previous
section, we explored limitations of the current predominant architecture modeling
language: ArchiMate. In this chapter, we explored how some of these limitations
can be alleviated. This is deliberately positioned as an exploration.

The main contribution of our approach is twofold. First of all, we believe that
the meta-model for representing all aspects of the digital enterprise should be (a)
greatly simplified and (b) made more flexible. The biggest change is to remove
the active/passive structure dichotomy, which provides a more natural way of
expressing the state of affairs in the real world. Another is only apply layering on
the structure side, which avoids duplication of modeling decision. Even more, when
combined with a decision to have less predefined (structure) concepts, this allows
users of the language to adapt the language more to their individual needs while
still retaining the integrity rules of the overall framework. Last but not least, adding
the notion of constraints and modalities will give modelers the option to add more
precision to their models where needed.

It is a well-known fact that the proof of the pudding is in the eating: it would make
sense to use our approach in practice to see if, indeed, it lives up to its promise.

21.5 Conclusion and Further Research

In this chapter, we presented key challenges which the digital transformation puts
on enterprise (architecture) modeling languages. These challenges are based on
practical experiences and insights from the field of enterprise architecture.

21 Next-Generation Enterprise Modeling 305

We then assessed the extent to which the current version of ArchiMate meets
these challenges. The conclusion was that ArchiMate does not yet fully cover all
of the identified challenges. This can be explained by the fact that ArchiMate was
developed at a time when the digital transformation was not yet that dominant.

We then provided suggestions on how to possibly improve ArchiMate to better
meet the challenges of digital transformations. In further research, we intend to
further elaborate these suggestions, in particular with the aim of finding strategies
that work in real-world practice.

	21 Next-Generation Enterprise Modeling
	21.1 Introduction
	21.2 Challenges for Enterprise Modeling
	21.2.1 Expressiveness of the Modeling Language
	21.2.1.1 Objects Can Be Operand and Operant
	21.2.1.2 Information Versus Reality
	21.2.1.3 Natural Duality of Human and Digital Actors
	21.2.1.4 Identification Management
	21.2.1.5 Optional Modalities on Relationships
	21.2.1.6 Orientation Toward Value Co-creation
	21.2.1.7 Implementation and Design Choice Awareness

	21.2.2 Managing the Spectrum of Modeling Concepts
	21.2.2.1 Managing the Set of Modeling Concepts
	21.2.2.2 Consistent Abstraction Layer Structures
	21.2.2.3 Grounding Modeling

	21.2.3 Enabling a Regulative Perspective

	21.3 ArchiMate's Readiness for the New Enterprise Modeling Challenges
	21.3.1 The Development of the ArchiMate Language
	21.3.2 Overview of the ArchiMate Language
	21.3.3 Analysis in Light of the Identified Challenges
	21.3.4 Reflection

	21.4 Next-Generation Architecture Modeling Language
	21.4.1 Modular Language Design
	21.4.2 Grounding Enterprise Modeling
	21.4.3 Adding More Semantic Precision
	21.4.4 Abstraction Layers
	21.4.5 Value Co-creation
	21.4.6 Capturing Design Motivations
	21.4.7 Managing Constant Change
	21.4.8 Consequences for the Meta-Modal

	21.5 Conclusion and Further Research

