
Danny Greefhorst, Erik Proper

Architecture Principles

The cornerstone of Enterprise Architecture

July 9, 2016

Springer

2

The publication of this book was sponsored by:

In writing this book, the authors were kindly supported by:

Foreword

When enterprise architects try to explain to people who aren’t enterprise architects
what it is they do for a living, they almost invariably resort to using an analogy
with the architecture of buildings, and describe enterprise architecture as a ‘kind
of blueprint’. While this analogy may be helpful in conveying a general sense of
what the discipline of enterprise architecture is ‘sort of like’, it can be seriously
misleading if taken too literally.

Despite this risk, far too much thinking about enterprise architecture has been
unduly influenced by this analogy. This is not surprising; after all, it’s called ‘archi-
tecture’, and it is reasonable to expect that if two disciplines share an important part
of their name, they must share a lot of other stuff as well. Unfortunately, they don’t.
Buildings and enterprises are qualitatively different kinds of artifacts. Probably the
biggest difference is the way people relate to them. People do not just use or interact
with an enterprise people are the enterprise.

Minimizing, if not entirely ignoring, this difference, whether deliberately or in-
advertently, makes the problem of enterprise design seem tractable, in that it can be
thought of as a matter of drafting the right kind of blueprint. Hence, most definitions
of architecture as applied to what must be thought of as people-intensive systems,
are inherently structural in nature, and architectures are thought of as being derived
via and represented by models. The idea that architecture is primarily about struc-
ture, and the idea that architecture is best represented by models, mutually reinforce
one another. Most architectural models are represented by ‘boxes and lines’, and it
is hard not to think of what is depicted as some kind of structure.

This is ironic, because the earliest well documented use of the word ‘architec-
ture’ in an IT context was to describe the programmer visible behavior of the IBM
System/360 family of processors, in a manner independent of the internal structure
of the implementation.

The emphasis, if not exclusive focus, on structure as the concern of architecture
leads to an even more pernicious consequence: divorcing the architecture of a sys-
tem from its raison d’être. Models are very good at representing the what and how
of a system, but they leave the why implicit and external to the model, and thus, too

v

vi Foreword

often, external to the architecture. This makes it far too easy to think of the system
as an end in itself, rather than as a means to achieving some mission.

When I joined the Architecture Profession Office of HP Services in 2001, I
learned HP’s architecture method, which later became known as HP Global Method
for IT Strategy and Architecture (ITSA). Until then I had been doing architecture
by the seat of my pants, and ITSA was a revelation. The essence of ITSA is using
a linked succession of architectural principles to provide a chain of motivation and
justification from the business context of the problem, need or opportunity to the
constraints on implementation and operation necessary to ensure the solution deliv-
ers the required business value. In ITSA, models, while important, are secondary
to principles; indeed, ITSA practitioners are taught that models are derived from
principles, and ideally every element of a model illustrates some principle. This
chain of motivation and justification not only ensures alignment of the solution with
the needs of the business, it also provides traceability and an objective context for
governance.

The recently published book about the ITSA method showed the important role
principles can play in the development of an architecture. This new book by Danny
and Erik takes the next step by providing an in depth treatment of principles, and a
conceptual framework for thinking about them. Architectural principles are finally
getting the well deserved attention they have too long lacked. I am confident that
someday we will look back on this as a watershed event in the professionalization
and maturing of the discipline of enterprise architecture.

Leonard Fehskens
VP, Skills and Capabilities
The Open Group

Acknowledgements

The creation of this book would not have been possible without the contribution of
others. In particular, many of the ideas have been based on discussions we had in
the architecture principles working group of the Netherlands Architecture Forum
(NAF). We would especially like to thank Louis Dietvorst and Pieter Buitenhuis
for their valuable contributions. Our minds are also with Leo Hermans, who con-
tributed enthusiastically to the working group, but has regretfully passed away. We
also thank the students who joined the working group and contributed to the concep-
tual framework with their master thesis: Martijn van den Tillaart, Koen van Boekel,
Niels van Bokhoven, Teun Huijbers, Harry van den Wollenberg and Jordy Kersten.

We would also like to thank the people that contributed content to the book,
such as case descriptions. Our book would not have been as valuable without the
contributions of Charles Hendriks, Joost Peetoom, Erik Kiel, Anne Marie van Rooij,
Ronald van den Berg, Peter Bergman, Erik Saaman, Benny Prij and Louis Dietvorst.

We also thank all the people that reviewed draft versions of the book and provided
us with important feedback: Bas van Gils, Christian Fischer, Dirck Stelzer, Eric
Schabell, Erik Vermeulen, Erik Saaman, Erwin Oord, Frank Harmsen, Jan Dietz,
Jan Hoogervorst, Joost Lommers, José Tribolet, Marc Lankhorst, Mathias Ekstedt,
Monika Grünwald, Peter Beijer, Pontus Johnson, Raymond Slot and Remco de Boer.
Very special thanks go to Joost Lommers and Peter Beijer for their elaborate review
comments. We would like to explicitly thank Len Fehskens for being a source of
inspiration for our book, for providing insights on the essense of architecture, and
for writing the foreword.

Finally would would also like to thank our respective employers, ArchiXL, The
Netherlands and the Public Research Centre – Henri Tudor, Luxembourg, as well as
the Fonds National de la Recherche Luxembourg and the Netherlands Architecture
Forum, in supporting the creation and publication of this book.

Danny Greefhorst Erik Proper
Amersfoort Luxembourg-Kirchberg
The Netherlands Luxembourg

vii

Abstract

Enterprises, from small to large, evolve continuously. As a result, their structures are
transformed and extended continuously. Without some means of deliberate control,
such changes are bound to lead to an overly complex, uncoordinated and heteroge-
neous environment that is hard to manage, while at the same time resisting future
changes in desired directions. Enterprise architecture aims to provide such controls.

Key concepts in enterprise architecture include stakeholders and their concerns,
architecture principles, models, views and frameworks. While most of these con-
cepts have obtained ample attention in research, the concept of architecture princi-
ples has not been studied much yet. More specifically, architecture principles pro-
vide a means to direct transformations of enterprises. As a consequence, it can be
argued that architecture principles form the cornerstone of any architecture. In this
book, we therefore specifically focus on the role of architecture principles. It pro-
vides both a theoretical and a practical perspective on architecture principles. As
such it is targeted at students and researchers, as well as practitioners who have the
desire to understand the foundations underlying their practical work.

The theoretical perspective involves a brief survey of the general concept of prin-
ciple as well as an analysis of different flavors of principles. A key distinction is
made between scientific principles and normative principles. Scientific principles
are laws or facts of nature and form the fundamental truths that one can build upon.
Normative principles are rules of conduct that guide/restrict behavior. While scien-
tific principles hold “naturally”, normative principles need explicit “enforcement”.
Architecture principles, being the core topic of this book, are regarded as a specific
class of normative principles that influence/direct the design of an enterprise (from
the definition of its business to its supporting IT).

The practical perspective on architecture principles is concerned with an ap-
proach for the formulation of architecture principles, as well as their actual use in
organisations. To illustrate their use in practice, several real life cases are discussed.
Furthermore, the book includes an Appendix, which provides a discussion on how
to use the suggested approach for the formulation and application of architecture
principles in the context of The Open Group’s TOGAF, as well as a catalogue of
example architecture principles.

ix

Contents

Foreword . v

Acknowledgements . vii

Abstract . ix

1 Introduction . 1
1.1 Challenges to enterprises . 1
1.2 Enterprise architecture and architecture principles 3
1.3 Motivations and target audience . 4
1.4 Outline of the book . 5

2 The role of enterprise architecture . 7
2.1 Introduction . 7
2.2 Enterprise transformations and enterprise engineering 9
2.3 Streams of activities in enterprise engineering 11
2.4 Architecture-based governance of enterprise transformations 14

2.4.1 The need for architecture . 15
2.4.2 Architecture as a bridge from strategy to design 16
2.4.3 Steering with architecture . 19
2.4.4 The three roles of enterprise architecture 20

2.5 Defining enterprise architecture . 21
2.5.1 The purpose of an enterprise architecture 21
2.5.2 The meaning of an enterprise architecture 22
2.5.3 The elements of an enterprise architecture 23
2.5.4 Definition of enterprise architecture . 24

2.6 Other forms of architecture . 25
2.7 Standards for enterprise architecture . 27
2.8 The role of architecture principles . 28
2.9 Key messages . 30

xi

xii Contents

3 A conceptual framework for principles . 31
3.1 Introduction . 31
3.2 Background of architecture principles . 32
3.3 Key classes of principles . 34

3.3.1 Scientific principles . 34
3.3.2 Design principles as normative principles 35
3.3.3 From credos to norms . 38
3.3.4 Conceptual framework . 40

3.4 Architecture principles as pillars from strategy to design 44
3.4.1 Architecture principles . 44
3.4.2 Business and IT principles . 44
3.4.3 Bridging from strategy to design . 46
3.4.4 Extended conceptual framework . 48

3.5 Motivating architecture principles . 48
3.5.1 Sources for finding motivation . 50
3.5.2 Drivers as motivation for architecture principles 52
3.5.3 Extended conceptual framework . 54

3.6 Formal specification of normative principles . 55
3.7 Key messages . 58

4 Architecture principle specifications . 59
4.1 Introduction . 59
4.2 Dimensions in architecture principles . 62

4.2.1 Type of information dimension . 63
4.2.2 Scope dimension . 64
4.2.3 Genericity dimension . 65
4.2.4 Level of detail dimension(s) . 65
4.2.5 Stakeholder dimension . 66
4.2.6 Transformation dimension . 67
4.2.7 Quality attribute dimension . 67
4.2.8 Meta level dimension . 69
4.2.9 Representation dimension . 70

4.3 Attributes . 70
4.3.1 Basic structure . 71
4.3.2 Advised attributes . 73
4.3.3 Attributes for classification . 75
4.3.4 Potential attributes . 76
4.3.5 Generic meta-data attributes . 77
4.3.6 Relationships . 78

4.4 Architecture principle sets . 80
4.5 Quality criteria . 81
4.6 Key messages . 84

Contents xiii

5 A practical approach . 85
5.1 Introduction . 85
5.2 Generic process . 88

5.2.1 Determine drivers . 88
5.2.2 Determine principles . 91
5.2.3 Specify principles . 97
5.2.4 Classify principles . 99
5.2.5 Validate and accept principles . 100
5.2.6 Apply principles . 101
5.2.7 Manage compliance . 105
5.2.8 Handle changes . 108

5.3 Key messages . 109

6 Case studies . 111
6.1 Introduction . 111
6.2 ICTU . 112

6.2.1 Introduction . 112
6.2.2 Architecture principles . 113
6.2.3 Approach . 114

6.3 CVZ . 116
6.3.1 Introduction . 117
6.3.2 Architecture principles . 118
6.3.3 Approach . 118

6.4 Enexis . 120
6.4.1 Introduction . 120
6.4.2 Architecture principles . 121
6.4.3 Approach . 122

6.5 TKP Pensioen . 124
6.5.1 Introduction . 125
6.5.2 Architecture principles . 125
6.5.3 Approach . 126

6.6 Schiphol . 128
6.6.1 Introduction . 128
6.6.2 Architecture principles . 129
6.6.3 Approach . 131

6.7 Key messages . 133

7 Architecture principles in context . 135
7.1 Introduction . 135
7.2 Types of architectures . 136

7.2.1 Enterprise architecture development . 136
7.2.2 Reference architecture development . 137
7.2.3 Solution architecture development . 138

7.3 Architecture maturity . 139
7.3.1 Department of Commerce Maturity Model 140

xiv Contents

7.3.2 Architecture maturity and architecture principles 140
7.4 Culture . 144
7.5 Key messages . 147

8 Summary, conclusions and future work . 149
8.1 Summary and conclusions . 149
8.2 Future work . 151

A Principles catalogue . 155
A.1 Business units are autonomous . 155
A.2 Customers have a single point of contact . 156
A.3 Stock is kept to a minimum . 157
A.4 Processes are straight through . 157
A.5 Processes are standardized . 158
A.6 Management layers are minimized . 158
A.7 Tasks are designed around outcome . 159
A.8 Routine tasks are automated . 159
A.9 Primary business processes are not disturbed by implementation

of changes . 160
A.10 Components are centralized . 160
A.11 Front-office processes are separated from back-office processes 161
A.12 Channel-specific is separated from channel-independent 161
A.13 The status of customer requests is readily available inside and

outside the organization . 162
A.14 Data is provided by the source . 162
A.15 Data is maintained in the source application . 163
A.16 Data is captured once . 163
A.17 Data is consistent through all channels . 164
A.18 Content and presentation are separated . 164
A.19 Data is stored and exchanged electronically . 165
A.20 Data that is exchanged adheres to a Canonical Data Model 165
A.21 Data is exchanged in real-time . 166
A.22 Bulk data exchanges rely on ETL tools . 166
A.23 Documents are stored in the document management system 167
A.24 Reporting and analytical applications do not use the operational

environment . 167
A.25 Applications have a common look-and-feel . 168
A.26 Applications do not cross business function boundaries 168
A.27 Applications respect logical units of work . 169
A.28 Applications are modular . 169
A.29 Application functionality is available through an enterprise portal . . 170
A.30 Applications rely on one technology stack . 171
A.31 Application interfaces are explicitly defined . 171
A.32 Proven solutions are preferred . 172
A.33 IT systems are scaleable . 172

Contents xv

A.34 Only in response to business needs are changes to IT systems made 173
A.35 Components have a clear owner . 173
A.36 IT systems are standardized and reused throughout the organization 174
A.37 IT systems adhere to open standards . 174
A.38 IT systems are preferably open source . 175
A.39 IT systems are available at any time on any location 175
A.40 IT systems are sustainable . 176
A.41 Processes are supported by a Business Process Management system 176
A.42 Presentation logic, process logic and business logic are separated . . 177
A.43 IT systems communicate through services . 177
A.44 Reuse is preferable to buy, which is preferable to make 178
A.45 IT systems support 24*7 availability . 178
A.46 IT systems are selected based on a best-of-suite approach 179
A.47 Sensitive data is exchanged securely . 179
A.48 IT Systems may under no circumstances revert to insecure mode . . . 180
A.49 Management of IT systems is automated as much as possible 180
A.50 End-to-end security must be provided using multiple defensive

strategies . 181
A.51 Access rights must be granted at the lowest level necessary for

performing the required operation . 181
A.52 Authorizations are role-based . 182
A.53 The identity management environment is leading for all

authentications and authorizations . 182
A.54 Security is defined declaratively . 183
A.55 Access to IT systems is authenticated and authorized 184
A.56 Integration with external IT systems is localized in dedicated IT

components . 184
A.57 Application development is standardized . 185
A.58 All messages are exchanged through the Enterprise Service Bus . . . 185
A.59 Rules that are complex or apt to change are managed in a business

rules engine . 186

B Architecture principles in TOGAF . 187
B.1 Architecture principles in TOGAF . 187
B.2 Architecture principles in TOGAF ADM . 188
B.3 Mapping the generic process to TOGAF’s ADM 190

References . 193

Glossary . 205

About the authors . 207

Chapter 1
Introduction

Abstract This Chapter offers an introduction to the field of enterprise architecture
in general, and to the role of architecture principles in particular. We start with a dis-
cussion of the challenges confronting modern day enterprises. These challenges fuel
the need for enterprises to use enterprise architecture to gain control over their evo-
lution, from the definitions of products and services offered to their clients, via the
business process delivering the products and services, and the information systems
needed to support these processes, to the underlying IT infrastructure.

We continue with a brief summary of the role of architecture principles within en-
terprise architecture. Various alternative approaches for enterprise architecture exist,
and most of these approaches recognize the need for architecture principles. Unfor-
tunately, however, they do not agree to the specific role of architecture principles,
while providing only scanty assistance for their formulation and actual use. This
provides the core motivation for creating this book.

At the end of this Chapter, we will also discuss the goals and structure of the
remainder of this book. In doing so, we provide an overview of the issues touched
upon in each of the Chapters and Appendixes, as well as the offered contributions.

1.1 Challenges to enterprises

Modern day enterprises, be they commercial businesses or governmental organiza-
tions, are faced with a range of challenges. These challenges impact the ‘design’
of these enterprises, from the definitions of products and services offered to their
clients, via the business processes that deliver these products and services, and the
information systems that support these processes, to the underlying IT infrastruc-
ture.

To a large extend, these design challenges are the result of changes in the en-
terprise’s environment. A first example of such an environmental change is global-
ization. The globalization of our economy and society has removed physical, eco-
nomical, cultural and political barriers, while decisions are no longer based on ge-

1

2 1 Introduction

ographical location and their inherent limitations (Friedman, 2005; Umar, 2005).
As a result, most enterprises have to position themselves on a global marketplace.
One can no longer ‘hide’ within the boundaries of one’s own nation or municipality.
The differentiation of an enterprise’s services and products needs to be engaged at
a global scale. Consider, for example, a traditional book store. These book stores
have to compete with Amazon and their likes, if they want to or not. They can only
do so by either becoming a direct competitor of Amazon, or by strengthening their
differentiators in terms of physical proximity to clients, expert advice, being able
to ‘touch and browse before buying’, or bundling their service with complimentary
services such as book presentations by authors, a reader’s Café, et cetera. One may
even go as far as to become a hybrid book store, using an Amazon-like service as
logistical ‘back-office’, while focussing on the ‘personal experience’ in the book
store’s ‘front-office’.

A second example is the general shift towards services-oriented enterprises. Our
economy is increasingly becoming a services economy. Consumers, clients and cit-
izens do not ‘just’ expect a product anymore. They expect integrated service offer-
ings that are updated at the same pace as their own needs change (Hagel III and
Armstrong, 1997; Horan, 2000; Mulholland et al, 2006; Tapscott, 1996). The shift
towards a services oriented economy makes it that enterprises need to reposition
themselves as service providers, while making clear choices about their core compe-
tencies, the position they want to take in the value chain (Gordijn and Akkermans,
2003; Tapscott, 1996; Hagel III and Armstrong, 1997), their core competencies,
and the services/products they offer. As a result, enterprises increasingly turn into
networked organizations where each node of the network focuses on its core com-
petencies, while outsourcing other business functions to other nodes (Hagel III and
Singer, 1999; Malone, 2004; Galbraith, 2000). In other words, present day enter-
prises are required to become service-oriented enterprises comprising of a dynamic
network of organizations that collectively provide services.

A third example is the changing role of IT in enterprises. Traditionally, IT was
used to automate information processing within enterprises. The rapid evolution
of information technology brings an abundance of new opportunities to organiza-
tions (Capgemini, 2009; Tapscott, 1996; Hagel III and Armstrong, 1997). Services
offered by enterprises are increasingly delivered by way of digital channels (Ho-
ran, 2000). Technology becomes part of almost everything and most processes have
become IT reliant, if not fully automated. The discussion of business-IT align-
ment (Henderson and Venkatraman, 1993) is subsumed by the broader issue of
business-IT fusion (Op ’t Land et al, 2008).

A fourth example is compliance regulation. Enterprises are increasingly con-
fronted with legal requirements concerning the transparency of their operations,
as well as compliance to environmental or financial regulations. Examples include
Sarbanes-Oxley Act (Government of the USA, 2002) and Basel II (BIS, 2004).

A fifth example is the shift of powers in the value chain. Clients of enterprises
have become more demanding. A shift of power in the value chain is occurring.
Clients have grown more powerful and demand customized, integrated and full
life-cycle products and services. For example, rather than asking for a ‘forklift-

1.2 Enterprise architecture and architecture principles 3

insurance’, they ask for ‘forklift-availability’ in their warehouse. Instead of asking
for a ‘printer’, they demand a guaranteed ‘printing service’. Even more, customers
have a tendency to ask for integrated service offerings. Rather than treating the
booking of a flight, a hotel and a sight-seeing trip as separate services provided
via separate outlets, customers opt for one-stop shopping. This is a shift from ba-
sic products to full services. Even more, the advent of social networking such as
Facebook, Twitter, et cetera, adds additional opportunities and risks. How to engage
these digital communities in the development and marketing of an enterprise’s ser-
vices? At the same time, bad consumer experiences (justified or not) may be shared
instantaneously through social networks, which yields high commercial risks if not
managed well.

Externally caused challenges, such as the ones described above, drive enterprises
to change continuously. Even more, the rapid pace of the underlying developments,
require enterprises to be highly agile. They are required to quickly adopt to changes,
treats and opportunities as they avail themselves. At the same time, existing struc-
tures and infrastructures within an enterprise may hamper the needed changes. This
is also where IT tends to play a less positive role. Since the processes in modern day
enterprises are supported by IT systems, transformations within enterprises have a
profound impact on their IT landscapes. Even more, mergers and acquisitions have
expanded the amount of IT in large organizations. Especially since the resulting re-
dundancies in the IT landscape are often not removed. This has left many enterprises
with a complex and inflexible IT landscape which essentially keeps them locked into
a digital straitjacket hampering future change. Enterprises should be able to focus
their attention on developing and evolving the core business of the enterprise, rather
than finding ways to free themselves from their digital straitjacket.

1.2 Enterprise architecture and architecture principles

Business performance, nowadays, increasingly depends on a balanced and inte-
grated design of the enterprise, involving people, their competencies, organizational
structures, business processes, IT, finances, products and services, as well as its en-
vironment. Given the challenges as the ones discussed above, it is important for
senior management (CEO, CFO, CIO, et cetera) of an enterprise to make conscious
decisions about the design of their enterprise. Even more, given the need for agility,
the ability to change effectively and efficiently, becomes almost as important as the
normal execution of core business processes.

This is where enterprise architecture is positioned as an instrument to articu-
late an enterprise’s future direction, while serving as a coordination and steering
mechanism towards the actual transformation of the enterprise. In articulating an
enterprise’s future direction, the multi-perspective approach, that is typical of en-
terprise architecture, enables the achievement of organizational cohesion and inte-
gration (Zachman, 1987; Lankhorst et al, 2005b; Op ’t Land et al, 2008; TOGAF,
2009). Furthermore, by focussing on what is core in the design of the desired en-

4 1 Introduction

terprise, an enterprise architecture harnesses organizational complexity. As such it
provides the overview and insights needed to translate strategy into execution, en-
abling senior management to take ownership of the key decisions on the design of
the future enterprise.

Enterprise architecture, and the associated formulation, implementation and gov-
ernance processes, are increasingly recognized by organizations as an important ca-
pability (Lankhorst et al, 2005b; Op ’t Land et al, 2008; TOGAF, 2009). As part
of the Clinger-Cohen Act (USA Government, 1996), the government of the United
States of America even requires government agencies to appoint a Chief Information
Officer (CIO) with the responsibility of “developing, maintaining, and facilitating
the implementation of a sound and integrated information technology architecture”.
Even though the Clinger-Cohen act limits itself to IT architectures, the needed align-
ment between the many aspects such as including people, processes, IT, finances,
products and services, usually entails the use of an enterprise architecture encom-
passing the IT architecture.

As discussed by Op ’t Land et al (2008), key concepts in the field of enterprise ar-
chitecture include concerns, architecture principles, models, views and frameworks.
Ample research has been conducted on architecture frameworks (Greefhorst et al,
2006), architecture modelling languages (Lankhorst et al, 2005b; Iacob et al, 2009),
model analysis (Johnson and Ekstedt, 2007; Iacob and Jonkers, 2007), as well as
viewpoints and concerns (Proper et al, 2005; Lankhorst et al, 2005a; Buckl et al,
2008).

We believe that architecture principles are key in ensuring enterprise architec-
ture effectiveness (Op ’t Land and Proper, 2007), and we are certainly not alone in
doing so. Several approaches position principles as an important ingredient (Dav-
enport et al, 1989; Richardson et al, 1990; Tapscott and Caston, 1993; Wagter et al,
2005; Op ’t Land et al, 2008; TOGAF, 2009; Van’t Wout et al, 2010; Beijer and De
Klerk, 2010), while some even go as far to position principles as being the essence
of architecture (Dietz, 2008; Hoogervorst, 2009; PRISM, 1986; Fehskens, 2010).
Architecture principles fill the gap between high-level strategic intentions and con-
crete design decisions. They ensure that the enterprise architecture is future directed,
and can actually guide design decisions, while preventing analysis paralysis by fo-
cussing on the essence. Furthermore, they document fundamental choices in an ac-
cessible form, and ease communication with all those affected.

1.3 Motivations and target audience

Given that principles have not received a lot of research attention (Fischer et al,
2010), there is a need to better understand their essence. In this book we therefore
focus on the concept of architecture principle and its role in the field of enterprise
architecture. In the conclusion of Op ’t Land et al (2008), the need for a book on
architecture principles in the enterprise engineering series was already identified
explicitly. This book aims to meet this need.

1.4 Outline of the book 5

Architecture principles also provide (service-oriented) enterprises with a mech-
anism to better balance top-down directive steering, with bottom-up emergence, by
focussing on what is key from a strategy point of view. Principles can be used to
more precisely meet the needs to steer enterprise transformations, reducing the risk
of falling into the pit of over-specifying. Unfortunately, however, architecture prin-
ciples suffer from the immaturity of the enterprise architecture field in general. Cur-
rent methods and techniques for enterprise architecture are unclear about how to
actually position, create and apply architecture principles. A notable exception is
the recent book by Beijer and De Klerk (2010) which has also been used as source
of inspiration for this book. As also observed in the literature survey on architecture
principles as provided by Stelzer (2009), not much work has been done on funda-
mentally defining the concept of architecture principles in the context of enterprise
architecture. This book therefore aims to clarify the role of architecture principles
in enterprise architecture, and to provide guidance in their development and appli-
cation. More specifically, this book aims to provide a first reference work on the
concept of architecture principles, thereby contributing to the professionalization
and maturation of the enterprise architecture profession.

Extending on earlier work (Proper and Greefhorst, 2010), we have endeavored to
collect relevant conceptual foundations and current practice on the subject, thereby
creating a work that has theoretical relevance as well as practical added value. On
the one hand this book intends to provide an overview of the concepts, issues and
approaches that exists. On the other hand, it also tries to provide concrete guidance
in the actual development of architecture principles.

Since this book provides both a theoretical and a practical perspective on archi-
tecture principles it is targeted both at students and researchers, as well as at practi-
tioners who have the desire to understand the foundations underlying their practical
work. As a result, the book is relevant to a broad audience. It can be used by students
and teachers as a textbook for courses in IT, business analysis, enterprise engineer-
ing, and enterprise architecture in particular. It can also be used by to practitioners
involved in the development, governance and application of enterprise architectures.
This includes enterprise architects, as well as managers, project managers, analysts,
designers and developers. It may be used as a source of inspiration for people in-
volved in adjacent fields such as policy making and requirements management.

1.4 Outline of the book

The book is structured into eight Chapters and two Appendixes, starting with this
introductory Chapter providing the reader with an overview of the field of enterprise
architecture.

Chapter 2 provides a more detailed discussion of the role of enterprise architec-
ture as a means to direct and steer enterprise transformations. This Chapter will also
position enterprise architecture as an important notion within the field of enterprise
engineering. While doing so, we will also discuss the distinction between archi-

6 1 Introduction

tecture and design. Based on this positioning, the core ingredients of an enterprise
architecture will be highlighted, also identifying the role of architecture principles.

Chapter 3 will continue with a more detailed discussion of the concept of prin-
ciples and its history. It provides a conceptual framework for principles, defining
the concepts related to architecture principles including the various flavors of prin-
ciples that exist (including architecture principles). It also shows more specifically
what the role of architecture principles is in the creation of enterprise architectures.
Readers only interested in practical guidance on how to specify and use architecture
principles, might want to skip this chapter.

Chapter 4 elaborates on the specification of architecture principles. It discusses
fundamental dimensions that determine the type of architecture principle. It also
further explores the characteristics of architecture principles by describing potential
and advised attributes. In doing so, we also recognize that architecture principle
specification is very much context-specific. Also, quality criteria are provided for
architecture principles that can help in increasing their effectivity.

Chapter 5 describes a practical approach for the development and application
of architecture principles, consisting of a generic process that can be applied for
enterprise architectures, solution architectures and reference architectures. Every
subprocess in the generic process is described in more detail, and a running example
is used to clarify how to actually execute the process.

Chapter 6 provides real-world experiences in the form of five cases from orga-
nizations in the Netherlands. These cases have been contributed by architects from
these organizations. They include a description of the organizational context, a num-
ber of architecture principles that were defined and a description of the approach
taken.

Chapter 7 recognizes that the approach which organizations should take for ar-
chitecture principle development depends on the context. In particular the type of
architecture, the architecture maturity level, and the culture are important factors to
consider. These factors are described in more detail, including their influence on the
development of architecture principles.

Chapter 8 finishes the book with a summary and conclusions. It recapitulates
the essence of the book, and provides some additional reflections. It also provides a
view on future work that is needed in order to further mature the field.

Appendix A provides a catalogue of architecture principles that were abstracted
from architectures in the field. This catalogue provides practitioners with an instru-
ment to quickly identify relevant architecture principles for their specific organiza-
tion. The architecture principles are described in a common format, and are associ-
ated with attributes that help in determining their suitability in a specific context.

Appendix B describes how architecture principles are embedded in TOGAF, and
how the generic process for the creation and application of principles, as proposed
in this book, relates to the Architecture Development Method of TOGAF.

Chapter 2
The role of enterprise architecture

Abstract The aim of this Chapter is to identify the role of enterprise architecture,
and more specifically, the role of architecture principles. It starts with an exploration
of the concept of enterprise transformation, including the enterprise engineering
perspective. The purpose of enterprise architecture is that it aligns an enterprise
to its essential requirements. Its meaning is that it provides a normative restriction
of design freedom towards transformation projects and programmes. Key elements
of enterprise architecture are concerns, models, views, architecture principles and
frameworks. Enterprise architecture addresses the properties that are necessary and
sufficient for it to be fit for purpose for its mission. Architecture principles are the
cornerstone of enterprise architecture. They fill the gap between high-level strategic
intents and concrete designs.

2.1 Introduction

As discussed in the introductory Chapter, enterprise architecture is an instrument
to articulate an enterprise’s future direction, while also serving as a coordination
and steering mechanism towards the actual transformation of the enterprise. In this
Chapter, we elaborate on the role played by enterprise architecture in enterprise
transformations. By doing so, we provide a context which allows the remainder of
this book to more specifically zoom in on architecture principles.

Enterprise architecture is a relatively young field. Nevertheless, a large number of
approaches to enterprise architecture have been developed. Standards such as IEEE
1471 (IEEE, 2000), The Open Group Architecture Framework (TOGAF, 2009) and
ArchiMate (Iacob et al, 2009) are important steps in the continuous maturation of
the field of enterprise architecture. The field of enterprise architecture also exhibits a
growth from an interpretation as the enterprise-wide IT architecture to the architec-
ture of the enterprise (Fehskens, 2008). One can also observe in industrial practice,
how enterprise architecture initiatives increasingly include business aspects, while
also providing guidance on the design of organizational aspects (Wagter, 2009).

7

8 2 The role of enterprise architecture

Even though enterprise architecture has grown to encompass more than IT, the
term clearly originates from the IT domain. One of the first references to the term
architecture in the context of IT is found in a paper from 1964 on the architecture
of the IBM System/360 (Amdahl et al, 1964). The use of architecture in the context
of the development of information systems started in the late 1980’s in both Europe
and North America. The North American use of the concept of architecture, in the
context of information systems, can be traced back to a report on a large multi client
study, the PRISM project (PRISM, 1986) and a paper by John Zachman (Zachman,
1987), while its European origins can be traced back to the early work of Prof. A.-W.
Scheer (Scheer, 1986, 1988, 2000) on the ARIS framework.

The ARIS framework eventually formed the base for the IDS Scheer toolset. The
PRISM project was a multi-year research project, led by Michael Hammer, Thomas
H. Davenport, and James Champy. The research project was called the Partnership
for Research in Information Systems Management (or PRISM), and was sponsored
by approximately sixty of the largest global companies (DEC, IBM, Xerox, Texaco,
Swissair, Johnson and Johnson, Pacific Bell, AT&T, et cetera). This research ef-
fort produced an architecture framework known as the PRISM Architecture Model,
which was published in 1986. The PRISM framework has strongly influenced other
enterprise architecture standards, methods and frameworks (Davenport et al, 1989;
Richardson et al, 1990; Beijer and De Klerk, 2010; Rivera, 2007). Many years later,
the PRISM report also influenced the IEEE definition of architecture, as many of the
IEEE 1471 committee members (Digital included) were employed by the original
sponsors of their earlier work on PRISM.

The Zachman (1987) paper is often referred to as one of the founders of the field
of enterprise architecture, even though the original PRISM and ARIS frameworks
were already published in 1986. At the same time, however, the publication that
is used to substantiate this claim was actually titled “A framework for information
systems architecture”. This clearly suggests a focus on information systems archi-
tecture rather than enterprise architecture in general. Even more, the actual focus of
this publication was on computerized information systems rather than information
systems in the broader sense (Falkenberg et al, 1998). Nevertheless, the Zachman
framework was intended to support a strong focus on selected aspects of (comput-
erized) information systems without losing a sense of the contextual, or holistic,
perspective. The same holds for the earlier work reported by the PRISM project as
well as for the early work of Scheer.

In moving beyond IT, enterprise architecture aims to provide a more holistic view
on an enterprise. Therefore, enterprise architectures typically involve additional do-
mains such as business architecture, process architecture, data architecture, appli-
cation architecture and infrastructure architecture. The PRISM, ARIS and Zachman
frameworks already suggested to take an enterprise-wide view on the aspects that
are relevant to the design of (computerized) information systems, from the business
process level to the IT infrastructure level. These frameworks were typically derived
from analogous structures that are found in the older disciplines of construction and
engineering that classify and organize design artifacts created by the processes of
designing and producing complex physical products (e.g. buildings or airplanes).

2.2 Enterprise transformations and enterprise engineering 9

Nevertheless, no universal agreement exists on the exact views that can be used in
an enterprise architecture, nor on the exact content of such views. This is illustrated
by the wide variety of architecture frameworks (identifying different views) that
have been defined, which do not seem to converge (Greefhorst et al, 2006). This has
been a real issue in the application of enterprise architecture in practice, and has not
helped in the acceptance in organizations.

To better understand the role of enterprise architecture, and ultimately the role
of architecture principles, we first need to gain a better understanding of enterprise
transformations. To this end, the next Section will continue with a discussion of en-
terprise transformations. This is followed by an elaboration on the role of enterprise
architecture as a means to steer and coordinate enterprise transformations. Based on
this, we define the view on enterprise architecture as taken in this book. We then
continue with a brief overview of some relevant industry standards, as well as key
flavors of enterprise architecture. Before concluding, we explicitly zoom in on the
role of architecture principles.

2.2 Enterprise transformations and enterprise engineering

As a consequence of challenges such as the ones discussed in Section 1.1, modern
day enterprises have to change themselves continuously. These transformations may
be the result of a gradual change of the behavior of the elements in the enterprise, or
they may be the result of a deliberate action. In Section 1.2 we already mentioned
the importance for senior management (CEO, CFO, CIO, et cetera) to be engaged in
the decision making process concerning the design of their enterprise. This applies
to both gradual changes and deliberately designed changes.

An increasing number of scholars and practitioners take the perspective that in or-
der to make conscious (and well informed) decisions, an engineering-like approach
to the design of enterprises is needed (Dietz, 2006; Op ’t Land et al, 2008; Lankhorst
et al, 2005b; Österle and Winter, 2003; Tribolet et al, 2008). This has led to the fields
of business engineering (Österle and Winter, 2003), organizational engineering (Tri-
bolet et al, 2008) and enterprise engineering (Dietz, 2006).

The American Engineers Council for Professional Development (ECPD, 1941)
states that engineering concerns:

‘[T]he creative application of scientific principles to design or develop structures, ma-
chines, apparatus, or manufacturing processes, or works utilizing them singly or in com-
bination; or to construct or operate the same with full cognizance of their design; or to
forecast their behavior under specific operating conditions; all as respects an intended
function, economics of operation and safety to life and property.’

In line with this general definition of engineering, we will use the term enterprise
engineering as the general term for an engineering based approach to design or
develop enterprises:

10 2 The role of enterprise architecture

ENTERPRISE ENGINEERING – The creative application of scientific principles to develop
(which includes design and implementation) enterprises, or parts/aspects thereof; or to
operate the same with full cognizance of their design; or to forecast their behavior under
specific operating conditions; all as respects an intended function, economics of operation
and safety to life and property.

In this definition, development is defined in line with Dietz (2008) as involving both
design and implementation.

As stated in the enterprise engineering manifesto (CIAO, 2010), it is the mission
of the discipline of enterprise engineering to bring the rigor of engineering in general
to the design of enterprises:

It is the mission of the discipline of Enterprise Engineering to develop new, appropriate
theories, models, methods and other artifacts for the analysis, design, implementation, and
governance of enterprises by combining (relevant parts of) management and organization
science, information systems science, and computer science. The ambition is to address (all)
traditional topics in said disciplines from the Enterprise Engineering Paradigm. The result
of our efforts should be theoretically rigorous and practically relevant.

The field of scientific management (Taylor, 1911), or its present day ‘variations’
such as Lean (Womack and Jones, 2003) and Six Sigma (Pyzdek, 2003), can also
be regarded as relevant theories within the field of enterprise engineering. However,
scientific management should not be equated to enterprise engineering. The field
of enterprise engineering involves more than just optimization of labour and pro-
duction activity. A first example is the DEMO method (Dietz, 2006). The DEMO
method provides a rigorous approach for the design of an enterprise that is based on
both a philosophical and mathematical foundation. It focusses on the design of the
essence of an enterprise in terms of its technology independent design. Another ex-
ample, is the viable systems model of Stafford Beer (Beer, 1985), which provides a
set of systems-theoretic (Ashby, 1956) principles for the successful design of viable
enterprises.

The earlier mentioned enterprise engineering manifesto (CIAO, 2010), provides
seven key postulates to provide the field of enterprise engineering with more direc-
tion and focus. The postulates included in the manifesto also an anchor point for the
enterprise engineering series. This book, being part of the enterprise engineering
series, is compatible with these postulates.

Finally, the above discussed approaches to enterprise engineering willingly or
not, invite a top-down ‘design-first’ style of thinking towards the engineering of
enterprises. Enterprise engineering should not be regarded as ‘just’ being a design-
first style of enterprise transformation (Fehskens, 2010). Since enterprises are, at
the end of the day, human driven endeavors, it is important to combine the above
approaches with approaches that take human beings as a starting point. For exam-
ple, Achterbergh and Vriens (2009) take the view that the development/evolution of
an organization (involved in one or more enterprises) can be regarded as a social
experiment, involving the human actors that comprise the organization. Another
example is the communication oriented perspective taken by Taylor and Van Every
(2010). Their approach views an organization as being primarily the result of human
communication. Most importantly, it is based on the communication among the hu-
man beings who actually do the work. Taking this approach also explicitly exposes

2.3 Streams of activities in enterprise engineering 11

the potential contradiction between what may have been designed up-front and what
materializes in reality. Finally, the shift towards networked and services-oriented en-
terprises, as discussed in the introductory Chapter, also requires a balance between
a design-first style of thinking with an emergence style of thinking.

Given the need to balance a design-first and an emergence oriented style of think-
ing, enterprise engineering can benefit from the rigor from other fields of engineer-
ing such as civil engineering. However, it should be clear that enterprise engineering
has to deal with other forces, such as emergence and the fact that enterprises are hu-
man driven, that make it quite a different ‘game’ to play.

2.3 Streams of activities in enterprise engineering

In using an engineering based approach to the transformation of enterprises, we
suggest to make a distinction between three key streams of activities (Harmsen et al,
2009):

Asses – The assessment (diagnosis) of the problem/challenge a potential enterprise
transformation aims to solve/meet. In other words, clarifying the motivation for
the transformation (e.g. involving the goals of the core stakeholders) as well as
its requirements and intended results.

Aim – The identification of how the transformation aims to solve/meet the prob-
lem/challenge (formulation/selection of the treatment). In other words, restrict-
ing/focussing the design of the desired enterprise and the transformation steps
needed to get there. In view of the needed balance between the design-first and
emergence styles of thinking, the Aim stream should make explicit what needs to
be restricted top-down, and what can be left to bottom-up emergence. Even more,
top-down design decisions might be taken that enable/invite future emergence. In
our view, architecture principles provide an excellent means to articulate the bal-
ance between top-down restrictions and bottom-up emergence.

Act – The acting out of the actual transformation (applying the treatment). In other
words, the implementation of the desired enterprise. The act process is started
only if the results of the aim process defines a solution that is in line with the
diagnosis arrived at in the assess process.

This distinction leads to the situation as depicted in Figure 2.1. The Assess, Aim
and Act streams of activities will be highly iterative and cyclic in nature. There is,
nevertheless, a strong dependency between the results produced in the three streams.
There must be some general motivation to start the Assess activities in the first place.
During the assessment activities, the understanding of the precise motivation for the
transformation will increase, while the requirements on a possible solution are gath-
ered. The requirements serve as input to the Aim process in which a solution is
designed fitting the requirements. Where the requirements state what properties the
enterprise should have, the motivations express why the stakeholders want the enter-
prise to have these properties (Beijer and De Klerk, 2010). The design expresses how

12 2 The role of enterprise architecture

Assess Aim Act

Requirements DesignMotivations Implementation

Fig. 2.1 Sub-processes in enterprise transformation

an actually ‘implemented’ enterprise will meet the requirements. It consequently
acts as a restriction of implementation freedom towards the implementers. Needless
to say, that the design should indeed balance between the top-down design-first and
bottom-up emergence style of thinking.

Dietz (2006, 2008) describes a generic system development process, which we
essentially regard as a possible realization of the generalized structure shown in Fig-
ure 2.1. The same applies to TOGAF’s Architecture Development Method (ADM,
illustrated in Figure 2.2). It also provides a particular way of ‘doing’ the Assess,
Aim and Act processes. The ADM’s architecture vision phase focuses on an under-
standing of the essential ‘problem’ and vision on the ‘solution’, i.e. a first Assess /
Aim iteration. The business architecture, information systems architecture and tech-
nology architecture phases provide further Assess / Aim iterations. Depending on
the situation at hand, the focus will be more on understanding the problem (As-
sess) or developing the solution (Aim). The opportunities and solutions and mi-
gration planning yield further iterations of the aim process, elaborating the actual
intended transformation. Finally, the implementation governance and architecture
change management phases (and associated projects that actually realize the envis-
aged architecture) correspond to the Act process.

To make large enterprise transformations feasible and manageable, they will typ-
ically be split into programmes and eventually into projects. Even more, larger en-
terprises typically do not just have one transformation programme but rather mul-
tiple, that all need to be kept in sync and aligned to the strategy of the enterprise.
A more theoretical underpinning of this phenomenon can be found in theories on
multi-level systems dealing with problems that cannot be solved with a monolithic
decision artifact, and require multiple levels to come to terms with them (Mesarović
et al, 1970). In our view, there are roughly three key granularity levels at which
enterprise transformations can be regarded:

Strategic transformation level – This level is tied into the strategy formulation and
execution processes. It is concerned with the strategic direction of the enterprise’s
transformation.

2.3 Streams of activities in enterprise engineering 13

C
Information

Systems
Architecture

F
Migration
Planning

A
Architecture

Vision
B

Business
Architecture

D
Technology
Architecture

E
Opportunities
and Solutions

G
Implementation

Governance

Preliminary

H
Architecture

Change
Management

Requirements

Fig. 2.2 TOGAF Architecture Development Methodology, adopted from TOGAF (2009)

Tactical transformation level – This level is concerned with the portfolio of trans-
formation programmes needed to execute the overall enterprise transformation.
At this level we find the definition of the transformation programmes, their over-
all planning and mutual synchronization.

Operational transformation level – At this level, we are concerned with the day-
to-day progress of the enterprise transformation. This level concerns the projects
within the programmes. This is where the actual work of the transformation takes
place.

These levels are illustrated in the diagram depicted in Figure 2.3. The diagram also
shows the recursive use of the Assess / Aim / Act stream, where each time the Act
stream spawns a series of further programmes / projects. TOGAF also suggests the
recursive use of the ADM process (see Figure 2.2) on multiple levels of granularity
of the transformation.

It should be noted that the structure as depicted in Figure 2.3 does not necessarily
mean that the decomposition of a transformation is a strict top-down process. While
the transformation progresses, changes in the context of the transformation may
prompt a change of direction, or the execution of projects / programmes lead to new
insights that also require changes of direction, or even new ‘spontaneous’ projects.

14 2 The role of enterprise architecture

Assess Aim Act

Assess Aim Act

Assess Aim Act

Assess Aim Act
(Overall enterprise transformation)

(Programmes)

(Projects)

Strategic transformation level

Tactical transformation level

Operational transformation level

Enterprise Strategy

Fig. 2.3 Sub-processes in enterprise transformation

In that sense, the intentions of the structure depicted Figure 2.3 is that it should
work just as well deal with a collection of agile projects (Martin, 2002). This also
stresses the need to strike a balance between the design-first and emergence styles
of thinking. As mentioned before, we take the view that architecture principles are
an excellent way of articulating this balance.

2.4 Architecture-based governance of enterprise transformations

As discussed above, due to the complexity of enterprise transformations, they are
typically decomposed into multiple, smaller, projects. In terms of Figure 2.3, one
can state that at the level of projects the actual ‘work’ of transforming the enter-
prise occurs, while the higher levels focus on the integration of results, as well as
the alignment to the enterprise’s strategy. To this end, a governance mechanism is
needed to steer and coordinate the transformation, connecting the strategic consider-
ations at the strategy level to the execution of the transformation projects at the op-
erational level. This generally also requires a further elaboration of the enterprise’s
strategy, since strategies tend to be too unspecific to effectively steer and coordi-

2.4 Architecture-based governance of enterprise transformations 15

nate the programmes and projects within the transformation (Op ’t Land et al, 2008;
Wagter, 2009). Additionally, the needed governance mechanism must also explicitly
address the coherence needed among the different aspects of an enterprise.

2.4.1 The need for architecture

Traditionally, project management and programme management are put forward as
being responsible for these coordination tasks (PRINCE, 2009; PMBOK, 2001).
However, these approaches focus primarily on the management of typical project
parameters such as budgets, resource use, management of project risks, deadlines,
et cetera. When indeed only considering the typical project parameters, one runs the
risk of conducting ‘local optimizations’ at the level of specific projects. For exam-
ple, when making design decisions that have an impact which transcends a specific
project, projects are likely to aim for solutions that provide the best cost/benefits
trade-off within the scope of that specific project, while not looking at the overall
picture. Regretfully, however, in practice such local optimizations do not just re-
main a potential risk. The risk actually materializes, and consequently reduces the
overall quality of the result of the transformation. This type of risk generally oc-
curs when stakes with regards to general infrastructural elements of an enterprise
collide with local short-term interests. This especially endangers the needed coher-
ence/alignment between different aspects within an enterprise (such as business and
IT, but also human resources, physical infrastructures, et cetera). As a result, more
often than not, enterprises fail to actually realize the desired transformation even
though it might be the case that all projects are finished on time and within budget.

This means that separate from project/programme management, an additional
‘force’ is needed to steer and coordinate enterprise transformations. This additional
force should also explicitly target the essential requirements that transcend the scope
of specific projects. In line with (Rijsenbrij et al, 2002; Op ’t Land et al, 2008), we
regard the overall steering of an enterprise transformation (illustrated in Figure 2.4)
as involving a force-field among three perspectives:

Enterprise strategy perspective – From this perspective, the focus is on a long-
term outlook on why, and how, the enterprise aims to realize its mission and
vision (Johnson et al, 2005). An enterprise strategy typically includes a business
strategy and an IT strategy (Henderson and Venkatraman, 1993).

Programme management perspective – In executing a (new) strategy, the enter-
prise will have to be transformed to match the strategy. Such a transformation will
involve a portfolio of change projects. Therefore, from a programme manage-
ment perspective, the focus is on a managed and controlled way of executing the
processes involved in an enterprise transformation effort. From this perspective,
one is concerned with typical project parameters such as budgets, management of
project risks, resource use, deadlines, et cetera (PRINCE, 2009; PMBOK, 2001).

Enterprise architecture perspective – The enterprise architecture perspective is
concerned with the overall steering of the direction in which the enterprise aims

16 2 The role of enterprise architecture

to transform itself, and the coordination of the projects and programmes. The fo-
cus is on those requirements on the design of the enterprise that are essential to
the stakeholders of/within the enterprise and/or transcend individual programmes
or projects.

Strategy

Programme
Management

Enterprise
Architecture

Fig. 2.4 The role of enterprise architecture, adopted from Rijsenbrij et al (2002)

2.4.2 Architecture as a bridge from strategy to design

As mentioned above, an enterprise architecture should provide an elaboration of an
enterprise’s strategy such that it enables the steering and coordination of the pro-
grammes and projects involved in the transformation. It should therefore focus on
those requirements on the design of the enterprise that are essential to the key stake-
holders (including senior management) of the enterprise and/or transcend individual
programmes or projects.

This view is shared by Fehskens (2008). He states that the architecture of a
‘thing’ should explicitly address alignment, relating the role of architecture to the
mission of that ‘thing’. Fehskens defines architecture as “those properties of a thing
and its environment that are necessary and sufficient for it to be fit for purpose for
its mission”. In his view, architecture should focus on what is essential, on “the stuff
that matters”. The focus on the properties that matter, is also what distinguishes
architecture from design. A different architecture implies a different mission, whilst
different designs may address the same mission.

By focussing on the essential requirements, there is a natural tendency for archi-
tectures (in our domain) to be concerned with a class of systems1, such as the system

1 The term system is to be understood here in its original sense of the term (Ashby, 1956; Bunge,
1979), including ‘systems of systems’ such as enterprises as a whole. The field of IT seems to
have hijacked the term system, while making it synonymous to application or software system. In
enterprise engineering, however, we will use the term in its original sense, as also understood by
the general population and organizational science in particular.

2.4 Architecture-based governance of enterprise transformations 17

of systems that collectively forms the enterprise, or a family of similar systems. We
however believe that a focus on essential requirements leads to a more meaningful
and discriminating view on architecture. It ensures that architectures contain “ev-
erything you need and nothing you don’t” (Fehskens, 2010). Also, architectures that
are defined based on the essential requirements, still define a class of systems. In
particular, all designs that adhere to the architecture describe systems in this class.
However, there may also be a single design and system for a given architecture. This
interpretation of architecture resonates well with the definitions provided by IEEE
(2000) and TOGAF (2009), which state that the architecture level should focus on
the fundamental organization of a system. It also conforms to the definition of ar-
chitecture as suggested by Dietz (2008) and Hoogervorst (2009), who state that an
architecture operates on a class of systems.

Where an architecture focuses on the the essential requirements, a design fo-
cuses on how the remaining (system specific) requirements will be met. The design
decisions underlying the design are much more specific, and should only have a
limited impact on the essential requirements of the key stakeholders. If such deci-
sions would have a significant impact on these requirement, then this would be an
indication that they should have been included at the architecture level in the first
place.

Needless to say that the actual designs used in the projects need to comply to
the architecture. As a consequence, an architecture by definition restricts the design
space. Or formulated more positively, it reduces design stress from the designers
in the projects. It does so especially, since the key design decisions that transcend
the project’s scope have been addressed in the architecture. The point of view that
an enterprise architecture is a normative restriction of design freedom also features
prominently in the definition of architecture as provided by Dietz (2008): “Theoret-
ically, architecture is the normative restriction of design freedom”.

One may argue that an enterprise architecture may also provide guidance to the
programmes and projects, rather than a normative restriction of design freedom.
While we agree to this, we also argue that acting as a normative restriction of design
freedom, is at the heart of its role as a steering instrument.

When we now re-visit the decomposition of enterprise transformations into pro-
grammes and projects as shown in Figure 2.3. It is quite natural to identify differ-
ent granularity levels of essential requirements addressed by an enterprise architec-
ture. For example, in TOGAF a distinction is made between a strategic architec-
ture, segment architecture and capability architecture. These architectures become
increasingly more specific in terms of their scope, while reducing their intended
time-horizon to the horizon relevant to the programme or project. More specifically:

Strategic Architectures – show a long-term summary view of the entire enterprise.
Strategic Architectures provide an organizing framework for operational and ch-
ange activity and allow for direction setting at an executive level.

Segment Architectures – provide more detailed operating models for areas within
an enterprise. Segment Architectures can be used at the program or portfolio level
to organize and operationally align more detailed change activity.

18 2 The role of enterprise architecture

Capability Architectures – show in a more detailed fashion how the enterprise can
support a particular unit of capability. Capability Architectures are used to pro-
vide an overview of current capability, target capability, and capability incre-
ments and allow for individual work packages and projects to be grouped within
managed portfolios and programs.

drives

restricts

restricts

restricts

Strategic Architecture

Enterprise Strategy

Segment Architecture

Capability Architecture

Architectures

Enterprise Design

Enterprise Implementation

restricts

Strategic transformation level

Tactical transformation level

Operational transformation level

Fig. 2.5 Architecture as a bridge from strategy to design

As a summary, Figure 2.5 (page 18) summarizes how architecture forms a bridge
between strategy and design, and ultimately the implementation of the (future) en-
terprise. Based on the distinction between a strategic architecture, segment architec-
ture and capability architecture, as suggested by TOGAF, three levels of architecture
are identified. These levels correspond to the three levels of transformation granular-

2.4 Architecture-based governance of enterprise transformations 19

ity shown in Figure 2.3. The enterprise strategy drives the enterprise transformation,
and therefore also the formulation and use of the architecture. The strategic archi-
tecture restricts the design space for the segment architecture, while the segment
architecture limits the design space of the capability architecture. Finally, the ar-
chitectures limit the design space of designers, while the design on its term can be
regarded as limiting the space for valid implementations.

2.4.3 Steering with architecture

The situation depicted in Figure 2.5 may suggest that the steering role of architec-
ture is a pure top-down communication channel. In other words, a channel from
strategy to implementation. It is, however, important to realize that steering is not
a one-way flow. When steering, one uses controls to sent signals to an object that
needs steering. For example, using a break, an accelerator and a steering wheel, a
driver can sent steering signals to the car. However, in addition to these controls,
one also needs indicators to see if the object being steered is actually responding as
planned. When one turns a car’s steering wheel to the left, this is not necessarily a
guarantee that the car will indeed move to the left. When, for example, the road is
iced over, it is likely that when the speed of the car is high, the car will not turn left.
Even though the steering signal has been transferred successfully to the wheels of
the car, the car is not turning left. Drivers of a car can use their own sense to assess
whether the car is indeed turning left or not. In general, indicators are needed to
observe the consequences of steering actions. In other words, for steering we need
controls to sent steering signals to the object to be steered, and indicators to observe
the (changed) behavior of the object. In the field of management science, this prin-
ciple is captured in the so called control paradigm (De Leeuw, 1982; De Leeuw and
Volberda, 1996) as depicted in Figure 2.6 (page 20) showing that a control system
controls an object system using controls and indicators.

When using architecture as a steering and coordination mechanism for enterprise
transformations, the architecture itself and the associated governance processes pro-
vide the controls. At the same time, a feedback mechanism is needed to assess
whether the enterprise transformation is indeed moving in line (and pace) with the
enterprise strategy. Discrepancies may be caused by distortions of the steering sig-
nals (cf. a failing break), or due to changed or unanticipated circumstances in the
enterprise’s implementation and/or its environment (cf. an icy road when normal
road conditions were expected).

Most existing architecture approaches focus on the control aspects of steering
only, while not paying much attention to the indicator aspects of steering. As men-
tioned before, the situation as depicted in Figure 2.3 (page 14) should not be mis-
interpreted as a strict top-down style of steering. To steer such a portfolio, one
clearly needs indicators in addition to controls. This also enables enterprises to find
a better balance between the earlier discussed design-first or emergence style of
thinking about transformations.

20 2 The role of enterprise architecture

Controlling System

Target System

indicators

controls

Fig. 2.6 The control paradigm, adopted from De Leeuw (1982)

2.4.4 The three roles of enterprise architecture

To play its role well, an enterprise architecture should have multiple roles. To be
able to steer, it needs to provide clear regulations towards programmes and projects
in order to restrict their design space. This is the regulative role of enterprise archi-
tecture. At the same time, however, since architecture also needs to play a guiding
role towards the projects and programmes, it needs to capture more specific instruc-
tions that enable this guidance. This is the instructive role of enterprise architecture.
Finally, an enterprise architecture should have an informative role as well, in the
sense that employees are provided with proper information and knowledge that sup-
ports their decision making. We therefore argue that an enterprise architecture has
three important roles:

A regulative role – which manifests itself as a prescriptive notion governing the de-
sign of an enterprise. From this angle, an enterprise architecture presents itself
as a prescriptive and normative concept (Hoogervorst, 2004). Hoogervorst (2009)
states that normative guidance is the essential purpose of architecture. He consid-
ers architecture to be a prescriptive concept that expresses ex ante how systems
must become, rather than a descriptive concept that depicts ex post how systems
are. The concept of architecture principles, as will be elaborated in the remainder
of this book, is prominent in the regulative role of enterprise architecture.

An instructive role – which emphasizes the specification of an enterprise in all its
facets, as a high level design, and providing guidance to the organization in the
actual application of such a specification. This perspective focuses on the design
consequences of the regulations formulated in the regulative role, providing in-
structions towards the ensuing design activities that are to take place within the
programmes and projects. When taking this perspective, one typically produces
models that describe the design of actual systemic artifacts and their interrela-
tions. For example, in terms of ArchiMate models (Iacob et al, 2009).

An informative role – which focuses on enabling decision making by sharing knowl-
edge on architecture decisions, and their underlying rationale, throughout the or-

2.5 Defining enterprise architecture 21

ganization. This architectural knowledge can be either organization-specific or
generic. Generic architectural knowledge is embedded in artifacts such as ref-
erence models, design patterns and scientific principles. It is transformed into
organization-specific knowledge based on organization-specific drivers. Tacit
knowledge is codified where relevant.

Op ’t Land et al (2008) distinguished a regulation-oriented perspective, a design-
oriented perspective and a patterns-oriented perspective respectively. These corre-
spond to the above identified three ‘roles of enterprise architecture’. The design-
oriented perspective from Op ’t Land et al (2008) corresponds to the instructive role
of architecture. In this book, however, we prefer to stress the instructive role of this
perspective towards the programmes and projects. The patterns-oriented perspec-
tive from Op ’t Land et al (2008) corresponds to the informative role. In the context
of this book we would like to stress the role of enterprise architecture in capturing
architectural and design knowledge.

2.5 Defining enterprise architecture

As a way to make the role of enterprise architecture more explicit, this Section pro-
vides our definition of enterprise architecture. As will be shown below, the goal
is not to provide yet another definition, but rather to make the role of enterprise
architecture more explicit. In that sense, the definition offered in this section repre-
sents our fundamental understanding of the concept, while at the same time aiming
to remain compatible with other definitions (IEEE, 2000; TOGAF, 2009). Before
providing the definition used in this book, we first discuss the concept from three
different perspectives:

1. The purpose which an enterprise architecture serves.
2. The meaning of an enterprise architecture, i.e. what it does.
3. The elements of an enterprise architecture in terms of the typical components

used in capturing an enterprise architecture.

We will then finalize this Section with the definition of enterprise architecture as we
will use it in this book. From this definition, the role of principles will also be made
clear, setting the scene for the remainder of this book.

2.5.1 The purpose of an enterprise architecture

Based on the above discussions, our view is that the main purpose of an enterprise
architecture is to align an enterprise to its essential requirements. As such, it should
provide an elaboration of an enterprise’s strategy to those properties that are nec-
essary and sufficient to meet these requirements. These properties will impact the
design of the enterprise, and enable the steering and coordination of transformation

22 2 The role of enterprise architecture

programmes and projects. As mentioned before, the essential requirements refer to
those requirements that (when not attained) have a high impact on the goals of the
enterprise’s key stakeholders.

One might wonder whether enterprise architecture should consequently only re-
fer to a future state. This is not the case; an enterprise architecture can be concerned
with the current situation, past situations, as well as a future (desired) situation. To
illustrate this, consider the potential roles of an enterprise architectures in the three
streams of activities as identified in Figure 2.1 (page 12):

Assess – In the Assess activities, the current architecture of the enterprise can be
used to explain and understand how the existing situation aligns to the past stra-
tegy, as well as to analyze potential short-comings in the existing situation, po-
tential impact of anticipated changes, new regulations, risks, et cetera. In TOGAF
this is referred to as the baseline architecture. The role played by the baseline ar-
chitecture is quite fundamental to the planned enterprise transformation, as it can
be used to underpin the needs for the transformation. Fehskens (2010) states that
architecture can be used to “recognize or classify existing things”.

Aim – In the Aim activities, the architecture of the future enterprise is used to for-
mulate a ‘solution’ to the ‘problem’ identified in the Assess activities, while elab-
orating the updated strategy. In TOGAF this is referred to as the target architec-
ture. The target architecture can be used to study and identify the changes that
need to be made to the current enterprise, in order to move in the desired direc-
tion.

Act – In the Act activities, the target architecture provides the needed steering and
direction of the transformation process, while the baseline architecture serves as
a source of knowledge on the existing situation.

Once again, note that the Asses, Aim and Act activities are likely to be highly cyclic
in nature.

2.5.2 The meaning of an enterprise architecture

Given that the main purpose of an enterprise architecture is to align the design of
an enterprise to its strategy, the essential meaning of an enterprise architecture is
that it provides a normative restriction of design freedom towards transformation
projects and programmes (or put more positively: a reduction of design stress). This
was already illustrated in Figure 2.5 (page 18).

As discussed before, one might counter the point that the meaning of an en-
terprise architecture is a normative restriction of design freedom by saying that it
should also provide guidance to programmes and projects. However, for it to be used
as a means to steer and coordinate transformations, it needs to have a clear status
as ultimately being a restriction of design freedom. It may indeed provide guidance
as well, but ultimately, its meaningfulness as a means of steering depends on its
meaning as a normative restriction of design freedom. Furthermore, even though

2.5 Defining enterprise architecture 23

the IEEE and TOGAF definitions do not explicitly refer to a role of architecture in
restricting design space, this role is implicitly present in terms of the requirement
that project level designs should comply to the architecture. This also comes to the
fore in the strong role of governance in TOGAF’s ADM method.

One might wonder whether a baseline architecture provides a restriction of de-
sign freedom, since it refers to an existing situation and not a future situation that
still needs to be designed. However, the baseline architecture captures the design re-
strictions that were applied in creating the existing situation. In that sense, a baseline
architecture has a more explanatory role, in that it documents the design restrictions
that were explicitly (or implicitly) used in creating the existing situation.

2.5.3 The elements of an enterprise architecture

As discussed by Op ’t Land et al (2008), key concepts in the field of enterprise ar-
chitecture include concerns, architecture principles, models, views and frameworks.

An enterprise has many stakeholders, and the future development of the enter-
prise is likely to impact on the interests of these stakeholders. A stakeholder typ-
ically is an individual, a team, or an organization (or classes thereof) with interest
in, or concerns relative to, a system (such as an enterprise). Concerns are interests
pertaining to the system’s development, its operation or any other aspect that is crit-
ical or otherwise important to one or more stakeholders. In making decisions about
an enterprise’s future directions, stakeholders want to obtain insight into the impact
these directions will have on their concerns, and understand the risks involved in
current and future initiatives. Even more, since present day enterprises are complex
social systems of interrelated processes, people and technology, stakeholders are
keen on finding a way to harness this complexity when judging the impact on their
concerns.

According to TOGAF, architecture principles are general rules and guidelines,
intended to be enduring and seldom amended, that inform and support the way in
which an organization sets about fulfilling its mission. Op ’t Land et al (2008) po-
sition architecture principles as a way to capture an univocal understanding about
what is of fundamental importance to the enterprise. Given the central position of
architecture principles in this book, the ensuing Chapters will provide a more elab-
orate discussion on the nature and definition of architecture principles. The IEEE
(2000) definition of architecture:

The fundamental organization of a system embodied in its components, their relationships
to each other, and to the environment, and the principles guiding its design and evolution

also explicitly refers to the role of principles in guiding the design and evolution of
systems.

Models are generally understood to be purposeful abstractions of (some relevant
part of) reality (Falkenberg et al, 1998). Models can be used to represent systems,
and actually can be regarded as systems themselves. For example, Apostel (1960)

24 2 The role of enterprise architecture

defines a model as a system representing another system: “any subject using a sys-
tem A that is neither directly nor indirectly interacting with a system B, to obtain
information about the system B, is using A as a model for B”. In colloquial use, in
the context of enterprise architecture, the term model is equated to some diagram.
This colloquialism can be explained as most models used in process modeling and
software development are graphical models. Models, however, do not necessarily
have to be graphical. In the context of enterprise architecture, a multitude of models
are used that describe different aspects:

• different levels of realization: from conceptual via logical to physical;
• different aspects of transformation: from contextual (why) via design (where to)

to the actual transformations (how);
• different aspects of a enterprises: from goals via services, products and processes

to IT;
• different levels of aggregation: from enterprise level to the level of specific (par-

tial) processes or applications.

It is in these models where we will find the components, their relationships to each
other, and to the environment as referred to by the IEEE (2000) definition of archi-
tecture.

A view is a representation of (a part of) a system from the perspective of a re-
lated set of concerns (IEEE, 2000). Different views based upon the stakeholders
concerns are an important communication means to obtain the cooperation of the
stakeholders. Views are typically derived from models. Where models focus more
on completeness in coverage and detail, views focus more on tuning the content
towards the concerns of stakeholders.

To provide architects with some structure to select views, architecture frame-
works have been introduced. These frameworks intend to aid architects by providing
an ontology, which uses different abstraction levels to map all kinds of information
needed. Architecture frameworks position architecture results and enable diverse
communication (stakeholders, detail). Often tools and best practices are included in
the framework to support the work needed.

2.5.4 Definition of enterprise architecture

Finally, as a summary we will now provide a definition of enterprise architecture
which summarizes our understanding of the concept of enterprise architecture. How-
ever, before doing so, we first define the general concept of architecture in general.

ARCHITECTURE – Those properties of an artifact that are necessary and sufficient to meet
its essential requirements.

This definition also shows the clear distinction between a design and an architecture.
Where the design provides a full elaboration of ‘the design’ of an artifact such that it
leaves no room for undesired results in the implementation, the architecture focuses
on how the essential requirements will be met.

2.6 Other forms of architecture 25

The definition of architecture, allows us to summarize our understanding of en-
terprise architecture as:

ENTERPRISE ARCHITECTURE – The architecture of an enterprise. As such, it concerns
those properties of an enterprise that are necessary and sufficient to meet its essential re-
quirements.

The focus of enterprise architecture on the essential requirements allows it to
be used as a means to align the design of an enterprise to its strategy, where the
strategy should fuel the identification of the essential requirements. By necessity,
these should be requirements which, when not attained, have a high impact on the
goals of the key stakeholders. This focus allows an enterprise architecture to be
used effectively when steering and coordinating transformation programmes and
projects. The meaning of the enterprise architecture then becomes that it provides a
normative restriction of design freedom towards projects and programmes.

2.6 Other forms of architecture

As indicated by the definition in the previous Section, enterprise architectures de-
scribe the most fundamental aspects and choices of the enterprise, close to its stra-
tegy. In practice, other forms of architecture exist in the design of organizations, in-
formation systems and technology (Fattah, 2009). Although strictly speaking these
forms of architecture do not fall into the category of enterprise architecture, they
are closely related. Also, they share certain characteristics with enterprise archi-
tecture: they can also describe architecture principles, models and other decisions
(albeit at a different level). In practice, architectural descriptions may include as-
pects from multiple forms of architecture. As a result, the form of architecture may
not be directly obvious from the contents of an architectural description. Besides
enterprise architecture, two other forms of architecture exist: reference architec-
ture (Greefhorst et al, 2009) and solution architecture.

REFERENCE ARCHITECTURE – A generalized architecture, based on best-practices.

A reference architecture is a generic architecture for systems that have similar char-
acteristics. Also, reference architectures are defined based on past experience, and
specifically best-practices therein. The focus of such a best-practices based architec-
ture is not so much on the essential requirements on a specific enterprise or a spe-
cific situation, but rather on general engineering qualities and how they can be met.
As such, a reference architecture is a generalized architecture that can be applied
to multiple solutions and across multiple enterprises. The informative role will be
dominant for this form of architecture, due to its natural focus on codifying reusable
architectural knowledge.

SOLUTION ARCHITECTURE – An architecture of a solution, where a solution is a system
that offers a coherent set of functionalities to its environment. As such, it concerns those
properties of a solution that are necessary and sufficient to meet its essential requirements.

26 2 The role of enterprise architecture

A solution architecture describes the fundamental decisions in the design of a spe-
cific solution, covering business- as well as IT-aspects. Note that the system as a
whole may be composed of multiple other (software) systems. This form of archi-
tecture is what TOGAF calls a “capability architecture”, and is close to what is
also called “software architecture” (Shaw and Garlan, 1996; Kruchten, 1998) in the
domain of application development. It strongly relies on the instructive role of ar-
chitecture. Given its strong design bias, there is a some discussion whether solution
architecture should be considered architecture at all, or just (high-level) design (Lui-
jpers, 2009).

The three forms of architecture differ in multiple ways; their generality as well
as their scope. A reference architecture is a generic architecture, whilst enterprise
architectures and solution architectures are specific architectures. Enterprise archi-
tectures target an enterprise, whilst solution architectures have only a specific solu-
tion architecture in their scope. Reference architectures can operate on systems at
all levels.

Architectural
Knowledge

Enterprise
Architecture

 Solution
Architecture

Reference
Architecture

Fig. 2.7 Forms of architecture

As shown in Figure 2.7 the three forms of architecture are strongly related, and
influence each other. Architectural knowledge is what they share, which can be doc-
umented in the form of an architecture repository. In the informative role of archi-
tecture, sharing this knowledge with all relevant stakeholders is one of the primary
tasks of the architect. In the end, a solution architecture should be based on all
relevant architectural knowledge that is documented in enterprise architectures and
reference architectures. On the other hand, there is also a feedback loop from so-
lution architectures to reference architectures and enterprise architectures. Certain
solutions can be abstracted into generic solutions that may also be applied in other
parts of the organization, and incorporated into a reference architecture. Also, solu-

2.7 Standards for enterprise architecture 27

tion architectures may lead to insights on viability of information described in the
enterprise architecture.

The creation of a a solution architecture may be guided by a project, or pro-
gramme, start architecture (Wagter et al, 2001), which translates the enterprise ar-
chitecture and reference architectures to the context of a specific solution. In our
opinion, a project (or programme) start architecture is not an architecture in itself.
In terms of TOGAF it can be seen as an architectural contract between architecture
design and development partners (can be within the same organization). In contrast
to the project start architecture, the solution architecture provides models of actual
designs and the underlying design decisions.

2.7 Standards for enterprise architecture

Several standards exist for architecture in general, and enterprise architecture in
particular. Some of them are company specific, some originate from an academic
context, some have only a national status, whilst some are supported and maintained
by international standardization organizations. In this Section we briefly describe
the standards from international standardization organizations that have influenced
us most when writing this book. As can be gleaned from the many citations to other
sources, this does not mean that we have not been influenced by other approaches
and standards. However, given the industrial relevance of the standards discussed
below, it is relevant to briefly describe them and relate them to the contributions this
book aims to provide.

The IEEE 1471 standard (IEEE, 2000) (also known as ANSI/IEEE 1471-2000,
and more recently as ISO/IEC 42010:2007) finds its origins in the software engi-
neering community. Its most important contribution is the already quoted definition
of architecture. This definition has been broadly accepted and shows that principles
are an important part of architecture, providing guidance in the design and evolu-
tion of systems. It also shows how architecture concerns itself with structure: com-
ponents and relationships. The standard also provides definitions for a number of
related concepts, and their relationships. It distinguishes the architecture itself from
architectural descriptions that are documents that describe the architecture. An ar-
chitectural description is defined for specific concerns of one or more stakeholders,
and contains one or more views. These views contain the architectural content, and
are based on more generic viewpoints. Targeting architecture specifically at stake-
holders and their concerns is an important insight and has a profound impact on how
architectures should be developed.

As already mentioned before, the IEEE definition refers explicitly to the princi-
ples guiding its design and evolution as being part of an architecture. At the same
time, the original IEEE document does not elaborate much on the precise nature of
principles and how to formulate them. This book aims to provide both a definition
for architecture principles and a practical way of formulating and using principles.

28 2 The role of enterprise architecture

The Open Group Architecture Framework (TOGAF, 2009) is a standardized
method for enterprise architecture. TOGAF is maintained by The Open Group,
which is a consortium of literally hundreds of organizations covering both the profit
and not-for-profit sectors. TOGAF finds its origins in the Technical Architecture
Framework for Information Management TAFIM (1996), developed by the Depart-
ment of Defense of the United States of America. At the start of 1995, the first
version of TOGAF was developed, as an evolution of TAFIM. TOGAF has since
become a worldwide and broadly accepted standard, which is freely available. Or-
ganizations nowadays embrace open standards, which has increased the importance
of TOGAF. Large consultancy firms, such as IBM, HP, SAP and Capgemini have
adopted TOGAF and enriched it with their own architectural knowledge and experi-
ence. TOGAF provides an elaborate reference on enterprise architecture, including
an architecture development method, an architecture content framework, architec-
ture reference models and an architecture capability framework. In the view of TO-
GAF, enterprise architecture is divided into four architecture domains: business ar-
chitecture, data architecture, application architecture and technology architecture.

Architecture principles play a central role in TOGAF. Even though a template for
architecture principles is given, with a number of examples, no crisp definition of the
concept is given. Furthermore, no practical way of formulating and using principles
is provided either. In addition to providing a clearer definition of the concept of
architecture principles, and an associated way of formulating and using principles,
Appendix B provides a discussion on how the proposed way of formulating and
using principles can be used in the context of TOGAF.

The ArchiMate standard (Iacob et al, 2009) has been adopted by the Open Group
more recently. It was initially developed by a consortium of Dutch organizations
(companies, governmental organizations and research institutes) as part of a col-
laborative research project (Lankhorst et al, 2005b). The intention of the standard
is to provide a language for describing enterprise architectures. This language con-
sists of a meta-model describing the various concepts and relationships, as well as a
standard notation for them.

The current version of the ArchiMate standard does not contain constructs to
represent architecture principles and their motivations. The discussion provided in
Chapter 3 provides suggestions on how to represent architecture principles and their
motivations. These might be combined with the ArchiMate extension recently sug-
gested by Engelsman et al (2010).

2.8 The role of architecture principles

According to TOGAF, architecture principles are general rules and guidelines, in-
tended to be enduring and seldom amended, that inform and support the way
in which an organization sets about fulfilling its mission. Architecture principles
should also be few in number (typically around 10 at the highest level), future ori-
ented, and endorsed and championed by senior management. This ensures that the

2.8 The role of architecture principles 29

enterprise architecture is future directed, and can actually guide design decisions,
while preventing analysis paralysis by focussing on the essence. As a result, they
provide a firm foundation for making architecture and planning decisions, framing
policies, procedures, and standards, and supporting resolution of contradictory situ-
ations.

In line with the meaning of enterprise architecture as a restriction of design free-
dom, the regulative role of enterprise architecture is the most important role. As
argued before, it is where enterprise architectures derive their steering-ability from.
It shall come as no surprise that this book takes the perspective that architecture
principles should feature prominently on the regulative role of enterprise architec-
tures. As such, we take the position that architecture principles are the cornerstone
of enterprise architecture. They are key in ensuring the effectiveness of enterprise
architecture towards its steering and coordination task. Architecture principles fill
the gap between high-level strategic intents and concrete designs, and allow for a
univocal articulation of what is of fundamental importance to an organization.

The role of architecture principles is not only limited to the regulative role of
enterprise architecture. Towards the instructive role of enterprise architecture, they
provide motivations for the fundamental design decisions. Towards the informative
role, they provide a carrier of fundamental design knowledge.

Several approaches to enterprise architecture indeed position principles as a key
ingredient (Davenport et al, 1989; Richardson et al, 1990; Tapscott and Caston,
1993; Wagter et al, 2005; Op ’t Land et al, 2008; TOGAF, 2009; Van’t Wout et al,
2010; Beijer and De Klerk, 2010), while some even go as far as to position principles
as being the essence of architecture (Dietz, 2008; Hoogervorst, 2009; PRISM, 1986;
Fehskens, 2010).

More fundamentally, when controlling some object, the controlling system (see
Figure 2.6 (page 20)) needs some policy to provide guidance in its steering activities.
The policy, and its motivation, collectively capture the steering goal needed by the
controlling system (De Leeuw, 1982; De Leeuw and Volberda, 1996). Rose (1969),
defined a policy as being “a long series of more-or-less related activities” and their
consequences for those concerned rather than as a discrete decision. Rose’s defini-
tion embodies the understanding that policy is a course or pattern of activity and not
simply a decision to do something. Friedrich (1963) regards policy as “a proposed
course of action of a person, group, or government within a given environment pro-
viding obstacles and opportunities which the policy was proposed to utilize and
overcome in an effort to reach a goal or realize an objective or a purpose.”.

Based on Rose’s and Friedrich’s definition of policy, as well as later definitions
by others (Anderson, 1975; Eulau and Prewitt, 1973; Robbins et al, 1997; Schneider
and Ingram, 1997), Nabukenya et al (2007a,c,b) provided the following definition
of a policy as a synthesis:

POLICY – A purposive course of action followed by a set of actor(s) to guide and determine
present and future decisions, with an aim of realizing goals.

We argue, that in the case of enterprise transformations, policies for steering
enterprise transformations correspond to the use and enforcement of sets of archi-
tecture principles.

30 2 The role of enterprise architecture

2.9 Key messages

• Enterprise architecture is a young field, that originates from IT.
• Enterprise transformations require an engineering approach that operates at

strategic, tactical and operational levels.
• A governance mechanism is needed that regulates, instructs and informs trans-

formation programmes and projects.
• The purpose of enterprise architecture is that it aligns an enterprise to its essential

requirements.
• The meaning of enterprise architecture is that it provides a normative restriction

of design freedom towards transformation projects and programmes.
• Other forms of architecture play an important role as well: reference architectures

are generic architectures, solution architectures are concerned with the architec-
ture of a specific solution.

• Important standards for architecture are IEEE 1471, TOGAF and ArchiMate.
• Architecture principles are the cornerstone of enterprise architecture, and bridge

the gap between high-level strategic intents and concrete designs.

Chapter 3
A conceptual framework for principles

Abstract This Chapter provides the theoretical core of this book. It is concerned
with a conceptual framework for architecture principles and related concepts. It
starts by providing some historical background to the concept of principle. We will
distinguish between scientific principles that describe laws or facts of nature, and
normative principles that start as fundamental beliefs and which are translated to
more specific and measurable statements. Based on the distinction between archi-
tecture and design, as made in the previous Chapter, we will be able to define archi-
tecture principles as a subset of design principles. We also include a discussion on
the motivation for the use of architecture principles in specific situations. In doing
so, we provide a set of typical drivers for their formulation and enforcement. The
Chapter is finished by the discussion of a general strategy to more precisely specify
architecture principles and their underlying domain concepts.

3.1 Introduction

As argued before, we take the perspective that architecture principles are the cor-
nerstone of enterprise architecture. Several approaches to enterprise architecture in-
deed position principles as a key ingredient, while some even go as far as to position
principles as being the essence of architecture. Architecture principles fill the gap
between high-level strategic intentions and concrete designs. The use of architec-
ture principles also invites enterprise architectures to be directed towards the future,
while focussing on essential decisions which guide future design decisions.

The goal of this Chapter is to provide more background to the concept of ar-
chitecture principles, while also more clearly defining the concept and its role as
the cornerstone of enterprise architecture. To this end, Section 3.2 provides a broad
discussion of the history of the concept of principle. Section 3.3 then continues by
identifying two key flavors of principles, while also relating these to concepts such
as requirements and design instructions. This allows us to clearly define the concept
of architecture principle in Section 3.4, as well as its role in building a bridge from

31

32 3 A conceptual framework for principles

strategy to design. In Section 3.5 we turn to the question of how to motivate the
(formulation and) enforcement of principles in specific situations. Before conclud-
ing, Section 3.6 briefly discusses a strategy to more precisely specify architecture
principles and the underlying domain concepts it may refer to.

In the course of this Chapter, we will incrementally develop a conceptual frame-
work of our understanding of the concept of architecture principles. This conceptual
framework is summarized in terms of three complementary fragments depicted in
Figure 3.2 (page 41), Figure 3.4 (page 49) and Figure 3.6 (page 56) respectively.
The definitions of the concepts included in this framework, are designed to be com-
patible with existing views on enterprise architecture in general (IEEE, 2000; Op
’t Land et al, 2008; Dietz, 2008; TOGAF, 2009), while also taking aboard insights
from reported practical case studies on the use and formulation of principles (Daven-
port et al, 1989; Richardson et al, 1990; Lindström, 2006b,a; Op ’t Land and Proper,
2007; Greefhorst et al, 2007; Greefhorst, 2007). As such, the framework presented
in this Chapter also constitutes a first iteration in a design science (Hevner et al,
2004) driven research effort in which we aim to more clearly define the concept of
architecture principles, and develop an associated methodology for defining and de-
scribing architecture principles. This first iteration aims to provide a first synthesis
of existing views on enterprise architecture and the role of architecture principles.

3.2 Background of architecture principles

To better understand the nature and use of architecture principles within the field of
enterprise architecture, it is important to understand the origins of the term principle.
We therefore start this Chapter with a brief discussion on the history of this term.

The term principle is said to originate from the Latin word of principium (Meriam–
Webster, 2003), which means ‘origin’, ‘beginning’ or ‘first cause’. As summarized
in (Paauwe, 2010), Vitruvius, an architect in ancient Rome, already used the concept
of principles to explain what is true and indisputable, and should apply to everyone.
Vitruvius considered principles as the elements, the laws of nature that produce spe-
cific results. For instance, he observed how certain principles of the human body,
such as symmetry and proportion, ensure ‘perfection’. The human body was a great
source of inspiration to him. He even believed that the principles of the human body
should also be applied in the design of gardens and buildings because it would al-
ways lead to a perfect result: an ultimate combination of beauty, robustness and
usability.

When using principles in the sense of beginning, they generally provide insight
into the causes of certain effects. These causes can be laws of nature, beliefs or rules
of conduct. Laws of nature simply are, and influence the things we do. Examples of
such principles are the law of gravity and the Pauli exclusion principle. The latter is
a quantum mechanical principle formulated by Wolfgang Pauli in 1925. It states that
no two identical fermions may occupy the same quantum state simultaneously. An-
other example, more directly relevant to the design of enterprises, is the principle of

3.2 Background of architecture principles 33

requisite variety from general systems theory, which states that a regulating system
should match the variety of the system that should be regulated (Beer, 1985).

Beliefs are typically founded in moral values. Examples of such principles are
Martin Luther King’s principles of nonviolence, that were to guide the civil rights
movement. In our context, examples of such principles would be: No wrong doors
(suggesting that clients should be helped by which ever channel they approach the
enterprise) and The customer is always right.

Rules of conduct are explicitly defined to influence behavior, and are typically
based on facts and beliefs. General examples include the Ten Commandments from
the Bible, e.g. Thou shalt not murder and Thou shalt not commit adultery. In our
context, examples would be: Clients can access the entire portfolio of services of-
fered by any part of the government by way of all channels through which gov-
ernment services are offered and Before delivering goods and services to external
parties, we must hold receipt of the associated payment.

In defining the concept of architecture principle, we aim to remain close to the
common interpretation of the term principle to prevent confusion. The Webster Dic-
tionary (Meriam–Webster, 2003) provides the following interpretations:

• 1a: a comprehensive and fundamental law, doctrine, or assumption b (1): a
rule or code of conduct (2): habitual devotion to right principles <a man of
principle> c: the laws or facts of nature underlying the working of an artificial
device,

• 2: a primary source: origin,
• 3a: an underlying faculty or endowment <such principles of human nature as

greed and curiosity> b: an ingredient (as a chemical) that exhibits or imparts a
characteristic quality,

• 4: Christian Science: a divine principle: god

The first of these four interpretations will be used as a base for the definitions pro-
vided in this Chapter.

The use of principles in the context of enterprise architecture can be traced
back (at least) to the earlier mentioned PRISM project (PRISM, 1986). The PRISM
framework is actually a fully principles-based architecture framework. In this con-
text, principles were defined as “simple, direct statements of an organization’s basic
beliefs about how the company wants to use IT in the long term”. Note that in this
definition, the operative word is wants. It refers to the fact that fundamentally, such
principles are used to express a normative desire. Even more, it also expresses how
these principles will aim to bridge the communication gap between top management
and technical experts. PRISM’s concept of principles as well as how they guide the
definition and evolution of architectures was its most important and widely accepted
contribution.

The PRISM’s notion of principles has strongly influenced other architecture
frameworks. The earliest publications referring to the concept of architecture prin-
ciple (in an enterprise architecture context) can indeed be traced back to the PRISM
project (Davenport et al, 1989; Richardson et al, 1990). Furthermore, the HP Global
Method for IT Strategy and Architecture (Beijer and De Klerk, 2010; Rivera, 2007),

34 3 A conceptual framework for principles

which was based on works started in 1984 at Digital Equipment Corporation, was
almost completely based on the concept of principle brought forward by the PRISM
model. Many years later, the PRISM report even influenced the IEEE definition of
architecture, as many of the IEEE 1471 committee members (Digital included) were
employed by the original sponsors of their earlier work on PRISM. The concept of
architecture principle as it is defined inTOGAF today is also inspired by the PRISM
framework.

3.3 Key classes of principles

In this Section we will define two key classes of principles: scientific principles
and normative principles. In the next Section, the class of normative principles will
finally be specialized further into design principles, while in Section 3.4 design
principles will be specialized further into architecture principles.

3.3.1 Scientific principles

In Section 2.2, we already quoted The American Engineers’ Council for Profes-
sional Development’s (ECPD, 1941) definition of engineering (which we also used
as a base to define enterprise engineering). This definition explicitly refers to scien-
tific principles as being a core resource in the discipline of engineering: “the creative
application of scientific principles to design or develop structures, machines, appa-
ratus, or manufacturing processes, or works utilizing them . . . ”. Consider, as an
example, the field of civil engineering, an engineering discipline which deals with
the design, construction and maintenance of the physical and naturally built envi-
ronment, including works such as bridges, roads, canals, dams and buildings. In this
field scientific principles have always played an important role. A well-known prin-
ciple in this field is the Archimedes principle, defined by Archimedes in the third
century BC. The principle states that “any object, wholly or partially immersed in a
fluid, is buoyed up by a force equivalent to the weight of the fluid displaced by the
object”.

Scientific principles are not limited to the field of civil engineering alone. For
example, Lidwell et al (2003) provide a list of 100 universal principles of design,
consisting of laws, guidelines, human biases, and general design considerations. Ex-
amples of principles described that fall into the category of scientific principles are
the exposure effect and performance load. The first principle states that repeated ex-
posure to stimuli for which people have neutral feelings will increase the likeability
of the stimuli. The latter states the greater the effort to accomplish a task, the less
likely the task will be accomplished successfully.

The notion of scientific principle as a generally applicable law that can be used
in the design of some artifact, corresponds to the interpretation of principles as

3.3 Key classes of principles 35

laws or facts of nature underlying the working of an artificial device from the
quoted Meriam–Webster (2003) definition. In line with the definition provided by
the American Engineers’ Council for Professional, we will indeed refer to these
principles as scientific principles, leading to the following definition:

SCIENTIFIC PRINCIPLE – A law or fact of nature underlying the working of an artifact.

Different engineering disciplines, such as industrial engineering, chemical engi-
neering, civil engineering, electrical engineering, software engineering, and enter-
prise engineering will have their own corpus of scientific principles. At the same
time, these corpora are likely to overlap as well, since a large number of scien-
tific principles will be cross-disciplinary in the sense that they will be applicable in
various design disciplines. For instance, the scientific principles from general sys-
tems engineering are bound to overlap with other engineering disciplines since these
mostly deal with different forms of systems. An example would be the law of req-
uisite variety (Ashby, 1956) from general systems theory, which is applicable to the
design of enterprises, but equally well to any system in which communication and
control plays a role.

Examples of scientific principles for the field of enterprise engineering can be
found in sources such as Stafford Beer’s viable systems model (Beer, 1985), scien-
tific management (Taylor, 1911), the φ , τ , ψ theory (Dietz, 2006) underlying the
DEMO method, the mechanisms explaining how organizations may be seen as so-
cial systems conducting experiments (Achterbergh and Vriens, 2009), or the mecha-
nisms that explain how organizations ‘emerge’ out of human communication (Taylor
and Van Every, 2010).

As scientific principles essentially represent design knowledge, they can also be
used as a resource to increase cross-disciplinary knowledge and understanding of
design, promote brainstorming and idea generation for design problems, form a
checklist of design principles, and to check the quality of design processes and prod-
ucts.

3.3.2 Design principles as normative principles

In terms of the earlier quoted Webster’s (Meriam–Webster, 2003) definition of prin-
ciple, scientific principles correspond to their interpretation as a law or fact of nature
underlying the working of an artificial device. We take the view that design princi-
ples correspond to the interpretation of principles as a rule of conduct, where design
principles guide/direct the enterprise by normatively restricting design freedom.

Before we properly define design principles, we first define the more general
class of normative principles as:

NORMATIVE PRINCIPLE – A declarative statement that normatively prescribes a property
of something.

36 3 A conceptual framework for principles

This is still quite a general definition. However, below we will see that this will
actually allow us to also better relate design principles to concepts such as business
principles and IT principles.

We clearly do not consider scientific principles to be forms of normative princi-
ples, and design principles in particular. As we will show in Section 3.4, scientific
principles do have a role to play in the creation of enterprise architectures in terms
of underpinning design decisions. Even more, they may provide the motivation for
the formulation and enforcement of design/architecture principles.

When applying normative principles towards the design of artifacts, we can de-
fine the concept of design principles as follows:

DESIGN PRINCIPLE – A normative principle on the design of an artifact. As such, it is a
declarative statement that normatively restricts design freedom.

Note that (Meriam–Webster, 2003) defines an artifact to be “something created by
humans usually for a practical purpose”. In the next Section, we will define archi-
tecture principle as a specific classes of design principles.

Being normative restrictions of design freedom, design principles act as rules of
conduct towards the designers of the (to be) constructed artifact since they (norma-
tively) specify how to go about when designing the artifact. When considering the
definition of policy used in this book:

POLICY – A purposive course of action followed by a set of actor(s) to guide and determine
present and future decisions, with an aim of realizing goals.

then design principles, provide the means to define the purposive course of action
in terms of the declarative statements that normatively prescribe properties of the
artifact. This makes it desirable for the description of design principles to also pro-
vide guidance to designers that aid them in complying to them. In Section 2.8, we
already stated that in the context of enterprise transformations, architecture princi-
ples (being a specific class of design principles) provide the policies needed to steer
the transformation process.

Design principles are not the only statements which may limit design freedom.
Requirements, for example, also limit design freedom. In this book, we define re-
quirements to be:

REQUIREMENT – A required property of an artifact.

Requirements state what (functional or constructional) properties an artifact should
have from the perspective of the goals harbored by its stakeholders. The goals of
the stakeholders provide the motivation, i.e. the why, of the requirements (Yu and
Mylopoulos, 1994, 1996; Chung et al, 1999). Based on an identification of the goals
of the stakeholders, the requirements on the artifact can be derived. Given the re-
quirements, design principles can be used to express the policies that ensure that the
design of the artifact indeed meets the requirements. The design principles will fo-
cus primarily on addressing essential requirements. Design principles can, however,
also address non essential requirements. These relations are exemplified in more de-
tail in Figure 3.1 (page 37), where the red circles represent essential goals, essential
requirements and essential design principles respectively.

3.3 Key classes of principles 37

Goals

Stakeholders

Stakeholder requirements

Agreed to requirements

have

supported by

based on

Design principles

ensure attainment of

Design instructions

are refinement of

Fig. 3.1 From goals to design instructions

In Section 3.5 a more elaborate discussion is provided on the drivers underlying
the formulation and enforcement of normative principles, also providing a more ex-
plicit way to identify what the esssential goals and requirements are. This discussion
will also provide us with a based to finally properly define architecture principles in
Section 3.4.

The diagram shown in Figure 3.1 also illustrates the fact that to arrive at a set
of requirements, for a given collection of (stakeholder specific) requirements, a ne-
gotiation process may be needed to compromise between conflicting needs. It fur-
thermore illustrates the fact that not all requirements might be traceable to explicit
goals of stakeholders. Some requirements might simply be too common, addressing
a general level of quality required from the artifact being designed.

38 3 A conceptual framework for principles

Since design principles take the form of declarative statements, there is a need
for statements that provide more tangible guidance to the implementers, while also
enabling analysis/simulation of a design to assess whether (qualitative and/or quan-
tative) requirements are met. In other words, instructive statements which more tan-
gibly express how the artifact is to be constructed. In the case of enterprises, this
would e.g. include: value exchanges, transactions, services, contracts, processes,
components, objects, building blocks, et cetera. This typically also involves the for-
mulation of models that act as blueprints of the artifact to be implemented. We will
refer to these statements as design instructions, since they tell specifically what to
do and what not to do in further elaborating the design or actually implementing it:

DESIGN INSTRUCTION – An instructive statement that describes the design of an artifact.

The bottom part of the diagram shown in Figure 3.1 also illustrates the position of
design instructions in relation to design principles and requirements.

Design instructions provide a more operational and tangible refinement of the de-
sign principles. For example, a design principle may state that stable processes are
separated from variable processes. A design instruction may refine this into stating
(either textually or graphically) that there is a sales process and a separate contract
administration process. In the context of enterprises, design instructions will typi-
cally refer to the concepts used in the actual construction of the enterprise, such as:
value exchanges, transactions, services, contracts, processes, components, objects,
building blocks, et cetera. Enterprises typically use languages such as UML (UML2,
2003), BPMN (BPMN, 2008), ArchiMate (Iacob et al, 2009), or the language sug-
gested by the DEMO method (Dietz, 2006), to express such design instructions.
Due to their tangible nature, in terms of actual concepts used in the construction
of the enterprise, design instructions allow enterprises to analyse/simulate the ef-
fects of different options for the future, as well as analyze problems in the current
situation (Lankhorst et al, 2005b).

Hoogervorst (2009) distinguishes design principles from standards, where a stan-
dard is a predefined design norm, which includes design patterns. The statement to
use such standards should also be considered as being a form of design instruction.

3.3.3 From credos to norms

Normative principles (such as design principles) can be classified in several dimen-
sions based on their topical focus, i.e. the domain where the principle states a norm
about. In our field, this can typically be done in terms of the cells of an architecture
framework. In addition to the topical focus of a principle, we also distinguish two
flavors of normative principles based on the level of precision (a form of detail) at
which they have been formulated. This distinction will be especially useful in prac-
tical settings as they correspond to two important levels of ambitions at which these
principles can be formulated and enforced.

3.3 Key classes of principles 39

When considering the design/architecture principles included in case studies (Dav-
enport et al, 1989; Richardson et al, 1990; Lindström, 2006b,a; Lee, 2006; Greefhorst
et al, 2007; Greefhorst, 2007; Bouwens, 2008) one can indeed observe a variation
in the level of precision at which these normative principles have been formulated.
As an illustration, consider the following examples exhibiting an increasing level of
precision:

• “We are committed to a single vendor environment” (Davenport et al, 1989).
• “System structure and IS/IT availability shall enable mergers, acquisition, and

establishment on new sites” (Lindström, 2006b).
• “Customers: We only service customers who pay their bill” (Lee, 2006).
• “When determining information systems solutions, the preferred order of selec-

tion should be an existing system, a purchased application package, in-house
development, then outside services” (Richardson et al, 1990).

At the start of their life-cycle, normative principles are just statements that ex-
press the fundamental belief of how things ought to be. At this stage, their exact
formulation is less relevant. This is in line with intentions behind TOGAF and the
Zachman framework, where the architecture process starts with the creation of an
architecture vision. In this phase, architecture is very future-oriented and mostly a
creative process. Architecture principles are used as a means to express a vision,
which is mostly based on personal beliefs of the stakeholders involved in the en-
visioning. They can be seen as normative principles in their initial stage. They are
not yet specific enough to actually use them as a norm. In other words; assessing
compliance of architectures and designs to these principles is not feasible. They are
primarily used as a source of inspiration. Examples of normative/design principles
in this phase, taken from practical cases, are:

• We should follow citizen logic.
• Work anywhere; anytime.
• Reuse as much as possible.
• Applications should be decoupled.

Normative principles in this phase can best be referred to as being a credo:

CREDO – A normative principle expressing a fundamental belief.

The Webster dictionary (Meriam–Webster, 2003) defines credo as: “a set of fun-
damental beliefs; also: a guiding principle”. This is very close to the definition
of principle provided by Beijer and De Klerk (2010): “A fundamental approach,
belief, or means for achieving a goal...”. In our context, credos are things an en-
terprise consciously chooses to adopt. They represent the fundamental beliefs or
assumptions underpinning further design decisions. This allows enterprises to pro-
vide a first elaboration of an enterprise’s strategy towards the desired design of the
enterprise.

When an enterprise aims to use normative principles as a way to actually limit
design freedom, the formulation of these principles need to be more specific. In
other words, they need to be formulated in such a way that compliance to them can

40 3 A conceptual framework for principles

be assessed. This starts with a reformulation of the principle statement, but extends
to other properties. The specification will at least need to contain the rationale and
implications of the statement, and preferably also definitions of terminology used,
as well as guidance on how to assess the compliance of a design to the principle.
The examples given previously could be reformulated as follows to make them more
specific:

• The status of customer requests is readily available inside and outside the orga-
nization.

• All workers are able to work in a time, location and enterprise independent way.
• Before buying new application services, it must be clear that such services cannot

be rented, and before building such application services ourselves, it must be
clear that they can not be purchased.

• Communication between application services will take place via an enterprise-
wide application service bus.

Once credos have been (re)formulated such that they are specific enough, we can
start to refer to them as a norm:

NORM – A normative principle in the form of a specific and measurable statement.

The Webster dictionary (Meriam–Webster, 2003) defines a norm as: a principle of
right action binding upon the members of a group and serving to guide, control, or
regulate proper and acceptable behavior. Norms can also be regarded as a tactic by
which (the intention of) a credo can be enforced.

TOGAF defines ar architecture principle as “a qualitative statement of intent
that should be met by the architecture”. We take the stance that TOGAF requires
architecture principle to be in the form of norms.

3.3.4 Conceptual framework

As a summary, Figure 3.2 (page 41) provides an ontological framework positioning
scientific principles, normative principles, design principles, design instructions,
credos and norms. In this diagram, we have used the Object Role Modeling (Halpin
and Morgan, 2008) notation as this notation provides a rich semantic modeling tech-
nique that is well suited to the modeling of ontologies (Trog et al, 2006), such as the
conceptual framework for principles. In Figure 3.2 we have also applied an abstrac-
tion/attribution mechanism to more compactly represent complex objects (Campbell
et al, 1996; Creasy and Proper, 1996), such as proposition and normative principle.
In this notation, objects (entity types) are shown as boxes with rounded corners,
relationships (fact types) are represented as two rectangles that show the roles that
the objects play in both directions, and specialization relationships as lines that end
with an arrow. Entity types that are attributed to other entity types are represented
inside of a larger box with rounded corners, such shown in the case of proposition
and normative principle.

3.3 Key classes of principles 41

operationalizes /
is operationalized by

Proposition (name)

{ specific, measurable, achievable,
relevant, time-framed }

has / of
Quality
(name)

has / of
Definition

(description)

motivates / motivated by

follows from / leads to

is underpinned by /
underpins

is realized by /
realizes

Requirement

Normative Principle

Credo

refined to /
refinem

ent of

Norm

Design
Directive

Design
Instruction

Scientific
Principle

each Design Directive which has an Implication which is entailed by some Design Directive,
 must be realized by the latter Design Directive

each Design Directive which leads to some Requirement, must be realized by this Requirement
each Requirement which motivates some Design Directive, must be realized by this Design Directive

each Design Principle which is operationalized by some Design Instruction,
 must be realized by this Design Instruction

each Credo which is refined to some Norm, must be realized by this Norm

has / of

entails / is entailed by

Implication
(description)

Desired
Property

Design
Principle

Principle

Desired
Design

Property

Fig. 3.2 Core terminology

42 3 A conceptual framework for principles

In the resulting framework depicted in Figure 3.2, we have added several general-
izations leading to a generalization hierarchy. Design principles and design instruc-
tions have been generalized to design directives in general, since they both direct
the (further) design of an artifact by expressing directives on how the artifact is to
be designed/implemented. The OMG’s business motivation model (BMM, 2006)
also uses the notion of directive as the most general form of guidance/regulation.
Analogously, we have introduced desired design property as a generalization of re-
quirement and design directive, since both of them express desired properties of a
to be designed artifact in terms of what the constructed artifact should be like and
how its design will ensure these requirements respectively. Since not all normative
principles are design principles, and normative principles are desired properties in
general, a further generalization of desired design properties and normative princi-
ples to desired properties in has been introduced as well. Furthermore, the concept
of principle generalizes normative principles and scientific principles. Finally, the
concept of proposition provides a further generalization of principles and desired
property, since both essentially are propositions.

The encircled crosses in Figure 3.2 are used to signify a mutual exclusive spe-
cialization. For example, requirement and design directive are mutually exclusive
specializations of desired property, which means that a given desired property can
not be both a design directive and a requirement. The black dot in the middle of
the cross, as is the case with the specialization of design directive to design instruc-
tion and design principle, is used to indicated that it is a complete specialization
in addition to being an exclusive specialization. In this case it means that each of
the design directives is either a design instruction or a design principle. Since the
border between credos and norms cannot be drawn explicitly, there is no mutual ex-
clusiveness between these forms of normative principles. Nevertheless, as indicated
by the encircled black dot, each of the normative principles must be a credo or a
norm. Finally, as principle and desired property by definition overlap, since design
principles are both forms of principles and desired properties, there is no mutual
exclusiveness there as well.

Each of the propositions must have a quality and a definition (signified in the
diagram by a black dot at the base of the relationship), while they have at most
one definition (signified by the short bar on the relationship). The qualities that
can be associated to a proposition are limited to the criteria from the (overloaded)
SMART acronym1: specific, measurable, achievable, relevant and time framed. Ta-
ble 3.1 (page 43) summarizes which qualities are to be held by the different flavors
of propositions. This table, we have used the following definitions of the SMART
criteria:

Specific – The proposition should be formulated clearly, while also defining the con-
cepts used in their formulation.

Measurable – The validity of the proposition with regards to the domain it states a
property about should be measurable. Defining these measures is an integral part
of the proposition.

1 See http://en.wikipedia.org/wiki/SMART_criteria

3.3 Key classes of principles 43

Achievable – Obtaining/maintaining validity of the proposition should be achiev-
able given a reasonable amount of effort involving skills, means and time.

Relevant – Achieving/having the validity of the proposition should be relevant.
Note: later we will see how the relevance of a architecture principle can be ar-
gued in terms of the concepts shown in Figure 3.6 (page 56).

Time framed – There should be a time frame associated to the desired validity of a
proposition, making explicit when compliance is required. Needless to say that
such a time frame could run from months to ‘forever’. For example, normative
principles typically have a longer time frame of application than requirements
for a specific system.

As can be seen from the table, credos are not required to be specific or measurable.
As discussed before, this is precisely what distinguishes them from norms. Requir-
ing scientific principles to be achievable, relevant or time framed is not meaningful;
they are statements that will always hold.

sp
ec

ifi
c

m
ea

su
ra

bl
e

ac
hi

ev
ab

le
re

le
va

nt
tim

e
fr

am
ed

norm 4 4 4 4 4
credo 4 4

design instruction 4 4 4 4 4
requirement 4 4 4 4 4

scientific principle 4 4

Table 3.1 Relevant qualities of propositions

Desired properties in general may be formulated at different levels of granularity,
where one desired properties formulated at a higher level of granularity may be
realized by a number of desired properties at a lower level of granularity. This allows
for a stratified introduction of multiple levels of desired properties at different levels
of granularity with regards to realization and implementation detail. For example, in
the context of architecture frameworks one sees how architecture principles in one
view may be based on the principles in a preceding view. Consider, as an illustration,
ITSA (Beijer and De Klerk, 2010). In the ITSA framework, architecture principles
are defined in four views (business, functional, technical and implementation). The
architecture principles in one view may be based on architecture principles in the
view preceding it. Scientific principles can be used to underpin desired properties.

The realization relation between desired properties ‘reappears’ in different shapes
in the lower parts of the generalization hierarchy depicted in Figure 3.2. Introduc-
ing/enforcing a design directive will have consequences in terms of limiting fur-
ther design decisions. Therefore, each directive must have some implication, while
some of these implications may actually entail additional desired properties. Re-
quirements can be used to motivate design directives, while at the same time design
directives may also lead to the introduction of more refined requirements. Finally,

44 3 A conceptual framework for principles

Normative principles are operationalized by instructions, while credos may be re-
fined to norms. The textual constraints at the bottom of Figure 3.2 govern the con-
nection between these specializations of the general realization relationship between
desired properties, to the general one.

Finally, the desired design property, design directive, design instruction, design
principle and requirement object types in this diagram have a grey background to
signify the fact that they will re-appear in an additional schema fragments providing
more context to principles (Figure 3.4 and Figure 3.6).

3.4 Architecture principles as pillars from strategy to design

In this Section we finally define the concept of architecture principle, while also
positioning them as pillars under the bridge from strategy to design as provided
by enterprise architecture. Based on the discussions in this Section, we will further
extend the conceptual framework from Figure 3.2.

3.4.1 Architecture principles

In Subsection 2.4.2, a distinction was made between design and architecture. Where
an architecture focuses on essential requirements that typically also transcend the
scope of specific projects, the design fills in the remaining aspects to meet the spe-
cific requirements that apply to the scope of a single project. This allows us to de-
fine architecture principles as a further specialization of design principles in general,
based on their inclusion in an architecture:

ARCHITECTURE PRINCIPLE – A design principle included in an architecture. As such, it is
a declarative statement that normatively prescribes a property of the design of an artifact,
which is necessary to ensure that the artifact meets its essential requirements.

It should be noted that the distinction between architecture and design is orthogo-
nal to the distinction between requirement (what), normative principle (declarative
how) and instruction (operational how). So, in principle, the concepts of require-
ment and design instruction could be specialized to architecture requirement and
architecture instruction, respectively, based on their inclusion in an architecture.
However, as our focus is on architecture principles, we will not do so.

3.4.2 Business and IT principles

TOGAF (2009) considers architecture principles as a subclass of IT principles, and
the latter as a subclass of enterprise principles. We strongly disagree with this stance
since enterprise architecture should holistically describe an enterprise including its

3.4 Architecture principles as pillars from strategy to design 45

business and IT aspects. Only those architecture principles that are related to the
IT aspect can be a subclass of IT principles. Conversely, more architecture prin-
ciples exist that just IT related architecture principles. IT principles are normative
principles which provide policies to govern IT in general, but not all of these prin-
ciples might be relevant from an architecture or design perspective. The same holds
for business principles. Some of these might be ‘business architecture principles’,
while not all of them need to be architecture principles. Schekkerman (2008) also
concurs that that architecture principles are a subset of business and IT principles,
and not the other way around.

An important thing to note here as well, is the meaning of ‘business’ in the word
‘business principle’. One could define ‘business’ as being the company, firm or en-
terprise as a whole. Accidentally, when translating business in to Dutch or German,
one most often uses the word ‘Bedrijf’ or ‘Betrieb’, respectively, which generally
immediately refers to the company, firm or enterprise as an entity. When using this
interpretation, IT principles and architecture principles in general could all be called
business principles, because they refer to some aspect of ‘the business’ in terms of
‘the firm as a whole’.

One could also refer to the ‘business’ as being those aspects of a company, firm,
or enterprise, that pertain to the essential activities it engages in as a means of eco-
nomical2 livelihood. In general, the business level/column in architecture frame-
works refers to ‘business’ from this perspective. In this case, IT principles are quite
different from business principles.

One may also wonder how business rules fit in all of this. This depends very
much on one’s definition of business rules. The SBVR (2006), a well known stan-
dard in the business rules community, defines a business rule as: “a rule that is
under business jurisdiction”. Those desired properties (see Figure 3.2 (page 41))
that are defined under business jurisdiction would then be forms of business rules.
This would certainly apply to business principles in general, and potentially to ar-
chitecture principles. This of course also depends strongly on what is meant by the
words ‘jurisdiction’ and ‘business’ in particular. IT architecture principles should be
‘owned’ by business stakeholders, even though they deal with the IT aspect and not
the business aspect of an enterprise. Does this mean they are still under ‘business
jurisdiction’? Furthermore, the above discussion on the interpretation of ‘business’
also applies here. The Terms and Definitions Section of SBVR (2006) provides no
clear definition of their understanding of ‘business’. The related standard of the
Business Motivation Model (BMM, 2006) also does not clarify the issue. Interest-
ingly enough, it defines enterprise as a business or company, which seems to suggest
an interpretation of ‘business’ as firm or company as a whole, including their IT as-
pects. However, when considering line of reasoning suggested in BMM (2006) it
seems that with ‘business’ in ‘business rule’ one refers to those rules that can be
motivated in terms of risks/influences on the essential activities it engages in as a

2 Which does not only have to refer to money. We refer here to the exchange of scarce goods and/or
services, which may include money, but also societal esteem, happiness, physical wellbeing, et
cetera.

46 3 A conceptual framework for principles

means of economical livelihood. This is strengthened by statements such as “For
the Sake of the Business, Not Technology”.

In sum, from “a rule that is under business jurisdiction” (SBVR, 2006) we take
the position that business rules are intended as desired properties of an enterprise,
where these desired properties are motivated directly in terms of risks/influences on
the enterprise’s business in terms of the essential activities it engages in as a means
of economical livelihood. This means, that in terms of Figure 3.2 (page 41), some
business rules may turn out to be requirements, some may be design principles,
and some may even be specific enough to be design instructions. One may expect
most business rules to refer to the business aspect only, but it is not impossible for
business rules to pertain to the IT aspects, as long as their motivation originates from
the business: “For the Sake of the Business, Not Technology” (BMM, 2006).

3.4.3 Bridging from strategy to design

With the above definitions in place, we can now refine the discussion provided in
Subsection 2.4.2 on the role of enterprise architecture as a means to bridge from
strategy to design. In doing so, we combine Figure 2.5 (page 18) and Figure 3.1
(page 37) to the situation as depicted in Figure 3.3 (page 47). This diagram illustrates
the flow from enterprise strategy via architectures, to the design of some specific
system within the system of systems that constitutes the enterprise, to that system’s
implementation. The diagram also makes the role of requirements, design principles
and design instructions at both the architecture and design levels more explicit. It
furthermore shows how scientific principles support the creation of architectures
and designs.

Figure 3.3 also shows the fact that architecture principles do not exist in isola-
tion. They are based on all sorts of other artifacts, such as the business strategy and
business drivers, the existing environment and (anticipated) external developments.
They also influence all sorts of other artifacts, such as guidelines, architecture in-
structions, design requirements, design instructions, and implementations. Archi-
tecture principles really bridge between strategy and operations; they are primarily
an alignment instrument. They are formulated based on knowledge, experience and
opinions of all sorts of people in the organizations; senior management, as well as
the people that do the actual work. This mixture of people is also the target audi-
ence of normative principles. In that sense, the definitions of normative principles
also provide a common vocabulary for the organization.

As a further illustration of the flow from strategy to design, we use a fictitious in-
surance company. Their strategy is based on operational excellence. To this end they
have formulated the objective to cut costs with 20% within two years, which can
be considered an architectural requirement. Based on this architecture requirement
they have defined an architecture principle which states that “business processes
are standardized and automated”. Although they could not find any scientific prin-
ciples to support this, they had good experiences with process standardization in

3.4 Architecture principles as pillars from strategy to design 47

meets

Scientific
Principles

supports

supports

drives

Strategy

Design Principles
(Architecture Principles)

Design Instructions

Requirements

Architectures

meets

Design Principles

Design Instructions

Requirements

System Design

restricts

restricts

Implementation

Fig. 3.3 Architecture as a bridge from strategy to design

other organizations. The architecture principle is translated to specific design in-
structions on their claims handling process in terms of a series of ArchiMate (Iacob
et al, 2009) models. These instructions define the specific activities which must be
present in all claims handling processes. A new claims handling system is designed
to support the standardized claims handling process. A requirement for this system
is that it integrates with the recently developed customer portal. The lead designer
strongly believes that business rules should be defined and implemented separately
from other application functionality in this claims handling system and therefore de-
fines the design principle that business rules are defined in a business rules engine.
He also provides more specific design instructions on how to actually define these
business rules, by prescribing the specific constructs in the business rules engine
that should be used. These design instructions are used by the developers that use
the rules engine to implement the system.

48 3 A conceptual framework for principles

Finally, as discussed in Subsection 2.4.3, the situation depicted in Figure 3.3
should not be mistaken to be a top-down steering approach only. Architecture prin-
ciples can be used as a control mechanism. However, by observing how emergent
processes within a (networked) enterprise may lead to violation of existing princi-
ples, or even the emergence of (the need for) new architecture principles. As such,
the mechanism of architecture principles can be used as an indicator mechanism
as well. Admittedly, the remainder of this book focuses mainly on operationalizing
the top-down steering aspect of architecture principles. By focussing on the essen-
tial requirements, the use of architecture principles allows / invites enterprises to
think carefully about what to regulate in a design-first style and what to leave up to
emergence, or to even take measures that enable desirable emergence.

3.4.4 Extended conceptual framework

As a summary, Figure 3.4 (page 49) shows how the discussions provided in this Sec-
tion further extend the model fragment from Figure 3.2 (page 41). An architecture
restricts a system design. Both an architecture and a system design have to meet set
requirements, while both contain design directives in the form of design principles
and design instructions. Each architecture and each system design must contain at
least some design directive. Depending on their inclusion in an architecture, design
principles are specialized into their respective design or architecture counterparts.
This is formalized by the sub-type defining rule, shown at the bottom of Figure 3.4.

One of the postulates of the enterprise engineering manifesto (CIAO, 2010) states
that an architecture should be concerned with a coherent, consistent, and hierarchi-
cally ordered set of normative principles for a particular class of systems. This book
suggests a slight modification in that it takes the perspective that an architecture is
concerned with coherent, consistent, and hierarchically ordered set of design direc-
tives.

3.5 Motivating architecture principles

Architecture principles do not just fall out of the sky. Depending on the specific
situation, different drivers will lead to the formulation (and enforcement) of design
principles, and architecture principles in particular. Especially in the case of archi-
tecture principles, these motivations will originate from the goals and objectives
embedded in the strategy.

In this Section we provide a closer examination of the motivation for formulat-
ing and enforcing architecture principles, including the underlying drivers for their
motivation. Although we have not investigated it explicitly, these drivers likely also

3.5 Motivating architecture principles 49

Design
Directive

Architecture System
Design

containing /
contained in

on /
meeting

containing /
contained in

Design
Instruction

Architecture
Principle

Design
Principle

Subtype defining rule:
- An Architecture Principle is a Design Principle which is contained in some Architecture

Requirement

restricting / restricted by

on /
meeting

Fig. 3.4 Extended conceptual framework

50 3 A conceptual framework for principles

apply to other desired properties, including requirements, design principles and de-
sign instructions.

3.5.1 Sources for finding motivation

There seems to be no universal agreement on the types of drivers that exist to moti-
vate architecture principles. Nevertheless, much inspiration can be found in various
existing models and approaches.

The field of requirements engineering has produced a number of methods and
techniques that can also be applied to the motivation of architecture principles. Most
notably, goal oriented requirements engineering (Yu and Mylopoulos, 1994; Van
Lamsweerde, 2001; Regev and Wegmann, 2005; Rifaut and Dubois, 2008).

The business motivation model (BMM, 2006) provides important concepts to ex-
press motivation. The model was initially created to provide the motivations behind
business rules, but can also be used to find the motivation for architecture principles.
Figure 3.5 highlights the core motivational concepts from the business motivation
model (BMM, 2006). As suggested by the business motivation model, an important
step for the motivation of directives is the assessment of risks. This idea is brought to
enterprise architecture by Engelsman et al (2010) who state that architecture princi-
ples are based on an assessment of stakeholder concerns. An assessment represents
the outcome of the analysis of some concern, revealing the strengths, weaknesses,
opportunities, or threats (SWOT) that may trigger a change to the enterprise archi-
tecture. We believe that this provides only a subset of relevant drivers for architec-
ture principles.

TOGAF (2009) provides the following list of drivers: enterprise principles, IT
principles, enterprise mission and plans, enterprise strategic initiatives, external
constraints, current systems and technology and computer industry trends.

ITSA (Beijer and De Klerk, 2010) distinguishes three types of drivers: pains
(identifies what is wrong in the current situation), directives (what is stated as a
constraint by other authors) and opportunities (a business opportunity). These three
drivers are translated into SMART goals, that provide the motivation for architecture
principles.

The Business Model approach described by Osterwalder and Pigneur (2009) also
provides an interesting source of inspiration for motivating architecture principles.
The basis for this approach is the Business Model Canvas, a tool for describing,
analyzing and designing business models. The canvas provides nine building blocks
to describe the rationale of how an organization creates, delivers and captures value.
These building blocks are: customer segments, value propositions, channels, cus-
tomer relationships, revenue streams, key resources, key activities, key partnerships
and cost structure. Given that these choices determine the business model of the or-
ganization, they should also lead to essential properties to be met by the enterprise.

In our further elaboration of motivations for the formulation (and enforcement)
of desired properties, we will base ourselves mainly on the concepts provided by

3.5 Motivating architecture principles 51

Means

Mission

Course of action

Strategy

Tactic

Directive

End

Vision

Desired result

Goal

Objective

Influencer

External influencer

Internal influencer

... of potential impact of influencer

Assessment

Fig. 3.5 Business motivation model

the business motivation model (BMM, 2006). The business motivation model uses
the concepts shown in Figure 3.5 (page 51) to motivate business rules and busi-
ness policies, which are generalized to the concept of directives. In particular we
see that directives are formulated based on strategies and tactics, support goals and
objectives, and are motivated by the potential impact of internal and external influ-
encers. External influencers are the environment, technology, regulation, suppliers,
customers, competitors and partners. Internal influencers are infrastructure, issues,
assumptions, habits, corporate values, management prerogatives and resources.

The motivational concepts shown in Figure 3.5 can be applied in our context as
follows. An enterprise transformation effort is likely to impact on the stakes of many
different stakeholders. For example, stakes of owners, sponsors, people working in
the enterprise, clients, et cetera. Consider a stakeholder with a stake in the out-
come of an enterprise transformation. Then it is fair to assume that this stakeholder
has some goals/objectives which are potentially impacted on by the outcome of the
transformation. From the perspective of these goals, the transformation process has
an ideal behavior. This behavior can refer to all aspects of an enterprise transforma-
tion, be it the changes to the enterprise, products produced, the actual process itself,
et cetera. Whether or not the transformation exhibits this ideal behavior, is likely to
be influenced by both internal and external factors. These potential ‘impacts’ may
spark the stakeholder into (trying to) regulate the transformation and/or the potential

52 3 A conceptual framework for principles

influence. Needless to say that there will not be just one stakeholder. This means that
the desire to regulate the transformation may lead to conflicts between stakeholders
who have different goals with regards to the transformation.

For each influence, a risk assessment may show that this influence has a potential
undesired impact on the goals of some stakeholder(s) (BMM, 2006; Van Bommel
et al, 2007). In other words there is some set of risks posed by the influence on the
goals of the stakeholder. If the expected impact of the identified risks is high enough,
a concern will be raised with the stakeholder. Multiple risks may even strengthen the
specific concern of a stakeholder. When the expected impact of the risks is indeed
high enough, the stakeholder(s) will be motivated to introduce regulations, i.e. the
formulation and enforcement of desired properties that prevent the risks from occur-
ring. The benefits of these desired properties can be expressed as the reduction of
the expected impact of the risks (Van Bommel et al, 2007). Based on the risk assess-
ment, as well as potential benefits, a MoSCoW (Stapleton, 1997)3 style assessment
can be made, yielding the essential requirements that should e.g. be addressed by an
enterprise architecture.

3.5.2 Drivers as motivation for architecture principles

Based on the sources mentioned above, as well as our own experiences in prac-
tice, we propose the following types of drivers for the formulation of architecture
principles:

Goals & objectives – targets that stakeholders seek to meet, many of these will be
embedded in the strategy of the enterprise,

Values – fundamental beliefs shared between people in an enterprise,
Issues – problems that the organization faces in reaching the goals,
Risks – problems that may occur in the future and that hinder the en-

terprise in reaching its goals,
Potential rewards – chances and their potential reward for enterprises, and
Constraints – restrictions that are posed by others inside or outside the en-

terprise, including existing normative principles.

We will describe these drivers, their origins and characteristics in more detail below.
Goals & objectives are targets that stakeholders within and outside an enterprise

seek to meet. They can be very high-level, such as decrease costs. They can also
be very specific, such as decrease IT development costs with 10% within one year.

3 The capital letters in MoSCoW stand for:

M – Must have this.
S – Should have this if at all possible.
C – Could have this if it does not affect anything else.
W – Won’t have this time but would like in the future.

3.5 Motivating architecture principles 53

In line with the business motivation mode, we will refer to these latter goals as ob-
jectives. Objectives are required to be SMART, where as goals are not. Goals and
objectives can be very strategic, resulting from a SWOT analysis of the organiza-
tion (comparable to goals derived from opportunities in ITSA (Beijer and De Klerk,
2010)). They can also be more tactical and operational, focused on specific areas
within an enterprise. They can be hierarchical as well; a goal can be a means for
a higher level goal. In that sense, strategies and tactics as defined by the business
motivation mode are also considered goals from the perspective of architecture prin-
ciple development. Goals and objectives should be the main drivers for architecture
principles. Without ends, any means will do.

Values are also important drivers for desired properties. Fundamentally, values
are expressed in terms of quality attributes such as: reliability, trustworthiness, trans-
parency, sustainability, efficiency, flexibility, privacy, et cetera. Quality frameworks
such as ISO 9126 (ISO, 2001) and IEEE 1061 (Software & Systems Engineering
Standards Committee, 1998) are a good source of inspiration for these quality at-
tributes. The importance of values (and the associated quality attributes) as drivers
for desired properties, is stressed by a number of sources (Graves, 2009; Vermeulen,
2009; Bouwens, 2008). The formulation of a desired property can be used to de-
scribe how values should be expressed in practice. Vermeulen (2009) has collected
architecture principles from a number of sources and developed a ‘generator’ that,
based upon a scoring of core values, generates a list of most appropriate architecture
principles. Bouwens (2008) also shows how some values are really a combination
of other values. Graves (2009) states that it is important to distinguish required, es-
poused and actual values. Mismatches in these values can be used to determine the
priority of the value and the architecture principles that are based on it.

Issues are particularly relevant drivers for architecture principles, and comparable
to the pains as identified by ITSA. The business motivation model defines issue
as an internal influencer that is a point in question or a matter that is in dispute
as between contending partners. In a more general sense, issues are anything that
hinders an enterprise in reaching its goals. They exist at all levels, from strategic
to tactical and operational. An example of an operational issue is IT systems do
not reach the availability requirements as set forth in the Service Level Agreement.
Including them as drivers enables operational employees to provide relevant input to
the architecture, and thereby involve them in the process. It provides an opportunity
for the architect to contribute to problems that people are confronted with in their
daily work, and is an important step in the acceptance of architecture principles.

Risks are very much comparable to issues; they are problems that may occur.
The reduction of risks is an important motivation for directives. These risks are thus
also an important driver for the formulation of desired properties. There are various
classes of risks. As an example, based on the Basel II accord (BIS, 2004), financial
institutions should manage credit, market and operational risks. These operational
risks are particularly relevant from an architectural perspective; credit and market
risks are mostly handled by financial departments. Basel II defines operational risk
as the risk of loss resulting from inadequate or failed internal processes, people and
systems, or from external events. It is up to the architect to identify the most impor-

54 3 A conceptual framework for principles

tant risks. The focus should be on those risks that hinder the enterprise in reaching
its goals. An example of a risk is there are single points of failure in the infras-
tructure that may lead to unavailability of IT systems. For all risks identified, a risk
analysis needs to be performed in which the impact and probability of occurrence
is determined. Only those risk that have a high impact and/or probability need to be
included as driver. At a more aggregated level, certain categories of risks may lead
to the formulation of desired properties. Especially security risks are relevant. In an
enterprise that seems unaware of security risks, an architecture principle that states
that information is secured according to laws and regulations is very relevant. The
role of risks as a driver to architecture principles has been explored in more detail
in (Van Bommel et al, 2007).

Potential rewards are essentially what is referred to as business opportunities
in (Rivera, 2007). In other words, some event or initiative that has a potential bene-
fit/reward to the enterprise. In this sense, a potential reward is the inverse of a risk.
In the business motivation model, a SWOT assessment leads to the estimate of a
potential impact, which is either a risk or a potential reward. A potential impact
significant to an assessment can provide impetus for the formulation of architecture
principles.

Constraints are also commonly recognized as drivers for architecture principles.
They identify those things that were defined by others and that cannot be changed
by the architect. They may come from outside the enterprise, such as laws, policies
and regulations provided by government. An example of such a constraint is the
policy that is defined by the Dutch government that states that open source products
are preferred over commercial products when they are equally suitable. Constraints
may also come from (senior) management. Such constraints are called ‘management
prerogatives’ in the business motivation model, which defines them as an Internal
Influencer that is a right or privilege exercised by virtue of ownership or position in
an enterprise. An example constraint that could be defined by management is that
all non-core activities will be outsourced.

Most constraints actually correspond to some externally enforced desired prop-
erty. An important class of such desired properties are normative principles that have
been formulated in the context. These normative principles may be refined into more
specific normative principles that realize them. In that sense, pre-existing normative
principles, that are to be enforced as constraints, may be drivers for the formulation
of other normative principles.

3.5.3 Extended conceptual framework

As a summary, Figure 3.6 provides a conceptual framework of the key concepts
introduced in this section. Goals, objectives (which must enable the achievement
of some goal), and values are generalized to desires, where each desire must be the
desire of some stakeholder. The desires may be influenced (positively or negatively)

3.6 Formal specification of normative principles 55

by an influence, where we have four specific kinds of influences: an issue, a risk, a
potential reward and a constraint.

The desires and influences together form the drivers for the formulation of de-
sired properties in general. Drivers may be a concern to some stakeholder. When
this is indeed the case, the driver becomes a concern, which must be addressed by
some desired property. Constraints may actually be the enforcement of some exter-
nally formulated desired property. Drivers are initially translated to requirements,
that provide a manageable representation for these drivers. These requirements may
lead to design principles. The essential requirements lead to architecture principles
(not shown in the Figure).

Even though it makes sense the ensure that each desired property, is owned by
some stakeholder, one cannot simply state this as a general rule. However, espe-
cially when included in an architecture, it does make sense to assure ownership.
Enforcement of the desired property will certainly benefit from this. When a desired
property is owned by a stakeholder, then this must be based on an underlying con-
cern of this stakeholder. More precisely, if a stakeholder has ownership of a desired
property, then there must be a concern of that stakeholder which is addressed by
that specific desired property. This is expressed formally in Figure 3.6 by means of
the subset constraint marked with the ⊆ symbol.

3.6 Formal specification of normative principles

In this final Section, we briefly discuss ways of more formally specifying normative
principles. Although architecture principle specifications are discussed in detail in
the next Chapter, we feel that the formality of the current Chapter is a better place for
a discussion on the formal specification of architecture principles. In Van Bommel
et al (2006), the authors describe how Object Role Modeling (ORM) (Halpin and
Morgan, 2008) and Object Role Calculus (ORC) (Hoppenbrouwers et al, 2005), es-
sentially a formalized version of SBVR (2006), can be used to formalize normative
principles. Even more, they also argue that the mere fact of formalizing normative
principles already leads to interesting feedback on the original informal formulation.
The authors illustrate this by means of two examples taken from TOGAF. Consider
for example, the principle suggested by TOGAF:

Common use applications: – “Development of applications used across the enter-
prise is preferred over the development of duplicate applications which are only
provided to a particular organization.”

Figure 3.7 shows the ORM representation of the domain concepts underlying
this architecture principle. The actual architecture principle should unambiguously
express a norm in terms of these objects and facts. In creating Figure 3.7, one is also
invited to more carefully define the terminology used. What is an organization, what
is a enterprise, what is their relationship, what does it mean for an application to be
duplicate, what does it mean for an application to be used across the enterprise,

56 3 A conceptual framework for principles

Desire

enables achievement of /
made achievable by

Objective

Value

impacting /
impacted on by Goal

Concern

is addressed by /
addresses

is part of /
comprisesDriver

owns /
owned by

 is of concern to /
has as as concern

of /
has

⊆

Subtype defining rule:
- A Concern is a Driver which is a concern to some Stakeholder

operationalizes /
is operationalized by

motivates / motivated by

follows from / leads to

Requirement Design
Directive

Design
Instruction

Design
Principle

Stakeholder

Influence

Risk

Potential
Reward

Issue

Constraint

is the enforcement of /
is enforced as

Desired
Design

Property

Fig. 3.6 Motivating architecture principles

3.6 Formal specification of normative principles 57

includes /
is part of

prefers / is preferred by
Enterprise

Organization

Development

uses / is used in
Application

of /
resulting from

is duplicated by / is duplicate of

Fig. 3.7 ORM representation of concepts underlying an architecture principle

et cetera. Questions that also need answering if one seriously aims to enforce such
an architecture principle, and even when one only uses this principle as a means of
guidance. Without proper definitions of the basic terms, guidance can be difficult.

For the sake of the example, it is assumed that organizations are the compos-
ing parts of an enterprises, while “applications being used across the enterprise”
is interpreted as applications being used in two or more organizations within that
enterprise. In addition, we model the notion of ‘duplication’ as a distinct fact. Lex-
ically, it corresponds to some measure or judgement concerning great similarity in
functionality of two applications. Another issue is the interpretation of the term
‘preferred’. For simplicity’s sake it is assumed, maybe naively, that a development
is either preferred or not. However, in practice it seems more realistic to provide
a rated interpretation, for example by counting the number of duplicates occurring
(decreasing preference), or the number of times a single application is used in dif-
ferent organizations being one or larger (increasing preference as the count goes
up). This would more actively encourage actual development of applications that
are used in more than one organization.

In terms of the terminology from Figure 3.7, we now have:

if an Application [that is used in an Organization] results from some Development
and that Application is not a duplicate of another Application

which is used in another Organization
then that Development is preferred by the Enterprise

which includes both Organizations

In the analysis leading up to this formalization, it became clear that “duplica-
tions” and “use across organizations” related to essentially different concepts (the
first to similarity in functionality between different applications, the second to dis-
tributed use of the same application). Consequently, it was deduced that “duplica-
tion” alone could do the job in capturing the intention of this principle:

58 3 A conceptual framework for principles

if an Application results from some Development
and that Application is not a duplicate of another Application

then that Development is preferred by the Enterprise

This boils down to the simple informal rule “no duplicate applications”.
As argued in (Van Bommel et al, 2006), such an analysis generally leads to a bet-

ter understanding, and even improvement of normative principles. It helps in pro-
viding them clear and unambiguous meaning. Experiments with students (Chorus
et al, 2007) lead to similar conclusions. However, it also raises the question whether
stakeholders can / should be confronted with the formalized notation. In SBVR
(2006), it is argued that business rules which are formalized in such a style can
indeed be validated by domain experts, not requiring formal skills. In practice, for-
malized specifications are not yet common ground for specifying architecture prin-
ciples. We believe that SBVR-like formalization of normative principles in terms
of languages such as RIDL (Meersman, 1982), Lisa-D (Ter Hofstede et al, 1993),
ConQuer (Bloesch and Halpin, 1996) or Object-Role Calculus (Hoppenbrouwers
et al, 2005) is primarily a tool for architects, enabling them to improve the quality
of architecture principles, while potentially enabling validation by stakeholders.

In general, normative principles are best described in terms of structured text, at
a minimum involving a clear normative statement. It is imperative that principles
can be understood by a broad audience, and more specifically a mixed group of
stakeholders. Using an SBVR like style, might provide a balance between formal-
ity and understandability by a broad audience. This does, however, require further
study and evaluation. Additionally, a concise motivation, as well as an indication
of the consequences, are also highly recommended. There is a wide range of other
attributes (meta-data), such as the application area the principle pertains to, that can
be associated to normative principles, and aids in their formulation and governance.
These are discussed in more detail in Chapter 4.

3.7 Key messages

• The concept of principle has a long history.
• An important distinction has to be made between scientific principles and nor-

mative principles.
• Architecture principles are design principles that focus on how the design of an

enterprise will meet the essential requirements.
• Architecture principles are declarative statements, that can be made more specific

using design instructions. The latter can take the form of architecture models in
a language such as ArchiMate.

• Architecture principles allow enterprises to build a bridge from the strategy to
the more specific designs.

• Architecture principles, and desired properties in general, can be motivated based
on several drivers.

• Drivers are desires of stakeholders and influences that may impact these desires.

Chapter 4
Architecture principle specifications

Abstract This Chapter is concerned with the specification of architecture princi-
ples. The focus of this Chapter is on the specification itself, and not on the process
of specifying. It shows how architectural information, such as architecture princi-
ples, can be classified in multiple dimensions. Specifically, architecture principles
can be classified along the dimensions: type of information, scope, genericity, detail
level, stakeholder, transformation, quality attribute, meta level and representation.
The specification of architecture principles should follow the basic structure that
consists of a statement, rationale and implications. Other attributes exist that may
be relevant in specific situations. These attributes may also result from the relation-
ships between architecture principles. Specifically, since architecture principles can
have realization, specialization, conflict and association relationships with other ar-
chitecture principles. Also, architecture principles should be clustered into sets, for
manageability reasons. Finally, architecture principles should adhere to a number of
quality criteria; they should be specific, measurable, achievable, relevant and time
framed.

4.1 Introduction

The processes involved in creating and applying an architecture are crucial to the
succes of an architecture effort. However, architectural descriptions are just as im-
portant as the processes leading to their creation. Architectural descriptions capture
the (high level) design decisions made, trade-offs and motivations. They also pro-
vide a base to assess the compliance of specific systems, as well as guidance for the
design of specific systems. As a result, architectural descriptions should be acces-
sible to a broad audience. Besides fellow architects, this audience includes senior
management, project managers, analysts, developers and business users. The IEEE
1471 standard (IEEE, 2000) provides some guidance in the specification of archi-
tectural descriptions. It states that an architectural description should identify the
relevant stakeholders and concerns, provide one or more architectural views, record

59

60 4 Architecture principle specifications

all known inconsistencies and provide a rationale for the architectural decisions. A
survey that was conducted among a number of experienced architects by Buitenhuis
(2007) provides insights on the requirements on the language that is used in archi-
tectural descriptions. Amongst others, it states that the language should not act as a
straitjacket, should be based on generally available modeling languages, be syntac-
tically complete and use shared terminology. Also, a combination between natural
language and a (semi-)formalized language should be possible, allowing architects
to be very specific when needed.

Architecture frameworks have been defined to guide in the identification of rel-
evant architectural viewpoints. A framework typically consists of a list of view-
points, ordered into two dimensions and visualized as a matrix. The Zachman frame-
work (Zachman, 1987) serves as a source of inspiration to many architects. In his
initial paper, Zachman describes a framework for the architecture of information
systems. His idea was that architecture for information systems could be inspired
by architecture as used in more mature engineering disciplines. He saw that the
architectural models in these engineering disciplines showed a lot of similarities
and could be combined into a generic model. Zachman recognized two dimensions:
(1) perspectives of specific target audiences and (2) the types of artifacts. Poten-
tial perspectives are those of: the planner, the owner, the designer, the builder and
the subcontractor of an information system. Later on, Zachman gave these perspec-
tives more logical names, and they were labelled the contextual, conceptual, logical,
physical and out-of-context perspectives respectively. The out-of-context perspec-
tive denotes that at this level parts are typically fabricated outside the larger context
in which they are used. The dimension concerned with the types of artifacts, finds
its origin in the key interrogatives in the English language, leading to the elemen-
tary questions of what, how, where, who, when and why, which can be asked in
different contexts. For information systems these questions are translated to data,
function, location, people, time and motivation. The other observation was that both
dimensions could vary independently, leading to 30 (5 times 6) different kinds of
architectural models for one information system. Figure 4.1 (page 61) provides an
abstract version of the Zachman framework, showing the two dimensions. Note that
the Zachman framework has evolved in time (Zachman, 2009). The version depicted
in the figure is the most widely distributed version, while the most recent version
was released in 2008 and uses slightly different definitions of the rows and columns.

What holds for architectural descriptions in general, also holds for architecture
principles. Their specification needs to comply with the same general requirements
in terms of meeting concerns and being understandable to a wider audience. Fur-
thermore, viewpoints can be used to structure and illustrate architecture principles.
Architecture principles are best described in terms of structured text, at a minimum
involving a clear normative statement. A concise motivation of architecture prin-
ciples, as well as an indication of its consequences, are also highly recommended.
There is a range of other attributes (meta-data), such as the application area the prin-
ciple pertains to, that can be associated to architecture principles, that helps in their
formulation and governance.

4.1 Introduction 61

Data
(what)

Function
(how)

Network
(where)

People
(who)

Time
(when)

Motivation
(why)

Contextual
Planner

Conceptual
Owner

Logical
Designer

Physical
Builder

Out-of-context
Subcontracter

Types of artefacts

Pe
rs

pe
ct

iv
es

Fig. 4.1 Zachman framework

Still, the process of identifying and specifying architecture principles is a diffi-
cult one. The reason being that there are a lot of contextual factors that determine
what is appropriate in a certain situation. The target audience of architecture prin-
ciples varies, and so does the specific goal of the architecture principles. Also, the
maturity, formality and ambition of one organization can be very different to other
organizations. In some situations an informal short specification may suffice, whilst
in others a more elaborate and/or (semi-)formalized specification may be more ap-
propriate. Even more, the use of principles in the context of enterprise architecture
context suffers from a lack of maturity of the field in general. Current methods and
techniques for enterprise architecture are unclear about how to actually position,
formulate and apply principles.

This Chapter provides guidance in the specification of architecture principles.
It builds on existing research, methods and experiences. The next Section shows
the various dimensions in which architecture principles can differ. It shows that
the positioning of architecture principles in these dimensions influences the actual
specification. Consequently, various attributes are proposed that can be used in the
specification. A basic structure is presented that suits most situations, in addition to
more specific attributes that may be useful in specific situations. Consequently, the
relationships between architecture principles are described, as well as the grouping
of architecture principles into sets. At the end of the Chapter, a list of quality crite-
ria that can be used as a checklist in the formulation and/or review of architecture
principles is provided. Although the Chapter applies to architecture principles in

62 4 Architecture principle specifications

general, we will focus on architecture principles as norms. The reason is that archi-
tecture principles as credos are in such a preliminary stage that their specification is
not much more than an informal statement.

4.2 Dimensions in architecture principles

As indicated in the introduction, there is no general agreement on the way archi-
tectural descriptions are formulated. Architecture frameworks have been defined to
address this problem. However, there are many of them, and together they leave
us with seemingly contradicting terminology. In order to provide more insight into
architectural descriptions we have performed a comparison of architecture frame-
works (Greefhorst et al, 2006). We ‘discovered’ nine fundamental dimensions (char-
acteristics) that seem to underlie these architectural descriptions. A dimension was
defined as “a criterion to partition an architectural description into a set of seg-
ments, where each segment is identified by a unique value within a list of values
associated with the dimension.” In other words: a dimension is an attribute of a
piece of information which positions this piece of information in the total available
information space. By making dimensions explicit in architectural information, as
we do here with architecture principles, the intention and scope of the information
becomes much more clear. This facilitates communication about architecture in gen-
eral. It is therefore advised to document the values that an architectural description
covers, and include them as meta-data, thereby making the architectural description
self-describing. The following dimensions were identified:

Type of information – The topic of the information.
Scope – The extent of the information covered.
Detail level – The amount of detail.
Stakeholder – The target audience.
Transformation – The moment(s) in time that the architecture needs to cover.
Quality attribute – The quality attribute that is being addressed.
Meta level – The amount of abstraction.
Nature of the information – The nature of the information included in the archi-

tecture description.
Representation – The way architectural information is represented.

Since these dimensions are applicable to architectural descriptions, they also ap-
ply to architecture principles which are part of them. In the context of this book
we have applied these dimensions to the concept of architecture principles. In or-
der to better understand the various dimensions in architecture principles, a group
of MSc. students have investigated the positioning of architecture principles, and
their relation to other types of propositions (Van Bokhoven, 2008; Kersten, 2009;
Van Boekel, 2009; Van den Tillaart, 2009). They have used real-world architecture
principles of various organizations, and have tried to find meaningful values for the
various dimensions. Based on the results of this research we have refined our earlier

4.2 Dimensions in architecture principles 63

dimensions and translated them to the context of architecture principles. We have
added the ‘genericity’ dimension, which describes whether the architecture is spe-
cific to the scope or more generic. Also, we acknowledge that the ‘level of detail’
dimension can be refined into more specific dimensions that respectively add de-
tail on implementation and on specification. In that sense they are really multiple
level of detail dimensions. We leave out the ‘nature of the information’ dimension,
since the topic of this book and hence the nature of the information discussed here
is only ‘architecture principles’. The following Sections describe the resulting di-
mensions. Each dimension is first explained in general, after which the specifics for
architecture principles are described.

4.2.1 Type of information dimension

This dimension is by far the most prevalent in architecture frameworks, and de-
scribes the subject of architectural information. The level of granularity at which
this dimension can be expressed can vary. At the highest level, the distinction be-
tween business and IT aspects can be made. At a smaller level of granularity one
could distinguish architecture domains, such as the four architecture domains in
TOGAF: business, data, application and technology. At the lowest level one could
distinguish the individual architectural concepts, such as business service, business
process, application service or application component. Standards such as Archi-
Mate and TOGAF (the content framework) provide a well-defined model of these
concepts, including their relationship to the architecture domains.

This dimension is often used as the main criterion for splitting architecture prin-
ciples into meaningful clusters. TOGAF uses the architecture domains as the level
at which various forms of architecture principles are defined: business architecture
principles, data architecture principles, application architecture principles and tech-
nology architecture principles. There are specific phases dedicated to these archi-
tecture domains, in which architecture principles specific to the phase are defined.
We have used these architecture domains to classify the architecture principles in
the catalogue that is included in this book.

Although this dimension seems to be a nice way to segment architecture prin-
ciples, the reality is that a number of them have impact on multiple architecture
domains. It is therefore not always possible to assign an architecture principle to a
specific architecture domain. One could decide to assign it to the ‘highest’ level that
applies (with business being the absolute highest level). Another option is to sepa-
rately define ‘guiding principles’ that have impact on multiple architecture domains
(comparable to the ‘generic principles’ as defined by Wagter et al (2005)). This is
typically the set of architecture principles that is defined first, and that forms the
basis for other architecture principles. In the architecture principle catalogue in this
book we have chosen to assign the architecture principles to all architecture domains
that are impacted.

64 4 Architecture principle specifications

4.2.2 Scope dimension

This dimension describes the scope of the system that is covered; is it a software sys-
tem, a business process, an organization or even a whole industry sector. TOGAF
provides the architecture continuum, as part of the enterprise continuum, to sub-
stantiate this dimension (see Figure 4.2). This architecture continuum distinguishes
foundation architectures that apply to all systems, common systems architecture
that are specific to common types of solutions, industry architectures that hold for
an industry sector, and organization-specific architectures that are specific to one
organization. Kruchten (2004) also identifies the scope dimension for architectural
design decisions and states that “some decision may have limited scope, in time, in
the organization or in the design and implementation”.

Foundation
Architectures

Common Systems
Architectures

Industry
Architectures

Organisation
Architectures

Systems
Solutions

Industry
Solutions

Organisation
Solutions

Products &
Services

Solutions Continuum

Architecture Continuum

Guides &
Supports

Guides &
Supports

Guides &
Supports

Guides &
Supports

Foundation
Architectures

Common Systems
Architectures

Architecture Continuum

Industry
Architectures

Organisation
Architectures

Products &
Services

Organisation
Solutions

Guides &
Supports

Guides &
Supports

Guides &
Supports

Guides &
Supports

Solutions Continuum

Systems
Solutions

Industry
Solutions

Fig. 4.2 TOGAF enterprise continuum

It is often not clear from the specification of an architecture principle for which
scope it holds, so explicitly documenting the value for this dimension is important.
As we shall discuss in the next Chapter, we would like to distinguish architecture
principles that are specific to a solution (solution architecture), from those that are
specific to the organization (enterprise architecture). This classification can be re-
fined even further. Enterprises exists at various levels (e.g. the organization as a

4.2 Dimensions in architecture principles 65

whole, and its business units), implying that enterprise architectures may exist at
various levels.

4.2.3 Genericity dimension

This dimension describes whether the information is specific to the scope of the
architecture or more generic. A generic architecture is one that is not yet specific
to the context, which is exactly what reference architectures are. This dimension
thus separates reference architectures from enterprise or solution (specific) archi-
tectures. In general, it is advised to separate more generic architectural information
from organization-specific information. This enables reuse of architectural knowl-
edge, and ensures that organization-specific architectures can be to-the-point. As
described by the architecture continuum, reference architectures may also exist at
various levels. The scope dimension does not provide enough information to deter-
mine whether an architecture is a reference architecture; e.g. enterprise architectures
for certain industry sectors may exist.

It is not necessarily visible whether an architecture principle is generic or not. An
architecture principle may be copied from a reference architecture to an enterprise
architecture, although ideally the implications would also be made organization-
specific. Aitken (2010) distinguishes “principles of good design” from “enterprise
specific design principles”. The principles of good design are evident in all good
designs. An example is the principle of Separation of Concerns, which states that
“a design should be comprised of a set of independent components each of which
addresses a discrete function within the problem space”.

4.2.4 Level of detail dimension(s)

This dimension describes the amount of detail, where levels with more information
can be defined. The primary goal of varying the level of detail is to leave out those
details that are not relevant or known in a particular context or at a particular moment
in time. As stated previously, there are really multiple level of detail dimensions
since it is possible to add different types of detail. These different levels of detail can
also be regarded as different levels of abstraction, where higher levels of abstraction
leave out information provided on the lower levels of abstraction.

One type of detail that may be abstracted from are the actual implementation
mechanisms used, including people, products and technology. This form of abstrac-
tion is in line with the classical distinction from information modeling, between a
conceptual, logical and physical level, as defined in (ISO, 1987). This dimension
is also present in architecture frameworks such as (Zachman, 1987) and IAF (Van’t
Wout et al, 2010). The conceptual level focuses on ‘what’ (the concepts needed), the
logical level on ‘how’ (the types of solutions needed) and the physical level on ‘with

66 4 Architecture principle specifications

what’ (the actual products and technologies). Note that Zachman uses these terms
(‘how’ and ‘what’) in a different way; as a means to identify the type of information
as described in the first dimension. Analogously. the enterprise engineering mani-
festo (CIAO, 2010) suggests a distinction between an ontological model, which is a
fully implementation independent model of the construction and the operation of a
system, and an implementation model.

Another form of detail one may abstract from is the level of construction detail.
As suggested by both the enterprise engineering manifesto (CIAO, 2010) and Dietz
(2006), a distinction can be made between a functional and constructional perspec-
tive of systems, corresponding to a black-box and white-box perspective respec-
tively.

A third form of detail one may abstract from are specification details; i.e. infor-
mation that increases the specificity and/or measurability of the information. This
actually also corresponds to the distinction between credos and norms. Credos are
the norms in their inception. Norms add specification details to credos, making them
specific and measurable.

4.2.5 Stakeholder dimension

This dimension uses the stakeholders that are addressed as primary criterion. Stake-
holders are typically only interested in certain parts of the architecture (views).
Defining descriptions for specific stakeholders was the intention of the Zachman
perspectives dimension. However, in the Zachman framework the stakeholders di-
mension is equivalent to the detail level dimension. In a lot of situations such co-
occurrence may be obvious: senior management is often not interested in the details,
while specialists are. On the other hand, strategic IT decisions are relevant for a lot
of stakeholders; not just the specialists.

In relation to architecture principles it is relevant to distinguish between archi-
tecture principles that are relevant to all employees of the organization, architecture
principles that are relevant for employees of a specific part of the organization (a
business unit) and architecture principles that are only relevant to employees in a
specific role (e.g. software developers). By combining this dimension with a num-
ber of other dimensions, specific sets of architecture principles for different groups
of stakeholders can be identified.

Note that the stakeholders that need to be involved in the architecture principle
development process closely align with the stakeholders that are addressed. An ex-
ception holds for the architecture principles that are relevant to all employees of the
organization. These are typically the ‘guiding principles’ as described in the ‘type of
information’ dimension. These architecture principles are so strategic that they are
initially developed by and/or with senior management, although they should also be
validated by other employees in the organization.

4.2 Dimensions in architecture principles 67

4.2.6 Transformation dimension

The transformation dimension uses change in time as the criterion. It distinguishes
the current situation from short-term, medium-term and long-term situations, in-
cluding the transitions between them. A slightly different way to define this dimen-
sion is not to refer to specific moments in time, but rather to the characteristics of a
situation that can exist in time. For example, in terms of the levels in the Capability
Maturity Model Integration (CMMI, 2006) initial, managed, defined, quantitatively
managed and optimizing.

Although architecture principles are typically aimed at some future point in time,
it may also be relevant to identify the architecture principles that are implicitly avail-
able in the current situation. By reverse engineering these architecture principles
from current practices, a baseline is constructed based on which improvements can
be identified. Differentiating architecture principles aimed at the future is less use-
ful; differentiating between different points in time for which architecture princi-
ples hold is making it very complex to people to understand. It is advised to let all
architecture principles hold for the future, updating them when needed. New de-
velopments and insights just lead to an update of the architecture principles at the
right moment in time. Architecture principles that do not yet apply, are better not
yet published.

4.2.7 Quality attribute dimension

A number of dimensions in existing frameworks mention quality characteristics
such as security, performance and usability. These characteristics can be considered
as a separate dimension, with segments that each highlight certain quality character-
istics. The values within this dimension are defined by quality frameworks. Various
quality frameworks exist, such as ISO 9126 (ISO, 2001) and IEEE 1061 (Software
& Systems Engineering Standards Committee, 1998). This dimension makes it pos-
sible to talk about, for example, a performance view or a security view. These last
two views are also very common types of quality-driven views. Quality attributes
are very close to the values of the organization. TOGAF states that “A good set of
principles will be founded in the beliefs and values of the organization . . . ”. These
values are typically expressed in terms of quality attributes such as efficiency, trans-
parency and privacy.

Values (and the associated quality attributes) are mentioned by a number of
sources, such as Graves (2009), Vermeulen (2009), and Bouwens (2008) as impor-
tant drivers for architecture principles. Architecture principles describe how values
should be expressed in practice. In terms of dimensions, values can be seen as a
means to classify architecture principles. Standards such as ISO 9126 are sources
of inspiration for potential values. Since these standards focus on software qual-
ity, it is advised to extend/adapt them to also include organizational factors. Ver-
meulen distinguishes efficiency, quality, flexibility, innovation and job satisfaction.

68 4 Architecture principle specifications

Johnson (Johnson and Ekstedt, 2007) provides a framework for business quality at-
tributes. We have chosen to use the Extended ISO 9126 standard (Van Zeist et al,
1996) to classify the architecture principles in the catalogue that is included in this
book.

The Extended ISO 9126 standard extends the original ISO 9126, and provides 32
quality attributes (see Figure 4.3 (page 69)). These quality attributes are clustered
into six main characteristics: functionality, reliability, usability, efficiency, main-
tainability and portability. The following definitions are provided for these main
characteristics:

Functionality – a set of attributes that bear on the existence of a set of functions and
their specified properties. The functions are those that satisfy stated or implied
needs;

Reliability – a set of attributes that bear on the capability of software to maintain its
level of performance under stated conditions for a stated period of time;

Usability – a set of attributes that bear on the effort needed for use, and on the
individual assessment of such use, by a stated or implied set of users;

Efficiency – a set of attributes that bear on the relationship between the level of
performance of the software and the amount of resources used, under stated con-
ditions;

Maintainability – a set of attributes that bear on the effort needed to make specified
modifications;

Portability – a set of attributes that bear on the ability of software to be transferred
from one environment to another.

Although the Extended ISO 9126 model is originally focused on software qual-
ity, the quality attributes do have a fairly natural mapping to the other architecture
domains: business, data and technology. The business architecture revolves around
organizational aspects such as products, processes and people. In this architecture
domain, the system is the organization instead of the software. Functionality can be
seen as the extend to which useful functions are provided to the organization and its
clients. Reliability is the extend to which the functions are provided when needed.
Usability is the extend to which the functions are friendly to employees and cus-
tomers. Efficiency is the extend to which resources (people, money, time) are used
efficiently in providing the functions. Maintainability is the extend to which changes
can easily be made to the functions. Finally, portability is the extend to which the
functions are independent of organizational changes, such as outsourcing. Although
this mapping is not entirely exact, we do feel that it provides a simple way to clas-
sify architecture principles. Also note that the primary purpose of the Extended ISO
9126 model is to define software requirements, whilst we use them to categorize
architecture principles.

4.2 Dimensions in architecture principles 69

Extended ISO Model

Reliability
maturity
fault tolerance
recoverability
availability
degradability

Functionality
suitability
accuracy
interoperability
compliance
security
traceability

Usability
understandability
learnability
operability
explicitness
customisability
attractivity
clarity
helpfulness
user-fiendlyness

Efficiency
time behavior
resource behavior

Maintainability
analysability
changeability
stability
testability
manageability
reusability

Portability
adaptability
installability
conformance
replaceability

Fig. 4.3 Extended ISO 9126 model

4.2.8 Meta level dimension

This dimension addresses those architectures that, instead of domain-specific mod-
els, provide general classifications and relationships. It really describes a meta-
model; information about information. Multiple meta levels exist; OMG (MOF,
2002) distinguishes m0 (information), m1 (models), m2 (meta models) and m3
(meta-meta models). These meta levels are the basis for their Model Driven Archi-
tecture vision (MDA, 2003). Architecture frameworks can, in this sense, be regarded
as meta models.

Usually architecture principles are defined at the model level, providing guidance
for the design of the operational system. It may however be relevant to also define
architecture principles at a meta-level. Such architecture principles provide guid-
ance to the design of the transformation itself. They influence the transformation
of the operational system into a system which is hopefully better able to seize op-
portunities. Examples of such architecture principles can be found in TOGAF. The
first principle in TOGAF (primacy of principles) positions architecture principles
as the means to “provide a consistent and measurable level of quality information
to decision makers” and states that all organizations should abide by the principles.
Schekkerman (2008) provides a list of enterprise architecture process principles,
such as “Enterprise Architectures facilitate change”. Although such meta architec-
ture principles can be identified, the focus should be on model level architecture
principles since they contribute to the actual design.

70 4 Architecture principle specifications

4.2.9 Representation dimension

This dimension uses the way to represent architectural information as a criterion.
One can choose between formal, semi-formal and informal representations. Infor-
mal representations would typically be graphical sketches or narrative descriptions,
and leave room for interpretation. Semi-formal representations involve the use of a
controlled (graphical or textual) language, i.e. limiting the allowed syntactic vari-
ation, yet still without a well-defined semantics. Formal representations use a (re-
stricted) language with a well-defined semantics, enabling a precise and unambigu-
ous interpretation of the results.

In practice, formalized specifications are not yet common ground for specifying
architecture principles. Formalized languages such as SBVR (SBVR, 2006), Object
Role Modeling (Halpin and Morgan, 2008), Object Role Calculus (Hoppenbrouw-
ers et al, 2005) and set theory (Goikoetxea, 2004) could be applied to architecture
principles (also refer to the earlier discussion in Section 3.6 (page 55)). These lan-
guages are based on natural language-like rule languages such as RIDL (Meersman,
1982), Lisa-D (Ter Hofstede et al, 1993; Hoppenbrouwers et al, 2005) and Con-
Quer (Bloesch and Halpin, 1996). Although we have not seen examples of such
formalized specifications in practice, studies and experiments (Van Bommel et al,
2006) indicate that formalization can improve the quality of architecture principles.
It has been argued by some architects that architecture principles should never be
formalized, since this would lead to them being too restrictive. We would argue,
however, that sharp definition and careful, rational composition of rules should not
be mistaken for overly detailed regulation.

4.3 Attributes

This Section describes the attributes that can and should be used for specifying ar-
chitecture principles. It also provides some practical guidance in the formulation of
these attributes. Although everyone seems to agree on the basic structure of archi-
tecture principles (statement, rationale and implications), there is still a lot of varia-
tion in their actual specification. Buitenhuis (2007) provides a generic template for
architecture principles that has been a source of inspiration for this Section.

Architecture principles are in a sense comparable to design patterns; they may
also express common best-practices that should be reused. Hoogervorst (2009) even
states that design patterns are specific standards which form a subset of principles.
In contrast with patterns, however, it is hard to determine whether certain archi-
tecture principles are really best-practices due to a lack of a community. The de-
sign pattern community uses structured templates to describe the patterns, and these
provide an interesting source of inspiration for other attributes that may also be
relevant for architecture principles. Gamma et al (1995) use a template with the fol-
lowing attributes: pattern name and classification, intent, also known as, motivation,
applicability, structure, participants, collaborations, consequences, implementation,

4.3 Attributes 71

sample code, known uses and related patterns. What holds for design patterns also
holds for requirements. In particular, Robertson and Robertson (1999) have defined
an elaborate template for requirements covering the product constraints, functional
requirements, non-functional requirements and project issues.

We have studied all attributes from these sources, as well as a large number of
real-life architectural descriptions. As a result we have defined a number of clusters
of attributes that could be used, leaving it up to the reader to define a template that
suits a particular context. The following clusters of attributes are defined:

Basic structure – these are the essential attributes of architecture principles, and are
minimally needed in order to consider them a norm.

Advised attributes – these are attributes we advise to use since they ease commu-
nication, increase the semantics and provide more assurance that the architecture
principles can be governed.

Attributes for classification – these attributes should be used to classify architec-
ture principles in the dimensions described in Section 4.2.

Potential attributes – attributes that are not essential or advised but can still can be
useful in some situations.

Generic meta-data attributes – attributes that provide basic information and con-
text, and that are also applicable to other types of artifacts.

Relationships – relationships that may exist between architecture principles, lead-
ing to additional attributes in their specification.

4.3.1 Basic structure

This Section describes the basic structure of architecture principles in the form of
three attributes that architecture principles should have in order to be considered a
norm:

Statement – Should succinctly communicate the fundamental rule.
Rationale – Should highlight the business benefits of adhering to the principle.
Implications – Should highlight the requirements for carrying out the principle.

The most important attribute is the statement, which is the essence of the ar-
chitecture principle. The statement should convey the message in such a form that
people understand it, can associate with it and can translate it to their own context.
In the end it is the interpretation of the architecture principle that determines its ef-
fectiveness. In terms of the actual formulation beware of the following. Formulate
the statement in the form of an active statement in the present tense. Express the
behavior that is expected, and not what should be prevented. Architecture principles
are not meant to be used as laws, since an architect cannot oversee all detailed con-
sequences. As a result, deviation from architecture principles is always an option,
provided the organizational structure is in place to govern and manage these devia-
tions (not to say that it should be taken lightly). Therefore do not use words such as
‘avoid’ or ‘not’. Keep the statement short, but long enough to convey the meaning.

72 4 Architecture principle specifications

Look for unnecessary adjectives and adverbs. Do not use words that introduce un-
certainty or ambiguity such as ‘usually’, ‘most’ or ‘consider’. Use terminology that
is recognized by all those affected by the principle, which is preferably documented
explicitly (also see next Section). Prevent the use of technological (IT) terms when
they are not necessary.

The rationale of an architecture principle should motivate the reason for its exis-
tence. By discussing the necessity of a principle with stakeholders, it also becomes
clear why the principle is needed in the first place. This is important for all stake-
holders involved: designers and implementers as well as (senior) management. De-
signers need to understand the rationale before they accept that they must adhere to
it. People tend to want to do their own thing, often called the ‘not invented here’
syndrome. Management needs to understand the rationale since they sponsor the ar-
chitecture; they will be involved in escalations and need to support the architecture
principle when deviation is at hand. The rationale should provide a discussion of
the benefits of enforcing the principle in business terms. These benefits are typically
stated in qualitative terms, although quantitative benefits should be mentioned when
known. It is strongly advised to let the rationale refer to the drivers as defined in Sec-
tion 3.5, since these were explicitly defined for this reason and will be recognized by
others in the organization. If architecture principles are based on other (higher-level)
architecture principles, then these can be referred to in the rationale. This essentially
creates a ‘chain of pain’ where an architecture principle at a lower level can cure the
pain of a stakeholder that was involved in the definition of an architecture principle
at a higher-level. This is also important in an escalation, since it shows the impact
of deviation from an architecture principle on a higher-lever architecture principle.
It also helps when one uses business terminology, since this is understood by such
stakeholders. Keep the rationale realistic; do not promise too much. State that the
architecture principle contributes to a specific driver (instead of solve it); other mea-
sures are probably also needed. It also helps when one refers to recent discussions
in the organizations, which makes the rationale more recognizable.

The implications describe the state that exists when the architecture principle
statement is successfully implemented/enforced. It drives the behavior that is ex-
pected from people in order to comply to the architecture principle. Implications are
formulated in a similar form as the statement, but can also be references to more
detailed architecture principles. One may also consider describing the undesired be-
havior that is an implication of the architecture principle (what people should not
do), as well as the negative consequences (the disadvantages of choosing for the ar-
chitecture principle). The implications are typically the most organization-specific
elements of architecture principles. They show the most important consequences of
the architecture principles in the organization. More specifically, they show what is
necessary and sufficient (and thus essential) to attain the architecture principle. It
is also where architecture principles can be made specific and measurable (if the
statement was not already in this format) in the sense that they show the concrete
impact. This helps the reader understand the impact to its own work.

It is important not to oversimplify, trivialize, or judge the merit of the impact.
Some of the implications will be identified as potential impacts only, and may be

4.3 Attributes 73

speculative rather than fully analyzed. The architecture framework used can help
in the identification of the implications (also see Op ’t Land and Proper (2007)),
in the sense that it shows potential areas of impact (the cells in the framework).
This ensures that one does not forget important implications outside IT. However,
do not try to be complete. Identify only the major impacts; the things that are essen-
tial. A bulleted list is a nice form for documenting the implications (as well as the
rationale).

Table 4.1 provides an example architecture principle that revolves around ge-
ographical information. This is a fairly specific architecture principle that is very
relevant for local government organizations that have products that are associated
with geographical locations. An example product for which this holds is a building
permit, where the building itself has a certain geographical location. This location
information can be implicit (the postal code of the address of the building) or ex-
plicit (a specific x and y coordinate).

In terms of the dimensions that were described earlier in this Chapter this archi-
tecture principle can be positioned as follows. It has the value ‘data’ in the ‘type of
information’ dimension (based on the TOGAF architecture domains), since it de-
scribes how to handle data. It has the value ‘industry sector’ for the ‘scope’ dimen-
sion, since it is specific to local government organizations. It has the value ‘specific’
in the genericity dimension, since it has been tailored slightly (‘our products’) to a
specific organization. It has the value ‘logical’ in the ‘detail level’ dimension, since
it does not explicitly state how to encode the location information. In the ‘stake-
holder’ dimension it has the value ‘data modeler’, since data modelers are typically
responsible for defining the data model in which location information needs to be in-
cluded. In the ‘transformation’ dimension it has the value ‘target architecture’, since
it is focused on how to handle location information in the future. In the ‘quality at-
tribute’ dimension it has the value ‘usability’, since it eases access to information for
users. In the ‘meta level’ dimension it has the value ‘model’, since it influences the
operational system. Naturally, it has the value ‘architecture principle’ in the ‘nature’
dimension, since it is an architecture principle. Finally, it has the value ‘informal’ in
the ‘representation’ dimension, since it completely relies on natural language.

4.3.2 Advised attributes

This Section describes some attributes we advise to use in the specification of ar-
chitecture principles; name, actions, definition, assurance and visualization. Using
these additional attributes eases communication, increases the semantics and pro-
vides more assurance that the architecture principles can be governed.

The name represents the essence of the rule. It should be easy to remember, so
that people can easily refer to the architecture principle. It is therefore advised to
use a limited number of words. The intention behind the name of an architecture
principle is similar to that behind the name of a design pattern (Gamma et al, 1995)
in the sense that it forms a language. People familiar to them will talk about them

74 4 Architecture principle specifications

Statement
Location-sensitive information is attributed with a geographical location

Rationale

• A lot of our products include geographical aspects.
• This eases finding information based on location.

Implications

• Database definitions include columns for geographical locations.
• Search functionality includes options to search based on location.
• There is a geographical database that is the source for geographical locations.

Table 4.1 Example architecture principle specification

in terms of these names. Care should be taken in selecting the name, as these names
tend to start leading their own lives. Focus on formulating the statement, rationale
and implications first. Once one knows what to express, and why it is necessary to
comply, it becomes easier to produce a catchy phrase as a name that really conveys
the intended meaning. The name of the architecture principle in Table 4.1 could be
‘include location’. Some other examples of names are: ‘inquire once’, ‘re-use before
buy before build’ and ‘data is an asset’.

The actions describe the actions that are needed to realize (the implications of)
the architecture principle. As stated by Hoogervorst (2009) ‘key actions’ follow
from the fact that not all principles can be applied immediately; certain conditions
need to hold. The actions ensure that the pre-requisites for the architecture principle
will be implemented. Also, they provide input to the planning process. In contrast
to implications, actions are things that need to be performed at a specific moment
in time, whilst implications provide a time-independent description of the future
state. Actions may also be defined for taking away certain obstacles (also refer to
the next Section). Actions are determined by performing a gap analysis between the
implications and the current state. The architecture principle in the previous Section
could include the action: A geographical database needs to be implemented.

The definition increases the semantics of the architecture principle, enabling for-
mal assessment and enforcement. This attribute should contain clear definitions
of the core concepts used in the formulation of the architecture principle, at least
for those terms that are not clearly defined elsewhere in the organization (e.g. in
a thesaurus, data dictionary or information model). The architecture principle in
Table 4.1 could contain the following definition: location defines the position of ob-
jects or phenomena in relation to the earth surface, indicated by an agreed geomet-
ric reference. As described earlier, formal languages can also be used to improve
the accuracy of architecture principles, as well as more precise definitions of the
underlying concepts.

The assurance attribute articulates how the compliance of a design to the archi-
tecture principle is assessed. It describes what will be measured and how it will be

4.3 Attributes 75

measured. This is a way to make an architecture principle measurable and guide
the implementation of it. The architecture principle in Table 4.1 could contain an
assurance attribute stating that all search functionality on client cases should in-
clude the option to search based on location. In the formulation of this attribute
look closely at the owner of the architecture principle. The owner should be able
to enforce the architecture principle, and should have the proper authority in the
organization. Aitken (2010) proposes an ‘assertions’ attribute which contains a set
of quantifiable and testable statements which can be answered true or false when
applied to a design, and which relate to the architectural requirements (drivers) un-
derlying the principle.

A visualization can be used to illustrate the architecture principle and/or to pro-
vide additional insights into its intention. As such, the visualization does not add
additional architectural information. It merely represents the essence of the archi-
tecture principle in a different form. Since generally, a picture is worth a thousand
words, these visualizations can be a very powerful communication vehicle. The trick
is finding the right illustration with a specific principle. An idea is to hire a cartoonist
that can provide professional services in that area. An architecture principle can also
include a small icon that represents the architecture framework, and that highlights
the classification of the architecture principle within the dimensions of the architec-
ture framework. This helps the reader in understanding the area that is impacted.

4.3.3 Attributes for classification

This Section describes the attributes we advise to use to classify architecture prin-
ciples in the dimensions described in Section 4.2. Note that a number of these at-
tributes will have the same value for all architecture principles in the same set (also
see Section 4.4). For these attributes it is advised to document them on the level of
the set instead of documenting for each individual architecture principle.

Type of information – The TOGAF architecture domains provide a good classifi-
cation: business, data, application, technology.

Scope – The TOGAF enterprise continuum provides a useable list of values: orga-
nization-specific, industry-specific, common systems or foundation. The organi-
zation-specific value can be split into more specific values such as organization,
department and system.

Genericity – This can be either ‘specific’ for architecture principles that are con-
tained in architectures that are specific to an enterprise or solution, or ‘generic’
for architecture principles that are contained in reference architectures.

Stakeholders – The following types of stakeholders should at least be evaluated to
be included: business management, IT management, business analysts, informa-
tion analysts, business architects, IT architects, functional designers, technical
designers, developers and IT management.

Transformation – This attribute indicates whether this is a baseline (current) archi-
tecture principle or target (desired) architecture principle. A current architecture

76 4 Architecture principle specifications

principle is one that is reverse engineered from the current practice in the orga-
nization.

Quality attributes – The Extended ISO 9126 standard provides a useful list of qual-
ity attributes that are clustered into: functionality, reliability, usability, efficiency,
maintainability and portability.

Meta level – This indicates whether the architecture principle applies to the design
of the operational system, or to the design of the transformation system (e.g. the
architecture process).

Representation – This indicates whether a formal or informal (natural) language is
used for specifying the architecture principle.

4.3.4 Potential attributes

This Section lists a number of attributes that we have found in literature and real-
life examples of architecture principles. Although we do not consider them to be
essential, they still can be very useful in some situations. Some of these attributes
have been inspired by templates that exist for describing patterns and requirements.

Current situation – shows the current practice of the area impacted on by the ar-
chitecture principle. Highlights behavior that is not in line with it.

Future situation – shows the desired practice of the area impacted by the architec-
ture principle. Increases the understanding of the architecture principle and the
impact on the organization.

Known uses – a variation to the previous attribute, which uses actual examples of
application of the architecture principle in practice. This provides with additional
evidence that the architecture principle is realistic.

Applicability – describes the situations in which the architecture principle should
be applied, including where in the solution life-cycle it fits. Provides additional
insights into the impact of the architecture principle in order to govern the imple-
mentation.

Obstacles – the obstacles that may exist that hinder the actual implementation of the
architecture principle (also see Beijer and De Klerk (2010)). Makes it possible to
take the proper actions to ensure successful implementation of the architecture
principle. The obstacles may also be risks, allowing identification of necessary
risk mitigation actions.

Implementation – describes pitfalls, hints, or techniques one should be aware of
when implementing the architecture principle. It provides the opportunity to in-
clude additional guidance that is not really an implication, but still something
useful to consider.

Open issues – any open issues that may still need to be resolved with regards to the
architecture principle. Highlights areas that need attention and in which compli-
ance to the architecture principle may not be possible.

4.3 Attributes 77

Assumptions – describes all assumptions that were made in the definition of the ar-
chitecture principle. Although these assumptions may be considered open issues,
some of them will always remain an assumption.

Off-the-shelf solutions – lists existing products that should be investigated as po-
tential solutions for some of the implications of architecture principles. This can
be seen as a special appearance of the ‘actions’ attribute, and provides input to
the planning process.

4.3.5 Generic meta-data attributes

This Section lists more generic meta-data attributes that can be used for describing
architecture principles. These attributes are also applicable to other types of artifacts,
and provide readers with basic information and context.

ID – provides a very short way to uniquely identify architecture principles. This is
especially relevant for traceability reasons.

Version – is the version number of the architecture principle. This allows for version
management, which can also be important for traceability reasons.

History – the change that was made in the last version of the architecture princi-
ple. This helps the reader in quickly grasping the impact of changed architecture
principles.

Change date – is the date at which the last change was made to the architecture
principle. This enables people to search for recent changes in the set of architec-
ture principles.

State – shows the life-cycle of the architecture principle; has it been validated or
approved (or maybe even decommissioned). This is important for people to un-
derstand how they should treat the architecture principle. Kruchten (2004) also
recognizes the importance of the state attribute for architectural design decisions.

Owner – the person or role that is responsible for the architecture principle. This
ensures that escalations can be directed towards the right stakeholder.

Maintainer – the person or role that maintains the architecture principle and is the
first to contact for questions. This is not necessarily the same as the owner of the
architecture principle.

Source – references to external sources for this architecture principle. Provides a
more formalized trace to specific drivers or documents that contain these drivers.

Priority – provides an indication of the importance of the architecture principle.
Helps in the selection of architecture principles and handling conflicts between
them. Should be used with care, since objective prioritization is extremely hard.

78 4 Architecture principle specifications

4.3.6 Relationships

This Section describes relationships that may exist between architecture principles,
leading to additional attributes in their specification. In general, elements get an im-
portant part of their semantics from the relationships they have with other elements.
Also, documenting these relationships increases traceability from strategy to im-
plementation. This is especially relevant when architecture repositories are used in
which these relationships can be queried and/or navigated. Since we want to align
with standards we have looked at relationships in ArchiMate. This standard provides
a standard list of relationships that may exist between elements. Engelsman et al
(2010) propose an extension to ArchiMate for modeling goals, requirements and
principles. They also identify a number of relationships between these concepts. We
however perceive a number of them as conceptually equivalent. Kruchten (2004)
identifies thirteen types of relationships between architectural design decisions and
with external artifacts. Although these relationship types exist in general, some of
them are very close to each other, and/or not very relevant for architecture princi-
ples. We therefore propose a limited set of relationships, that together can express
what we feel is important for architecture principles. The following relationships
are proposed:

Realization – links an architecture principle with a more concrete architecture prin-
ciple (or other artifact) that (partially) realizes it. This is an instance of the realiza-
tion relationship between desired properties as described in Figure 3.2 (page 41).
It can be used for describing the relationship between an architecture principle
and the architecture principles that it implies; the latter realize the former. The
relationship can also be used to describe that a certain architecture principle is
motivated by another principle; this is really the inverse of the previous. In other
words; an architecture principle A that has architecture principle B in its impli-
cations, is also the rationale for architecture principle B. That is why only one
type of relationship suffices to describe the rationale and implications attributes.
As an example consider an architecture principle that states that applications are
modular. An architecture principle that is implied by (and thus realizes) that ar-
chitecture principle is Application components have a logical and documented
layered structure. The realization relationship can also be used for relating other
artifacts (patterns, standards, models, model elements) to the architecture prin-
ciple they realize. Consider the architecture principle Documents are stored in
the document management system. The building block ‘document management
system’ can be seen as realizing this architecture principle.
Engelsman et al (2010) differentiate between a ‘realization’ relationship from
goals to requirements and a ‘specialization’ relationship from principles to re-
quirements. We perceive these relationships as conceptually equivalent; they both
describe how one desired property realizes another desired property. Also, they
introduce a ‘contributes’ relationship that describes the influence of one propo-
sition on another one. We feel that this is really also a realization relationship
(for a positive influence), where one could see the amount of influence as an at-

4.3 Attributes 79

tribute of this relationship. Similarly, a contribution relationship with a negative
influence is really a conflict relationship in our terminology, with an attribute for
the amount of negative influence. Binnendijk et al (2010) state that architecture
principles may also be realized by a group of building blocks in a certain archi-
tectural description. They perceive such a relationship to be the application of
an architecture principle, since it is applied to these building blocks in a certain
context. They even model such an application relationship as a first-class entity,
allowing it to be used as a building block in different diagrams.

Specialization – indicates that an architecture principle is a specialization of an-
other architecture principle. It can be used to relate a generic architecture prin-
ciple to a more specific architecture principle. In contrast to the realization re-
lationship, the specific architecture principle has similar semantics and implica-
tions as the generic architecture principle, only a more specific scope. It is really
a context-specific copy of the generic architecture principle. An example is that
the architecture principle routine processes are standardized specializes the ar-
chitecture principle processes are standardized. Say for example that the first ar-
chitecture principle has the implication processes are modeled and documented
explicitly; this implication also holds for the specialized architecture principle.
This relationship is especially relevant when organization-specific architecture
principles are specific versions of generic architecture principles (typically doc-
umented in a reference architecture). Documenting this relationships helps in
understanding the intention and validity of the architecture principles.

Conflict – indicates that an architecture principle (partially) conflicts with another
architecture principle. The conflict can be obvious in the sense that one archi-
tecture principle is an obvious alternative to another one. Conflicts may also be
less obvious, and for example only occur in specific areas, situations or implica-
tions. This relationship is specific for architecture principles. An example of this
relationship is that the architecture principle best of suite conflicts with (i.e. is an
alternative to) the architecture principle best of breed. When such a relationship
exists in a generic set of architecture principles, it shows which decisions need
to be made: only one of these architecture principles should be adopted. Conflict
relationships between architecture principles in a set of organization-specific ar-
chitecture principles should be prevented.
Kruchten (2004) presents four types of relationships that are very close to the
‘conflict’ relationship we propose. The ‘forbids’ relationship expresses that a de-
cision prevents another decision to be made. The ‘conflicts with’ relationship is
a symmetrical relationship indicating that two decisions A and B are mutually
exclusive. The ‘overrides’ relationship expresses that a local decision A that indi-
cates an exception to B, is a special case or a scope where the original B does not
apply. The ‘is an alternative to’ relationship expresses that A and B are similar
design decisions, addressing the same issue, but proposing different choices.

Association – models a relationship between architecture principles that is not cov-
ered by another, more specific relationship. This relationship can be used to
describe that an architecture principle is logically related to another architec-

80 4 Architecture principle specifications

ture principle. Based upon this information these architecture principles could be
grouped into the same architecture principle set (see next Section).

4.4 Architecture principle sets

Architecture principles are typically defined as a collection, which is part of an
architectural description. A more general way to think about how architecture prin-
ciples are grouped together is to discern architecture principle sets. Such a set is
not necessarily contained in a document; it can also be contained in a repository or
knowledge management environment. A set of architecture principles is a collec-
tion of architecture principles that are grouped together because they share similar
characteristics, and are published as a whole. They are part of the same deliverable.
The characteristics they share can typically be expressed in terms of the dimensions
that were described earlier in this Chapter. These sets are typically disjoint, meaning
that architecture principles are part of just one set, although there may be specific
reasons to replicate architecture principles into multiple sets (e.g. copying a prin-
ciple in a reference architecture to an enterprise architecture). Sets are also logical
units of release management; a single set is updated as a whole and released as a
new version. A more fine-grained release approach may also be possible, but is a
less proven approach and requires more discipline from the organization. Sets can
also be grouped into themes (similar to Chapters in a document), especially if they
contain a large number of architecture principles. These themes may also be based
on the dimensions as described earlier, although domain-specific clusterings may
also be very relevant. For example; a software reference architecture may contain
themes for user interface management, business process management, data manage-
ment, application integration, security management and systems management.

TOGAF describes the creation of different types of architecture descriptions (and
thereby architecture principle sets contained within them) as ‘partitioning’. Parti-
tioning uses specific characteristics of architectural information to define bound-
aries between architecture descriptions. Partitioning is needed because addressing
all problems within a single architecture description is too complex, architecture
descriptions change over time, and it enables parallel development as well as re-
use of architectural information. TOGAF suggests to use the subject matter, level of
detail, time period, viewpoint and accuracy of architectural information as criteria
to identify partitions. In particular, they suggest to group architectural information
into strategic architectures, segment architectures and capability architectures. Bin-
nendijk et al (2010) state that grouping is especially relevant when there are a large
number of architecture principles. Grouping increases maintainability, and allows
relating a number of architecture principles to other artifacts.

In this book we have introduced some more specific terms for the architectural
dimensions, as well as the types of architectures. Also, partitioning of architecture
principles into sets may not follow the same patterns as architectural information
in general. Based on our own dimensions and types of architectures, as well as our

4.5 Quality criteria 81

own experiences with architecture principles we suggest the architecture principle
sets as shown in Figure 4.4 (page 82). We suggest to use ‘type of information’ and
‘scope’ as primary dimensions:

• The most generic sets are applicable to a very broad audience, and indicated with
scope ‘everyone’ in the diagram. Although these sets are very generic (and part of
reference architectures), they are often very specific to a specific subject (e.g. ge-
ographical information, workflow management), and as such will probably cover
only a single architecture domain (business, data, application, technology).

• In the layer below we see sets that are specific to a specific industry, such as the
government. They are typically part of industry-specific reference architectures,
that tend to cover multiple architecture domains.

• In the organization-specific scope we see guiding principles that provide the
highest level of organization-specific architecture principles, and documented
in enterprise architectures (strategic architectures in terms of TOGAF). These
guiding architecture principles should provide direction to the organization as a
whole, and therefor cover all architecture domains.

• The guiding architecture principles may be refined into more specific architecture
principles, that are defined in organization-specific reference architectures that
tend to focus on specific architecture domains.

• Depending on the size of the organization, a divisional level may exist that re-
quires its own set of architecture principles. This is an enterprise architecture at
the level of a single division (a segment architecture in terms of TOGAF), also
covering all architecture domains.

• At the lowest level, architecture principes for specific solutions may be defined
(in a solution architecture). A solution usually has an impact on all architecture
domains, and so does the architecture principle set.

4.5 Quality criteria

Based on the dimensions described in this Chapter a broad range of architecture
principles can be described. Unfortunately, we see a lot of architecture principles
that are not very useable. In particular, we see a lot of architecture principles that do
not address the real issues that the organization is confronted with. We see architec-
ture principles that are just not specific enough, and that do not provide the reader
with enough information to decide how their daily practice is influenced. We see a
lot of architecture principles that do not explicitly separate rationale and implica-
tions. Instead they just contain an informal description without a clear intent, and
that does not convince the reader of the importance of the architecture principle.

In order to ensure the quality of architecture principles, quality criteria are
needed. These criteria can be used by the authors during the specification of the
architecture principles, but also by reviewers in the validation of them. Various lists
of quality criteria can be found in literature (NORA, 2007; Bouwens, 2008; TO-

82 4 Architecture principle specifications

Type of information

Sc
op

e

Generic
business

architecture
principles

Generic
data

architecture
principles

Generic
application

architecture
principles

Generic
technology
architecture
principles

Industry architecture principles

Guiding architecture principles

Enterprise-wide
business

architecture
principles

Enterprise-wide
data

architecture
principles

Enterprise-wide
application

architecture
principles

Enterprise-wide
technology
architecture
principles

Divisional architecture principles

Solution architecture principles

Ev
er

yo
ne

In
du

st
ry

O
rg

an
iz

at
io

n
D

ivi
sio

n
So

lu
tio

n

Fig. 4.4 Proposed partitioning of architecture principles into sets

GAF, 2009). In their architecture framework (TOGAF), the Open Group (TOGAF,
2009) lists five criteria that distinguish a good principles: Understandable, Robust,
Complete, Consistent and Stable. We have combined the lists we have found and
propose the following criteria (re-using the SMART criteria):

Specific – an architecture principle should be specific enough for people to under-
stand its intention and its effect on their daily work. This implies that all words
should be unambiguous and clear, and that definitions should be provided for
words that are not. It also implies having the proper implications that highlight
all important consequences of the architecture principle.

Measurable – it should be possible to determine whether a given behavior is line
with the architecture principle or not. This means it should provide enough in-
formation in order to perform such a test, possibly in the form of a dedicated
assurance attribute. It helps when architecture principles are treated as norms,
and are explicit in the values that are acceptable. Note that full measurability is
not realistic for architecture principles; they are not business rules, nor should
they be regarded as laws.

4.5 Quality criteria 83

Achievable – an architecture principle needs to be achievable. This means that the
implications of it can be performed by or adhered to by all those affected, with-
out any other prerequisites. When people need to wait for some implementation
project that will not deliver in the short term, and until then they cannot adhere
to the architecture principle at all, that will negatively impact the credibility of
the architecture as a whole. Achievable also implies that it is acceptable to all
stakeholders. This requires (evidence of) their commitment, or at least their in-
volvement in the process. It also implies the proper and sufficient motivation for
the architecture principle. References to drivers and sources help in building this
motivation, although gathering additional evidence is advised.

Relevant – an architecture principle should provide a relevant contribution. This im-
plies that it describes a fundamental choice, provides limitations on the design of
the organization (including its information infrastructure), clearly distinguishes
itself from other architecture principles and that following it will lead to a signifi-
cant improvement. Obvious things need not be stated, neither should architecture
principles try to compensate a lack of education. Also, repetition of similar ar-
chitecture principles should be prevented.

Time framed – an architecture principle should be stable in context and time, mean-
ing that it will be valid for a long period of time. This implies the proper level
of generalization, and independence on drivers that are very time-specific. Time
may however require a revision of the implications, since the implementation of
the architecture principle evolves in time. Some organizations believe that the
time frame should be made explicit in architecture principles, and include infor-
mation in the architecture principle specification on when the situation described
is attained. We do not feel that this is necessary.

A good architecture principle starts with a properly formulated statement. The
following (real-life) architecture principle statements do not conform to the quality
criteria above:

• Processes are decomposed into activities. This is not a very relevant architecture
principle. Everyone will agree that processes consist of activities. It is really an
explanation.

• DNS zone transfers via IXFR. This is also not a very relevant architecture prin-
ciple; it is only useful and understandable for a very small audience, and com-
pletely unclear for all others. It is really a very specific design decision within
the infrastructure.

• Systems are loosely coupled. This is not a very specific architecture principle, nor
is it very measurable. It is really more a credo that may be refined into a norm.
The norm could have the following statement: ‘Systems are integrated through
well-defined services’.

Besides criteria for individual architecture principles, criteria can also be defined
for sets of architecture principles. We propose the following criteria for sets:

Representative – the set of architecture principles is representative for the prob-
lem domain. This implies that all important aspects of the problem domain are

84 4 Architecture principle specifications

covered. With a value-based approach this would imply having architecture prin-
ciples for all values that are identified. Note that representative is not the same
as complete; completeness is hard to determine, not very realistic in practice and
contradicts with the next criterion.

Accessible – the set of architecture principles should be easily accessible to readers.
This implies that they can be found and retrieved by everyone in the organization
that is affected, are limited in number, have a common structure (template) and
have a similar level of detail and abstraction.

Consistent – there should be no obvious conflicts between architecture principles,
so that a consistent message is communicated by the set. Note that it is highly
doubtful whether full consistency can be achieved. Even more, trying to achieve
such level of consistency is highly impractical due to its costs, as a result of the
complexities of the issues involved as well as the heterogeneity of the stakes
involved. Just as one would accept the possibility of inconsistencies in a normal
judicial environment, we will have to do the same. Inconsistencies that arise will
lead to a healthy discussion with all relevant stakeholders, and potentially yield
consensus for the future.

4.6 Key messages

• There is no universal agreement on how to specify architectures in general, and
architecture principles in particular.

• Architecture principles can differ in various dimensions, and their values in these
dimensions should be documented explicitly.

• The specification of architecture principles should at least contain a statement,
rationale and implications but can also contain all sorts of other attributes.

• Architecture principles should be clustered into sets that can be managed and
released as a whole.

• Architecture principles should adhere to a number of quality criteria; they should
be specific, measurable, achievable, relevant and time framed.

Chapter 5
A practical approach

Abstract This Chapter describes a method and techniques to define and apply ar-
chitecture principles. We define a generic process, which is based on the conceptual
model as presented earlier, as well as on existing methods and real-world experi-
ences. The process provides a concrete approach for handling architecture princi-
ples, thereby bridging the gap between theory and practice. The process starts with
the determination of the drivers, which are the foundation for architecture principles.
In subsequent subprocesses the architecture principles themselves are determined,
specified, classified, validated and applied. The application of architecture principles
entails deriving more specific directives from them, as well as transforming them to
diagrammatic representations. The next subprocess is using architecture principles
to determine whether projects comply with the architecture. Architecture principles
are positioned as the primary enablers for an effective architecture governance. The
final subprocess intends to handle changes to the architecture, which may restart the
initial subprocess.

5.1 Introduction

Describing a method for developing architecture principles is quite a challenge since
the development of principles is typically not something one does in isolation. Such
a development process is typically part of a larger architecture engagement where
lots of other activities are performed as well. The architecture principles are devel-
oped first, guiding the definition of the architecture models (embodying architecture
instructions). Further downstream they are used to guide the scope and deliverables
of projects that are initiated from the architecture. During project execution they can
be used to determine whether design decisions made are in line with the architecture,
and start appropriate discussions otherwise.

The method we propose consists of a generic process that handles the entire life-
cycle of architecture principles. We have distilled this process from existing meth-
ods, research and case studies on architecture principles. Inspiration has been drawn

85

86 5 A practical approach

from literature on policy making (Sabatier, 1999; Althaus et al, 2007; Nabukenya
et al, 2007b; Nabukenya, 2005) and requirements management (Robertson and
Robertson, 1999; Van Lamsweerde, 2001), which are both closely related to ar-
chitecture principles. As such, it is not a theoretic exercise nor an invention of
something new. It is much more a collection of best-practices that is intended as
a source of inspiration to practitioners in the field. In contrast to other methods and
approaches our method focuses on architecture principles, and covers the entire life-
cycle of architecture principles. I also aims to provides concrete guidance on how
to do things. Our method shows the ‘magic’ behind the process that others only
describe at a high level. The process itself consists of eight subprocesses (see Fig-
ure 5.1).

Determine
drivers

Determine
principles

Specify
principles

Classify
principles

Validate
and accept
principles

Apply
principles

Handle
changes

Manage
compliance

Asses

A
im

A
ct

Fig. 5.1 Generic process for handling architecture principles

The following subprocesses are part of the generic process:

Determine drivers – where the relevant inputs for determining architecture princi-
ples are collected, such as the goals and objectives, issues and risks.

5.1 Introduction 87

Determine principles – where the drivers are translated to a list of (candidate) ar-
chitecture principles. At this stage the architecture principles can be considered
credos.

Specify principles – where the candidate principles are specified in detail, includ-
ing their rationale and implications. This subprocess translates architecture prin-
ciples from credos to norms.

Classify principles – where architecture principles are classified in a number of di-
mensions to increase their accessibility.

Validate and accept principles – where architecture principles, their specifications
and classifications are validated with relevant stakeholders and formally ac-
cepted.

Apply principles – where architecture principles are applied to construct models
and derive design decisions in downstream architectures, requirements and de-
signs.

Manage compliance – where architects ensure that the architecture principles are
applied properly, and dispensations for deviations may be given.

Handle changes – where the impact of all sorts of changes on the architecture prin-
ciples is determined and new method iterations may be initiated.

In terms of the streams of activities involved in an enterprise transformation, as
described in Section 2.3 (page 11), the determination of drivers can be seen as fitting
in the Assess stream. This is where the problem and challenges are determined. The
identification, specification, classification and validation of principles can be seen
as being part of the Aim stream. They determine the future state that addresses the
problems and challenges. Finally, the application of principles, as well as reviewing
compliance and handling changes are part of the Act stream. This is where the actual
transformation takes place. The process itself is iterative. This means that subpro-
cesses may be performed in a different order, that previous subprocesses may be
re-visited and that some subprocesses may even be skipped when they are not ap-
plicable in a certain context. Also, it is a cyclical process, that restarts upon the
discovery of new insights. This is in line with the field of policy making, which is
also considered cyclical (policy cycle) since no policy decision is ever final. Archi-
tecture principle development is really a policy cycle.

It is also important to realize that the development of architecture principles
should be a collaborative process, which is also recognized by Nabukenya (2005).
By involving the right stakeholders the process becomes much more effective. Not
only do the resulting architecture principles have a higher quality; they will also be-
come accepted much easier. A collaborative process is not a deterministic process.
The result of the process reflects who participates in the process, who does not, and
the knowledge and opinions that each stakeholder brings to the decision-making
arena. You could even say that the process is more important than the architec-
ture principles resulting from it. In the end, it is the willingness of stakeholders to
changes that makes the difference. Workshops are an especially effective technique
since they allow for the involvement of a larger audience thereby increasing the
amount of knowledge and validation (Nabukenya et al, 2007a; Nabukenya, 2005;

88 5 A practical approach

Nabukenya et al, 2007b, 2009). An effective workshop is one in which all workshop
participants agree on the workshop results.

Although a collaborative approach is essential, not all processes involved in the
formulation of principles lend themselves well to a collaborative approach. Also,
it is generally hard to claim time from people that have an important role in the
business as well. We therefore carefully need to consider which processes should be
collaborative, and which should be performed by individual architects or even spe-
cific experts. Interviews can be a partial substitute for workshops, although reaching
consensus through interviews is extremely difficult. Interviews however have the
advantage that not all participants need to be available at the same time. They also
allow the interviewer to ask more specific questions and thereby gather more spe-
cific information. Finally, they enable the identification of differences in opinions,
which could be solved by architecture principles. Activities that lend themselves for
a collaborative approach are the determination of drivers and architecture principles
(including their priority), and the validation of architecture principles. Especially
the enforcement approach of the architecture principles needs to be agreed upon by
all stakeholders. The actual specification of architecture principles is best performed
by architects, assisted by subject matter experts. The same holds for the other sub-
processes in the generic process.

5.2 Generic process

This Section describes the subprocesses in the generic process in more detail. The
generic process should be translated to an organization-specific process. We do not
intend to provide a complete description of these subprocesses. Instead, we want
to provide the reader with insights, hints and tips on how to handle the develop-
ment of architecture principles. At a number of places we will point to TOGAF
for more general information on architecture development. Our process can be seen
as an extension to TOGAF for architecture principles, although it can also be used
independently of TOGAF.

5.2.1 Determine drivers

In Section 3.5 we have described the drivers for architecture principles: goals, ob-
jectives, values, issues, risks, potential rewards and constraints. In this subprocess,
the drivers that are relevant in a specific context are identified and described. Drivers
are ideally defined outside the scope of the architecture function. In practice, how-
ever, they do need to be gathered explicitly before architecture principles can be
identified. Drivers that are not explicitly documented may have to be elicited from
stakeholders. It is the role of the architect to ensure that the definitions of these
drivers are current, and to clarify any areas of ambiguity.

5.2 Generic process 89

Existing approaches provide limited guidance on how to actually identify drivers
and leave it to the architect to determine how to actually perform this subprocess.
Beijer and De Klerk (2010) provide more guidance in this area. The exact nature of
the goals depends on the exact scope and context of the architecture engagement.
A selection of the most important drivers at hand is made, leaving other drivers
implicit. In order to identify issues, carefully look for topics that have caused a lot of
discussion in the past. It is important to identify any differences in opinions. Drivers
may be found/uncovered by studying existing internal and external documentation,
as well as by asking stakeholders.

We recognize the importance of all drivers identified earlier, but do feel that
using them all may lead to an overly complex process. The goals and issues are
the basic drivers that should be addressed. Others may be added in later iterations.
Most drivers can also be (re)formulated as goals; if efficiency is a value then a goal
may be to increase the efficiency. Also, the specific drivers that should be used are
very dependent on the specific organizational context and motive for the architecture
engagement.

Having identified the types of drivers, the next step is to determine which infor-
mation on these drivers is needed in order to determine the architecture principles.
Finding the right information on these drivers can be a very difficult task; they are
simply not documented, the quality of the documentation is bad (old, inconsistent,
incomplete) or the documentation is hard to find. The most important part of the
driver is the understanding of it, which is mostly something that can be written
down in a few lines of text. The documentation may provide too little information.
In such a case one needs to find the stakeholders and/or the subject matter experts
that do have the understanding. In order to prevent analysis-paralysis it is important
to focus on the goals and objectives of the specific architecture engagement.

A more structured approach may even be necessary, such as issue-based consult-
ing. Such an approach starts with the identification of issues, after which hypotheses
are formulated, as well as the key questions that need to be answered to validate the
hypotheses. These key questions drive the information needs. Based on these needs
an information gathering plan can be made, in which one determines how to actu-
ally gather the right information. Depending on the type and amount of information
it may be necessary to perform a market analysis, study documentation, conduct
interviews, organize workshops or even to organize questionnaires.

Do not forget to validate the drivers with the stakeholders. What may seem a
driver for one stakeholder, may seem irrelevant for someone else. Also, stakeholders
may value drivers differently, and prioritization of drivers is advised. In the engage-
ment of stakeholders drivers will be moulded, combined, split, removed or added
until all stakeholders are satisfied with the result. Do not try to rush the driver iden-
tification subprocess; drivers are the foundation for all architecture principles and
commitment on them is key to gain support for the architecture as a whole. When
the architecture is questioned later, the drivers should provide enough motivation.

Drivers may not be formulated at the right level of abstraction in order to use
them for architecture principle identification. A cause-and-effect analysis can be
performed for drivers that fall into this category. The causes and/or effects of a spe-

90 5 A practical approach

cific driver are identified and documented in the form of a cause-and-effect diagram
as described by Op ’t Land and Proper (2007). This diagram is very much compa-
rable to the goal refinement graph as described in the Goal-Oriented Requirements
Engineering approach (Van Lamsweerde, 2001). More specific causes and/or effects
may be identified until the right level of detail is attained.

The final step in the determination of drivers is their explicit specification in
the form of an architectural requirement. This results in a list of statements with a
unique identification, that is the basis for the determination of architecture princi-
ples. It thereby enables taceability from drivers to architecture principles, as well as
requirements management of these drivers. The latter may lead to their inclusion in
a requirements management tool, and further enrichment with additional meta-data
such as the generic meta-data attributes as described in Section 4.3.

5.2.1.1 Example: identifying drivers for EnsureIt

EnsureIt is a fictitious insurance company that provides property, casualty and life
insurance. It is a direct writer, which means that it sells directly to customers with-
out the use of intermediaries. Customers are served through Internet, mail and tele-
phony where they are provided services for obtaining information, acquiring insur-
ance policies, reporting claims and changing insurance policies. Senior management
is struggling with the question of how to translate the new strategy into execution.
They have hired an external enterprise architecture consulting firm to guide them.
The consultants state that architecture principles are the most effective instrument
in this phase since they provide direction to the organization, without going into
unnecessary design details. They have identified drivers for architecture principles,
using document analysis and interviews.

• The following strategic goals and objectives are identified:

– To be the provider of the cheapest insurances in the country.
– To position itself as ‘the Internet insurance company’.
– To increase the number of students in its customer base to 20%.

• The following issues are identified:

– There is not enough focus on specific products, channels and customers.
– There is a lot of redundancy in the processes and IT systems.
– The costs of the internal IT is much too high.

• The following risks are identified:

– There are new competitors that are entirely Internet-based and that are more
agile.

– It is getting increasingly difficult to find the right IT specialist for maintaining
certain legacy IT systems.

• The following constraints are identified:

5.2 Generic process 91

– Current IT staff does not have any knowledge on new technology.
– Management has decided that changes should not influence employment of

employees; no-one should be discharged.

• The following values are identified:

– Agility.
– Operational excellence.

• No prior architecture principles were identified.

5.2.2 Determine principles

After having determined the drivers it is possible to determine the architecture prin-
ciples. This is where the ‘magic’ comes in; how to translate drivers to architecture
principles? What makes this process complex is that there are different types of
drivers, and that they may be formulated in many different ways. We see the follow-
ing three basic activities when determining architecture principles:

Generate candidate principles – generates a list of candidate architecture princi-
ples that realize the drivers.

Select relevant principles – selects those architecture principles that are relevant to
the specific architecture.

Formulate principle statements – specializes or generalizes the candidate archi-
tecture principle statements into the proper abstraction level.

These activities are typically used in combination, where there is also a logical
flow from generation, through selection to formulation. The following subsections
describe the activities is more detail, and show specific approaches and techniques
that can be applied.

5.2.2.1 Generate candidate principles

The generation activity is where architecture principle determination starts. Basi-
cally three different approaches to generation exist: derivation of architecture prin-
ciples from the drivers that were identified earlier, elicitation of domain knowl-
edge and harvesting of existing architecture principles. We describe these three ap-
proaches in turn.

Deriving architecture principles from drivers ensures that these are properly mo-
tivated, which is very relevant to get commitment from stakeholders. The idea be-
hind the activity is that architecture principles are a realization of some driver. They
are a means to an end. A certain amount of creativity is needed in this activity in
order to generate candidate architecture principles. By comparison: what we refer
to as ‘derivation’ is comparable to what is called ‘refinement’ in the Goal-Oriented
Requirements Engineering approach (Van Lamsweerde, 2001). In that approach,

92 5 A practical approach

‘how’ questions are positioned as a means to refine goals into requirements or sub-
goals. Since not all our drivers are goals, and we look for architecture principles we
propose the following questions per type of driver:

For goals and objectives – What is needed to attain the goal or objective?
For issues – What is needed to solve the issue?
For values – What is needed to realize this value?
For risks – What is needed to minimize the probability or the impact of the risk?
For potential rewards – What is needed to attain the potential reward?
For constraints – What is needed to enforce the constraint?

In addition to derivation from drivers, candidate architecture principles may also
be determined by studying architecture principles that were defined earlier in the
same architecture engagement (others are part of the constraints). Typically, guid-
ing architecture principles imply architecture principles for specific architecture
domains. Also, business architecture principles tend to imply application architec-
ture principles, data architecture principles and technology architecture principles.
When implications for architecture principles defined earlier are not yet defined,
they should be revisited and the question should be asked: “what does the architec-
ture principle statement imply?”.

Derivation lends itself well for a collaborative approach, in the form of a work-
shop. In particular a brainstorm technique works well since it stimulates the creativ-
ity of participants. You simply ask the participants to look at a specific driver and
then answer the questions described above. You may initially accept all answers, in-
cluding those that do not really answer the question, in order not to disturb the group
process and to provide people the opportunity to provide input. The candidate ar-
chitecture principles will be filtered and reformulated later on in the process. What
is important to stress is that only the most essential answers should be provided. We
aim to find the most important things to take into account, things that matter. As an
alternative to a workshop based approach, interviews may be used.

Elicitation of domain knowledge is an approach that does not replace, but can
be used in combination with derivation. Domain knowledge is essential to truly un-
derstand the drivers and to come up with the proper solutions, and requires input
from subject matter experts. Domain knowledge is often tacit, but may also be doc-
umented in the form of scientific principles as defined in Chapter 3. These scientific
principles describe potential solutions, and as such can be considered as architec-
ture principles in their first inception. In that sense they are an important part of the
knowledge that the architect brings into the process. Based on personal experiences
the architect knows which types of solutions can create a certain effect. Neverthe-
less, in depth domain knowledge should be gathered from subject matter experts.
Other interesting sources for domain knowledge are technology developments; new
developments provide new solutions for certain problems. An example of such a
development is virtualization, which leads to a lower TCO of IT (when properly
applied). Domain knowledge is preferably explicitly documented, and supported by
reference materials.

5.2 Generic process 93

Harvesting existing architecture principles also provides a starting set for new
architecture principles. In contrast to the existing architecture principles that were
mentioned in the previous subprocess and previously in this Section, the architec-
ture principles we refer to here are those that have not formally been agreed upon.
As a result, they cannot be used as drivers. These existing principles may or may not
already be linked to drivers. If such a link is missing it should be reverse-engineered
from the architecture principles. In terms of the Goal-Oriented Requirements En-
gineering approach this means asking ‘why’ questions. Existing principles may be
harvested from all sorts of documents, or pro-actively suggested by people. An in-
teresting source is the set of solution architectures, which may contain architecture
principles that can be abstracted to a form that is suitable for inclusion in an enter-
prise architecture or reference architecture. Ideally, an architecture repository exists
in the organization that provides a collection of architecture materials from previ-
ous architecture experiences or external sources. There may even exist a reference
library that contains reusable architecture materials, typically in the form of ref-
erence architectures. These reference architectures can be defined inside as well
as outside the organization, and are a good source for architecture principles. The
Dutch government reference architecture (NORA, 2007) (also see Section 6.2) from
the Netherlands is a good example. It provides a library of architecture principles
that apply to all governmental organizations in the Netherlands. Also, a catalogue
of reusable architecture principles is included in this book that is a good source of
inspiration. Note that it is not recommended to solely depend upon harvesting ex-
isting architecture principles since the most important architecture principles may
be missed. This especially holds for enterprise architectures, which should be as
organization-specific as possible.

5.2.2.2 Select relevant principles

Given that the previous activity was executed, selection starts with a list of candidate
architecture principles. This list needs to be filtered, so that only the architecture
principles that are relevant are included. Also, limiting the number of architecture
principles is important to limit the time required from stakeholders, and to ensure
accessibility of the resulting architectural description. Do not be afraid to throw
away architecture principles that do not really express an essential choice and/or are
not specific enough for the organizational context. Not all candidates may be at the
right level of genericity. This is not yet relevant at this stage; formulation of the real
architecture principle statement will be performed in the next activity. Selection can
be seen as a form of prioritization, that is executed at an early moment in time.

An important thing to do at this stage is to filter out things that are not really ar-
chitecture principles. A brainstorm typically results in all sorts of statements, which
includes architecture principles but also actions, requirements, strategic decision,
business principles, IT principles and more detailed design principles. The follow-
ing questions are relevant in order to determine whether the statement is really an
architecture principle:

94 5 A practical approach

• Does it describe a functionality that is needed? In that case it is probably a (func-
tional) requirement.

• Does it describe something that needs to be done? If it does, then it is probably
an action.

• Are there objective arguments that support it? If it does not, then it is probably a
(potential) strategic decision or business principle?

• Does it have impact on the design of the organization and/or the IT environment?
If if does not, then it is probably a business principle (if it influences the daily
business operations) or an IT principle (if it influences the daily IT operations).

• Does it have impact on the design of multiple systems? If it does not, then it is
probably a more detailed design principle or design decision.

A collaborative approach is very applicable for selection. Various techniques can
be used for this, such as voting. A simple form of voting is one in which partici-
pants can allocate a fixed number of points to all candidate architecture principles.
The architecture principles with the most points are selected (or prioritized). An
even simpler technique is to let the group prioritize together. This leads to useful
discussions, and brings important arguments to the surface. A workshop technique
that is relevant for selection as well as for the other activities in the process of iden-
tifying principles is the Nominal Group Technique (NGT) as described by Delbecq
and Van de Ven (1971). In this technique ideas are generated silently by all partici-
pants, presented to the group, discussed in the group and voted upon. It is important
to ensure that the process is as neutral as possible, avoiding judgment and criticism.
Compared to other techniques the NGT provides more unique ideas, more balanced
participation between group members, increased feelings of accomplishment, and
greater satisfaction with idea quality and group efficiency. Another relevant tech-
nique is the Delphi technique (Linstone and Turoff, 2002) that relies on an anony-
mous panel of experts. These experts provide answers to questions and comment
on answers of others. A facilitator collects all responses, filters irrelevant statements
and sends the results around again. The process repeats until a predefined number
of rounds are executed or the result is acceptable. The Delphi technique is based
on the principle that forecasts from a structured group of experts are more accurate
than those from unstructured groups or individuals.

The quality criteria that were described in Section 4.5 (specific, measurable,
achievable, relevant, time framed) can be used in the selection process to filter
out architecture principles that have a low quality. What also helps is a mapping
of the candidate architecture principles to the drivers. Architecture principles that
contribute to more drivers get a higher priority. Architecture principles that only
contribute to a single driver may be dismissed, depending on the number of ar-
chitecture principles identified. Also, conflicts of architecture principles with the
various drivers, and with the other architecture principles should be detected at this
stage. The relationships between the architecture principles and the drivers are very
interesting for the stakeholders. It provides them with an indication that all drivers
have been addressed, and that all architecture principles are based on drivers. What
helps is drawing a diagram that shows these relationships, especially if it can be pre-
sented on a presentation slide. Some drivers and/or architecture principles may need

5.2 Generic process 95

to be summarized, in order to fit the diagram on the slide. This slide is very useful in
validating the architecture principles with various stakeholders in a workshop or in
a personal meeting. An example of such a diagram is shown in Figure 5.2 (page 97).

5.2.2.3 Formulate principle statements

The previous activities have led to a list of candidate architecture principle state-
ments, which may not exactly be at the level of architecture principles and/or match
the organizational context. This activity transforms the statements to the right level
of abstraction, and finds a balance between genericity and specificity of the architec-
ture principles. Although the end-result of this activity needs to be validated, most
of the work in this activity can be performed by an architect in solitude. The specifi-
cation of the architecture principle also needs to be tailored to the organization, but
that is part of the next subprocess and not described in this Section.

An important insight is that architecture principles can be regarded as generic
requirements that can apply to a number of solutions (Hoogervorst, 2009). Previous
activities may have come up with statements that apply to a different scope than that
of the architecture, and generalization or specialization of these statements may be
needed. Architecture principles should apply to all solutions that match the scope of
the architecture. It is important to carefully determine the extent of generalization
that is needed. You should not generalize too much, since that can have a counter-
productive effect. In particular, such architecture principles may have implications
that were not foreseen and undermine the credibility of the architecture. This is why
the domain knowledge of the architect is important. This knowledge is essential to
determine the right amount of generalization such that the architecture principle is
realistic and achievable. What is achievable in a certain context, may not be achiev-
able in another context. Note that validation with subject matter experts is advised,
given that they are the real domain experts. Let’s illustrate generalization with an
example. Imagine one has a requirement that states the application should run on a
virtualized server. Generalizing this requirement we ask ourselves how general this
requirement should be:

• Does it apply to all applications?
• Does it apply to environments (development, test, production)?
• For which types of servers does it apply?

Based on the answers to these questions it now becomes possible to formulate the
right architecture principle, which could be: all application servers in the portal
domain are virtualized.

5.2.2.4 Example: determining architecture principles for EnsureIt

The consultants have proposed a workshop based approach to the development of ar-
chitecture principles, since they consider it to be an effective and efficient approach.

96 5 A practical approach

The focus is on finding a limited number of architecture principles that will form the
basis for the enterprise architecture of EnsureIt (the guiding architecture principles).
Involvement of all important stakeholders from the various divisions is important to
build commitment throughout the company. Involvement of operational staff and
IT specialists is less appropriate at this stage. They will be involved when the IT
reference architecture is developed.

A workshop is organized with 10 participants, and a brainstorm technique is used
to translate the strategic goals to candidate architecture principles. This results in the
following list of statements for the first strategic goal that is centered on becoming
the provider of the cheapest insurances.

• Customer-facing instead of agent-facing.
• The customer themselves should do as much as possible.
• Make generic what can be generic and specific what can be specific.
• Let customers define their own policy packages.
• Product decomposition and reuse.
• Reduce complexity.
• Standard packages.
• It is initially more important to be the cheapest than to cover the costs.
• To be where you want to be within three clicks.

The discussion that follows leads to a further reduction of the statements. Par-
ticipants argued that the first and second statement express the same, and can be
combined. The third statement is said to apply to processes as well as applications,
and should be split into two different statements. It is argued that if there is one
generic application then this would also lead to a flexible product configuration as
expressed in the next two statements. Also, it would strongly reduce complexity in
the application landscape. As a result, these statements could be combined into one
architecture principle. The statement concerning being the cheapest is being dis-
carded, since it seems hard to make this statement tangible. The last statement is
also discarded since is does contribute enough to the goal.

Outside the workshop the consultants make a list of potential solution directions
based on their own domain knowledge. They come up with the following list:

• Process standardization leads to lower costs.
• Automation of processes leads to lower costs.

The result of the brainstorm is combined with this domain knowledge, and all
statements are transformed into architecture principle statements that match the or-
ganizational context. This results in the following list of architecture principle state-
ments:

• Systems are designed to be customer-facing.
• High-volume business processes are standardized and automated.
• All insurances are administered in one generic application.
• Standard packages are preferred over custom developed systems.

5.2 Generic process 97

The consultants also construct a diagram that shows the relationship between
the strategic goals and the architecture principles (see Figure 5.2 (page 97)). This
diagram provides a good overview of the traceability between them.

Standard	
 packages	

are	
 preferred

All	
 services	
 are	

available	
 through	

the	
 Internet	
 channel

Insurance	

applica8ons	
 are	

accepted	
 as	
 early	
 as	

possible

Student	
 demands	

are	
 leading	
 in	

product	
 defini8ons

Systems	
 are	

designed	
 to	
 be	

customer-­‐facing

Standardized	
 and	

automated	
 business	

processes

All	
 insurances	
 in	
 one	

generic	
 applica8on

Provider	
 of	
 cheapest	

insurances

Become	
 the	
 Internet	

Insurance	
 Company

Increase	
 number	
 of	

students	
 as	
 clients	

by	
 20%

Fig. 5.2 Relationship between strategic goals and architecture principles

5.2.3 Specify principles

After the architecture principles have been determined they need to be specified
in more detail. Further detailing of the architecture principle is a prerequisite for
actually using it to restrict design freedom, and converts the architecture principle
from a credo to a norm. This means that all relevant attributes that have been chosen
need to be described. Section 4.3 has provided a basic structure, as well as a list

98 5 A practical approach

of other potential attributes that can be specified. In this Chapter we shall restrict
ourselves to some guidance on the process around specifying architecture principles.

Note that actually using architecture principles to restrict design freedom may not
be needed in all situations. The determination of architecture principles also builds
common understanding and commitment for certain issues, which may be sufficient
in certain situations. This also depends on the architecture maturity and culture of
the organization (see Chapter 7).

Typically architecture principles are specified in an iterative manner. In the previ-
ous subprocess the statement has been defined. This is the most essential part of the
architecture principle, and in some situations it may even be sufficient. Especially
in architecture visions the full specification may not be needed, and the architecture
principles can remain credos. When the statement is constructed in a collaborative
process, chances are that it needs to be refined later on to ensure that it expresses
the exact intentions. It is at this moment in time that other attributes will also be
drafted by an architect, starting with the basic structure that contains the rationale
and implications. At this level the architecture principle can still be defined on a
slide, that contains the statement as the slide title and rationale and implications as
columns. This is very useful since it allows validation of the basic structure in a
group by presenting and discussing it in a workshop. A number of workshop rounds
with different stakeholders may be necessary to refine the specification. The impli-
cations, and even the motivation, may be left blank in the workshop session. This
will stimulate the creativity of the workshop participants, and increase commitment
in the result. Other attributes can be added later. An off-line review (as described in
the validate and accept subprocess) is typically sufficient to validate these additional
attributes.

As part of the specification process, architecture principles may be prioritized.
This is especially relevant in determining the guiding architecture principles (also
called: key architecture principles). These are the most fundamental ones. Those
that truly make a difference, are the hardest to change and are closest to the drivers.
Determining the guiding architecture principles is important since top-level archi-
tectures should only contain a limited number of architecture principles. A rule of
thumb is to have no more than 10 guiding architecture principles. More than that
decreases the accessibility of the architecture, and obfuscates the importance of the
most important architecture principles. Other architecture principles can be docu-
mented in downstream architectures (segment architectures, reference architectures
and solution architectures). One could also use the priority of architecture principles
to handle conflicts between them, but this should be done with care. In general, it is
very hard to come with an objective prioritization. Also, a specific context may pro-
vide a totally different perspective on the priority. Principles are good for stimulating
discussion, but are not mathematical in nature. There is no formula for combining
architecture principles and handling their conflicts.

The architect may also use the quality criteria as described in Section 4.5 in this
process, in order to increase the quality of the architecture principles. It also prevents
getting nasty questions later on in the process. Also remember, one may not get a

5.2 Generic process 99

second chance with certain stakeholders if one first confronts them with something
that does not match their context or expectations.

5.2.3.1 Example: specifying architecture principles for EnsureIt

A follow-up workshop is organized to specify the architecture principles in more de-
tail. The consultants have prepared this workshop by defining presentation slides for
all candidate architecture principles, with an initial specification based on what they
understand of EnsureIt. Each slide is divided into a title for the statement, a column
of the rationale and a column for the implications and actions. Detailed discussions
are held for each of the architecture principles, with the presentation slides being
projected for all participants to see. One of the consultants is leading the discus-
sion, while another one is interactively molding everything said into something that
all participants agree to. At the end of the discussion the first architecture principle
looks like:

Systems are designed to be customer-facing

Rationale

• It is cheaper and less error-prone to
let customers enter their own infor-
mation into the system.

• Contributes to the strategic goal to
become the provider of the cheapest
insurances.

• Contributes to the goal of becoming
‘the Internet insurance company’.

Implications

• Systems have a web-based front-end
that is available to customers.

• Customers enter all information di-
rectly into the web-site.

• Less customer-facing employees are
necessary.

• Processes allow for self-service ac-
tivities by customers.

Actions

• Processes should be redesigned.
• The web-site needs to be upgraded to

allow data entry by customers.
• Existing systems need to be web-

enabled.

5.2.4 Classify principles

After the architecture principles have been specified it is useful to classify them
along (a subset of) the dimensions that were described in the previous Chapter to
ease their accessibility and maintainability. The dimensions proposed are: type of

100 5 A practical approach

information, scope, genericity, detail level, stakeholder, transformation, quality at-
tribute, meta level and representation. Especially consider classifying them in the
dimensions of the architecture framework that the organization has selected. The
importance of classification depends on the number of architecture principles, their
breadth of application and the ambition level for handling architecture principles. At
a low ambition level there are probably only a limited number of architecture princi-
ples, and adherence to them is not formalized. At a high ambition level there could
be hundreds of architecture principles, scattered around a large number documents,
owned by different stakeholders and governed by a formalized process. This is when
classification of architecture principles becomes important. It increases their acces-
sibility, by providing an inherent navigation structure in them. You can find them
based on their classification. Ideally, they are stored inside an architecture reposi-
tory where they can be traced to other artifacts and included in queries and impact
analyses. A diagram that contains the classification (typically a diagrammatic repre-
sentation of the architecture framework) can be shown as an entry point for people
that want to query the repository.

5.2.4.1 Example: classifying architecture principles for EnsureIt

The architecture principles in the enterprise architecture are classified by the consul-
tants into the architecture domain that they primarily act upon. Since EnsureIt has
chosen to use TOGAF, this means deciding whether their primary impact is on the
business, application, data or technology domain. The architecture principle systems
are designed to be customer-facing is classified into the application architecture do-
main. The result of this is that it ends up in the application Chapter in the enterprise
architecture, along with application models and standards.

5.2.5 Validate and accept principles

Architecture principles are important since they provide the means to govern changes
in the organization. A large part of the organization should be able to understand
them, commit to them and act accordingly to them. Given their importance, it is
clear that they need to have a high quality. This means that validation as well as
formal acceptance of architecture principles is essential. Although described as a
separate subprocess, all previous subprocesses should also include some form of
validation. This builds commitment for them with the stakeholders, and prevents re-
jection in the validation subprocess. However, describing it as a separate subprocess
stresses that it is also a formal subprocess that provides a quality gateway.

This subprocess should include an architecture review process. Depending on the
context, this can be a highly formalized process performed by specific personnel, or
it can be a review process that is organized by the original author of the architecture
principles. The result of the review process should be discussed, agreed upon and

5.2 Generic process 101

signed off in an architecture board with management representatives of all major
departments. This ensures that the architecture principles have a formal status, and
that management will support them in any discussions and potential escalations.

An important part of the review process are the quality criteria that can be used
to determine the quality of the architecture principles. Section 4.5 has provided a
standard list of quality criteria that can be used for this purpose. The quality criteria
proposed there are: specific, measurable, achievable, relevant and time framed. For
sets of architecture principles the quality criteria are: representative, accessible and
consistent. The review process as well as the criteria should however be customized
and refined to the organizational context. The same holds for the architecture com-
pliance review process that is mentioned later in this Chapter.

The validate and accept subprocess is very similar to the ‘quality gateway’ for
requirements as described by Robertson and Robertson (1999). It is the formal point
of entry into the specification. When architecture principles arrive at the validate and
accept subprocess, they should be complete enough to undergo the tests to determine
whether they should be accepted into the specification or excluded. Architecture
principles that are excluded are returned to their source for clarification, revision or
discarding.

5.2.5.1 Example: validating principles for EnsureIt

The architecture principes that were defined by the consultants are included in an
initial architectural description. The document is sent to senior management in order
to be reviewed. Although there is no formal review process, members of the man-
agement board agree that architecture principles should be relevant, realistic and
acceptable. They discuss the architecture principles proposed and agree on most
of them. They do have a problem with the architecture principle All insurances
are administered in one generic application for two reasons. The first is that they
find it unrealistic to administer property and casualty, as well as life insurances in
one application given the differences in their product model as well as supporting
processes. Also, they find the principle unacceptable because it is politically unac-
ceptable to dismiss one of their core systems given the amount of effort that has
been put into them. Also, there are opposing camps within the management team,
with one camp totally committed to one application and the other strongly defend-
ing the other. Clearly, the organization is not yet ready for such a consolidation of
applications.

5.2.6 Apply principles

Since the proof of the pudding is in the eating, it is strange that very little has been
documented about the actual application of architecture principles. How do archi-
tects and designers actually use the architecture principles to base their own artifacts

102 5 A practical approach

upon? Depending on the architecture review process is probably too late since a lot
of decisions will already have been made at that moment. Also, turning back deci-
sions that have already been made requires a lot of energy that can better be spent in
a constructive way. This Section therefore provides some ideas on how to actually
use architecture principles in a constructive way.

Using architecture principles requires a good understanding on the artifacts that
are impacted by them. Without trying to be complete, a number of artifacts impacted
by architecture principles are:

Architectures – the architecture itself, as well as any downstream architectures
(segment architectures, reference architectures, project start architectures or so-
lution architectures). They need to translate the architecture principles to more
detailed architecture principles and instructions, as well as to models of various
aspect areas.

Solution requirements – these requirements are specific to a solution, but they may
be impacted by the architecture principles. In particular, they need to be validated
for compliance with the architecture principles. Also, new solution requirements
may be derived from the architecture principles.

Solution designs – these are functional and technical designs of a solution, contain-
ing all sorts of models, detailed design principles, design instructions and design
decisions. All these need to be validated against the architecture principles. Also,
they may partly be generated from the architecture principles.

In practice, the usage of architecture principles suggested above is entirely a
manual process, depending on the knowledge and experience of professionals. We
do however also see a number of generic activities such as validation and transfor-
mation. We particularly want to shed some light on the transformation. In addition,
we would like to highlight the importance of architectural knowledge management.
We believe that knowledge management is a critical success factor in the application
of architecture principles.

5.2.6.1 Transformation

We distinguish two types of transformation. The first transformation is derivation,
where more specific directives are identified that realize an architecture principle,
comparable to what is described in subsubsection 5.2.2.1. This requires a transfor-
mation of the architecture principle to statements that are relevant in a more specific
context. Actually, it can be seen as an approach to identify more specific implica-
tions of the architecture principle and instructions that follow from it. The impli-
cations that are part of the generic architecture principle (and that were potentially
described in a cause-and-effect diagram) provide a good starting point. A brain-
storming technique may also help here; just brainstorm the directives that realize this
architecture principle in the specific context. In a solution architecture, this insight
leads to an approach in which architecture principles from upstream architectures
are transformed to requirements for the specific solution. Explicitly documenting

5.2 Generic process 103

this transformation in the solution architecture is advised, since this enables trace-
ability from the architecture principles to the solution. For example, a table can be
included in a solution architecture where all applicable architecture principle state-
ments are shown in one column, and the derived requirements are shown in the next
column. Such information can also be used in a compliance review; it can easily be
determined whether and how architecture principles are adhered to. Enterprise ar-
chitects may have performed this transformation before a project starts, and provide
it as an input to the project.

Another form of transformation is from architecture principles to models (de-
sign instructions) and their diagrammatic representations. This transformation ap-
plies to models at various levels, such as enterprise architecture models, solution
architecture models and design models. The value of architecture principles in this
transformation is that they can become the rationale behind a number of elements
in the model, thereby increasing its quality and value. In the most basic form this
may be a model that is a direct consequence of the application of the architecture
principle itself, which may only be possible for a limited number of architecture
principles. In particular, the architecture principle needs to have a direct impact
on the identification of specific design elements or relationships between elements.
This especially holds for architecture principles that focus on the need to distinguish
between several elements or types of elements. An example in the business domain
is the distinction between front-office and back-office process areas. An example
in the software domain is the distinction between presentation logic, process logic,
business logic and data. These architecture principles can easily be modeled and
visualized in diagrams with the elements identified. Downstream models such as
design models must then respect the distinction between the elements. This means
that they may describe more detailed elements or specific instances of the element
types, but they cannot combine elements or element types. The distinction can only
be strictly enforced for elements of the same type as identified in the architecture
principle. In terms of the separation between front-office and back-office, specific
business processes must reside within one of these process areas. This does not nec-
essarily mean that no applications can exist that support both the front-office as well
as the back-office, although the architecture principle does provide us with a clue
that this may not be optimal.

5.2.6.2 Example: transforming an architecture principle for EnsureIt

The consultants are in the process of writing the enterprise architecture report, and
they are deciding on the target information systems architecture. They review all
the information they have gathered and the architecture principles they have de-
fined. At this point in time, the architecture principle systems are designed to be
customer-facing is an interesting one since it seems to distinguish between applica-
tion components that are customer-facing and those that are employee-facing. This
is very much in line with the distinction between front-office and back-office pro-
cesses, that they already defined in the business architecture. They decide to draw

104 5 A practical approach

the diagram as depicted in Figure 5.3 that provides designers with more specific
guidance (design instructions) on how to design the new information systems.

Customer interaction

Self-service

Customer

Portal

Front-office

Employee interaction

Business rules

Business data

Back-office
employee

Back-office system

Back-office

Business data

New or
updated data

Fig. 5.3 Visualization of the application of an architecture principle

5.2.6.3 Architectural knowledge management

We believe that knowledge is a critical success factor in the successful application
of architecture principles (also see the work by Farenhorst and De Boer (2009)). On
one hand, knowledge of the architecture principles is needed in order to be able to
apply them, and translate them to artifacts downstream. On the other hand, domain
knowledge is needed in order to identify and/or validate architecture principles. This
may seem obvious, but in practice both forms of knowledge are often insufficiently
addressed in the implementation of the architecture. Either not enough effort is
spend on the dissemination of the architecture, or the domain knowledge and ex-
perience of professionals impacted by the architecture is insufficient. The latter is
often the case since professionals are normally completely focused on running the
current situation, and do not spend a lot of time in new developments and innova-
tion. Also, people have the tendency to expect that the architecture provides answers
to all questions. We want to provide some guidance on how to address these issues.
Specific measures we would like to highlight are:

Vision – a vision of what (architectural) knowledge management is in the context
of a specific organization is essential. This ensures that everyone understands
what knowledge is and why it is important to reuse it. The vision should be
accompanied by activities, responsibilities, processes and systems that translate
the vision to concrete measures.

5.2 Generic process 105

Communication – communication is key in architecture. It starts with a good stake-
holder management approach in which the relevant stakeholders are identified,
and the way they should be involved and informed in the process. Consider or-
ganizing some form of road show in which a broad audience can be reached, and
provide them with the minimum level of awareness that is needed.

Education – an architecture is not a substitute for education in a specific domain, so
ensure that professionals attend the proper training. Specifically try to imagine
what the new way of working suggested by the architecture principles requires
from people in terms of knowledge and competencies. Education is also a good
way to disseminate knowledge of the architecture principles themselves. Con-
sider developing a course of a few hours that can be given to everyone interested.

Codification – the relevant knowledge needs to be harvested, stored and made ac-
cessible to all relevant stakeholders. Knowledge management systems can help
here, but exist in many different forms. With respect to architecture principles,
it would help to have some architecture repository that is able to store them in
structured form, allows finding them based on their classification and also allows
users to provide feedback on their actual application. We have positive experi-
ences with Semantic Wiki technology in constructing architecture repositories
with such characteristics.

5.2.7 Manage compliance

Although the intention is that people adhere to the architecture principles, a process
needs to be in place to manage compliance to them. What makes this even more im-
portant is the fact that, there can always be good reasons to deviate from architecture
principles since not all situations and consequences can be taken into account during
their specification. It can even be valid to adjust the architecture principles based on
insight originating from specific situations. This Section describes how to govern
architecture principles. It focuses on architecture compliance assessments, although
other compliance management mechanisms such as unsolicited advice may also be
used.

Architecture compliance assessments provide management with insight on the
actual implementation of the architecture. It provides them with an instrument to
highlight potential problems, and the opportunity to act upon it before it is too late.
It also provides the architects with the much needed insights on the actual impact of
their architecture. An effective architecture compliance process is executed at vari-
ous moments in the life-cycle of projects, starting from the moment when an initial
project definition becomes available, and ending upon project completion to ensure
project insights are harvested. Also, an architecture compliance process needs an
overall architectural governance framework in order to be effective. Amongst oth-
ers, this implies a clear architectural organization such as an architecture board, and
clear roles and responsibilities.

106 5 A practical approach

Architecture principles are the primary enablers for an effective architecture gov-
ernance. They express what is really important, what the consequences for the or-
ganization are and how we can assure their implementation. You can see them as
self-contained pieces of architecture governance that come with their own descrip-
tion on how they should be governed. In that sense they are much easier to govern
than architecture models. It is up to the reader of an architecture model to inter-
pret how to ensure compliance with it. By simply looking at an architecture model,
one cannot see which part of the model is important, why it is so important, what
happens when not adhering to the model and how that model propagates to de-
sign models. These characteristics make architecture principles an ideal architec-
tural governance instrument. We describe some best-practices that can be used to
define an organization-specific architecture compliance process.

Architecture compliance reviews should be approached structurally. Depending
on the number of architecture principles this may first require a selection of those
that are relevant to the scope of the artifact that is to be reviewed. This filters out
all irrelevant architecture principles. The resulting list then provides a structured
approach to the compliance review; one simply goes through all architecture princi-
ples and for all of them the compliancy of the artifact is determined. The assurance
attribute, when available, should help in that compliance check. Also, it is advised to
translate architecture principles to solution requirements, and solution requirements
into design decisions since that makes it much easier to perform an architecture com-
pliance review. Also, explicitly documenting that translation for traceability reasons
is strongly advised. Every architecture principle can be scored on a scale, that could
look like:

1. Non conformant – some part of the specification of the artifact is not in accor-
dance with the architecture principle.

2. Potentially compliant – there is not enough specified in the artifact in order to
determine whether it is in accordance with the architecture principle.

3. Compliant – everything specified in the artifact is in accordance with the archi-
tecture principle, but some relevant implications of the architecture principle are
missing in the artifact.

4. Potentially conformant – everything specified in the artifact is in accordance
with the architecture principle, but there is not enough specified in order to de-
termine that all relevant implications of the architecture principle are embedded
in the artifact.

5. Fully conformant – everything specified in the artifact is in accordance with the
architecture principle, and all relevant implications of the architecture principle
are embedded in the artifact.

Aitken (2010) proposes to rate designs as ‘Completely Implemented’, ‘Partially
Implemented’, or ‘Not Evident’ for each principle. Every score should be attributed
with a motivation, so it is clear how the scoring was determined. The scoring of
artifacts should ideally be performed by multiple reviewers to increase the objec-
tivity. The end score is then the average score of all reviewers, and the motivations
can be combined. Discrepancies between scores of reviewers can require investi-

5.2 Generic process 107

gation based upon the motivations given. The scoring and motivation should then
be described in a standard review form that can then be discussed with the person
responsible for the artifact. Based upon this discussions, multiple situations may
arise:

1. There is no change needed to the artifact or the architecture principles.
2. A deviation from the architecture principles is agreed upon. This deviation is

explicitly documented as a dispensation, potentially supplemented with a future
end-date for this dispensation. There is no change needed to the artifact or the
architecture principles.

3. Changes need to be made to the artifact, after which the artifact can again be
reviewed for compliance.

4. There are no changes needed to the artifact, but the review has led to new insights
that require changes to one or more architecture principles. This requires the
formulation of an architecture change request that is handled in the principle
change management subprocess.

5. The artifact is not fully conformant and the person responsible for the artifact
and the reviewer(s) do not agree upon how this should be handled. The review
form is updated with the status and escalated to a higher level in the organization,
typically the architecture board.

Although some of the activities in the previous description may seem like over-
head, the intention is to make the decision process transparent and traceable. It very
much depends on the maturity and ambition level of the organization to which ex-
tend the process is formalized. Small organizations can suffice with a lightweight
process. Larger organizations probably need a more formalized process. For ex-
ample, the ABN-AMRO bank is well-known for its formalized compliance review
process. They have used so called ‘building permits’ as official quality gateways in
their process (Zijlstra et al, 2009). These permits are comparanble to permits in the
real world, and are a pre-requisite for projects to start.

5.2.7.1 Example: reviewing principles for EnsureIt

The architecture principles are now used in practice within EnsureIt. Management
has also decided to appoint an enterprise architect in the organization that is re-
sponsible for the management and implementation governance of the architecture
principles. A new project starts that aims to allow customers to change their per-
sonal data, such as their address, directly on the web-site of EnsureIt. The project
proposes to extend the customer relationship management system with additional
self-service functionality. The project proposal is assessed by the enterprise archi-
tect. Although the project goal itself is fully in line with the architecture principles
(providing self-service functionality to customers), the architect is not satisfied with
the proposal to extend the current system with self-service functionality. It appears
to be potentially compliant to the architecture principle standard packages are pre-
ferred over custom developed systems since no information has been provided by

108 5 A practical approach

the project on whether commercial off-the-shelf packages have been considered for
this functionality. This is a trigger for the enterprise architect to start a discussion
with the project manager on this issue. It turns out that the project has performed
a scan of standard packages, but that no applicable package has been found. Based
on the discussion, the project proposal is extended to show that a scan of standard
packages has been performed, after which the proposal is approved.

5.2.8 Handle changes

Although architecture principles should be stable, new insights and developments
may surface that have impact on them. These insights typically come from archi-
tecture compliance reviews, but can also come from various other processes and
sources. In general, architects are responsible for continuously monitoring all po-
tential drivers as mentioned in Subsection 5.2.1. From that responsibility they are
an important source for potential changes, but not the only source. A change man-
agement process is needed to guide the organization in handling all these drivers
for change. The most important part of such a process is a classification scheme of
types of changes, that provides guidance on the appropriate steps to take. In particu-
lar, smaller changes can be handled by simply ‘patching’ the architecture principles,
whilst bigger changes may require a new architecture development iteration. Also,
there should be a standard periodic architecture refreshment cycle in which changes
can be incorporated. TOGAF proposes to classify required architectural changes
into one of three categories:

Simplification change – A simplification change can normally be handled via ch-
ange management techniques.

Incremental change – An incremental change may be capable of being handled via
change management techniques, or it may require partial re-architecting, depend-
ing on the nature of the change.

Re-architecting change – A re-architecting change requires putting the whole ar-
chitecture through the architecture development cycle again.

The question is whether architecture principles lead to a different approach in
architecture change management. The main difference we see is that architecture
principles are largely self-contained and that this provides an opportunity for small-
scale release management. In particular, architecture principles could be published
and updated independently of each other. This does require a well thought-through
release strategy with specific attention to the publication mechanism and the way
people are informed of recent changes. Ideally, there is a central architecture repos-
itory that is available to all employees through an Intranet, where they can see the
architecture principles and changes to them. This is also an opportunity to imple-
ment a feedback mechanism where people can comment on architecture principles,
request changes or discuss with peers on specific experiences.

5.3 Key messages 109

5.2.8.1 Example: handling changes for EnsureIt

The architecture principles have been in use for two years now. They have turned out
to be a very usefull instrument for EnsureIt to align projects with the strategic goals.
No substantial flaws have been found in them, although some minor revisions were
made to their specification to reflect some discussions that they initiated. For exam-
ple, one of the implications for the architecture principle Systems are designed to be
customer-facing was that customers enter all information directly into the web-site.
It has turned out that certain situations require an explicit written signature from the
customer, which can not be handled as a self-service functionality on the web-site.
The architecture principle was therefore extended with an additional implication to
reflect this situation.

Recently, management has announced a take-over of another insurance company
which is specialized in health insurance. The enterprise architect has told manage-
ment that this is a re-architecting change to the architecture principles, since the
strategy of the new insurance company is very different from their own. Also, he
feels that it would be good to go through a new architecture development cycle in
order to involve management and others of the other organization in the architecture
process and gain their commitment on it.

5.3 Key messages

• Architecture principle development is an iterative and collaborative process.
• There are eight processes related to architecture principle development, starting

with the determination of drivers, and ending with the handling of changes.
• Architecture principles should be linked explicitly to their drivers, which should

at least include goals and issues.
• Architecture principles can be determined directly from the drivers, by asking

questions specific to the type of driver.
• Architecture principles can be classified into various dimensions to increase their

accessibility and maintainability.
• Validation and formal acceptance of architecture principles is important for the

organization, in order to commit to them.
• Translating architecture principles to downstream artifacts such as requirements

and diagrams, helps others in the actual application of architecture principles.
• A compliance review process is also required, in order to govern compliance to

architecture principles.

Chapter 6
Case studies

Abstract This Chapter provides a number of real-world cases where architecture
principles have been developed and applied in user organizations in the Nether-
lands. The participating organizations are: TKP Pensioen (a general pension ad-
ministrator), ICTU (part of the Dutch Ministry of the Interior and Kingdom Re-
lations), CVZ (the Dutch healthcare insurance board), Enexis (an energy distribu-
tion company) and Schiphol (an international airport). The cases show the current
state-of-practice in architecture principle development. In particular, they show that
architecture principle development is still a young discipline, that there is a large
diversity in approaches and specifications, and that organizations are still looking
for improvement.

6.1 Introduction

The cases that are presented in this Chapter have been contributed by employees of
the user organizations themselves, and edited by the authors. The cases are presented
as-is; we have not tried to map them onto the conceptual framework or process that
is described in this book. As a result, the terminology and architecture content may
deviate from the rest of the book. We believe that this provides the most realistic
view on the actual usage of architecture principles. Given the diversity in the con-
tributing organizations we feel that we can provide a representative view on how
architecture principles are developed and applied in practice. The participating or-
ganizations are: TKP Pensioen (a general pension administrator), ICTU (part of the
Dutch Ministry of the Interior and Kingdom Relations), CVZ (the Dutch health-
care insurance board), Enexis (an energy distribution company) and Schiphol (an
international airport).

All cases are described in a similar structure. The organizational context is pro-
vided, including a positioning of the architecture function in the organization. Con-
sequently, a detailed description is provided of a number of architecture principles
as defined within the user organizations. This provides a look into the actual ar-

111

112 6 Case studies

chitectures of these user organizations. Every case ends with a description of the
approach taken and some insights that were developed. We would like to thank the
contributors of the various cases, and also explicitly mention them in the various
sections.

6.2 ICTU

This case is contributed by Peter Bergman and Erik Saaman of ICTU.

6.2.1 Introduction

There are around 1600 different public organizations that provide services to the
Dutch society. Their approach has not always been the most efficient or customer
friendly. But since the start of the new millennium, the Dutch government increas-
ingly understands the increasing demands of citizens and companies for reliable,
efficient and customer centric service provisioning. In response to this, it published
a general policy that aims to transform the government into a services oriented enter-
prise. This policy demands a maximum transparency of public services, the provi-
sioning of services via electronic channels such as the Internet, a major containment
of useless regulations and reduction of administrative costs for trade and industry.
It had an enormous impact on the Dutch public organizations, and will have a huge
impact in the years to come. It requires them to strengthen their collaboration with
other organizations, share their information and increasingly work in logical pro-
duction chains. This should increase the efficiency with which they provide services
to citizens and organizations.

In order to facilitate this transformation, the Dutch Ministry of the Interior and
Kingdom Relations decided to establish a (temporary) organization that is respon-
sible for the development of generic services that public organizations can use to
improve their service provisioning. This organization, called ICTU, was founded
in 2001 and has since then been involved in the development of several of these
services. One of these services is DigiD (digital identity), which allows citizens and
organizations to authenticate themselves for public services via the Internet. Another
service provided by ICTU is a general authorization service that enables people to
empower someone else for engaging the government on behalf of him or her. This
service is currently implemented for the declaration of income taxes.

Aside from being a provider of generic services, ICTU is also involved in the
development of a reference architecture. This reference architecture, which is called
NORA, aims to guide the architectural design of the business, information systems
and technology of Dutch government organizations. NORA is a collection of mod-
els, descriptions and principles that are all defined in the form of substantive articles
and that are classified by the model depicted in Figure 6.1.

6.2 ICTU 113

Fig. 6.1 NORA classification framework

NORA prescribes how the Dutch government is equipped and organized for op-
timal provisioning of services to society. Due to the subsidiarity principle1, NORA
focuses on the interoperability of public organizations with their environment. They
can define their own architecture that guides their internal organization, as long as
their interactions with other organizations adhere to the NORA principles.

6.2.2 Architecture principles

NORA consists of 10 strategic principles and about 130 detailed principles, that
are derived from the strategic principles. The strategic principles are derived from
the Dutch government policy mentioned earlier, as well from European and world-
wide standards for electronic government, interoperability and service provisioning.
The target audience for the strategic principles are the governors of government

1 The principle of subsidiarity is defined in Article 5 of the Treaty establishing the European
Community. It is intended to ensure that decisions are taken as closely as possible to the citizen
and that constant checks are made as to whether action at Community level is justified in the light
of the possibilities available at national, regional or local level.

114 6 Case studies

organizations. They should use these principles to guide their organizations toward
the highest rank of service providers.

The detailed principles are meant as guidelines for enterprise and information ar-
chitects. They should use these guidelines for the architectural design of their busi-
ness and IT. It is expected that when most of the public organizations comply with
the NORA principles, the Dutch government will be very efficient and interoperable
and will provide high quality services to society.

An interesting strategic principle is the principle of accessibility (see Table 6.1),
which states that customers of the government must have easy access to public ser-
vices. Given that it can be inefficient to maintain multiple communication channels,
NORA contains the derived principle: Public service providers stimulate the use of
the communication channel with the best ratio of costs against quality. This prin-
ciple allows the service provider to stimulate the communication channel that is
the most effective and the least expensive. One way of achieving this would be to
charge lower legal dues for Internet-based services. This enables the provider to
influence the costs of the service, without differentiating channels in terms of the
quality provided. The latter is also described in the form of a derived principle that
states: Public services always end in the same results for the client, regardless of
the choice and use of communication channels. These principles increase customer
satisfaction, but also lead to improvements within the service providers. They show
that architecture principles can be beneficial to both the provider as well as the con-
sumer of services.

6.2.3 Approach

Given that the scope of NORA is the complete Dutch government, the development
process is relatively complex. The whole community of government administrators
and employees, especially the architectural designers, should be involved. Obvi-
ously that is not possible, so the development should involve representatives from
the Dutch government.

The first two major releases of NORA were developed by a dedicated team of
professional information architects. During the development of NORA, the team
members frequently consulted their colleagues within the government organizations
for feedback on the models and principles. This provided them with the support of
certain groups of architects within the Dutch government. These groups were also
responsible for the dissemination of the NORA vision within the various organiza-
tions. This has allowed NORA to spread throughout the whole Dutch government
and become a familiar brand.

The second release of NORA has not been updated for two years, with the third
release still in development. A separate document with strategic principles has been
split off and has been published recently. It contains 10 strategic principles, and is
the result of the efforts of an expert group. This group defined the strategic princi-
ples, based on the former basic principles of the previous NORA release and state

6.2 ICTU 115

Accessibility

Customers of the government must have easy access to public services:
Service providers adjust their accessibility to the preferences of their customers.
This relates to the selection of the communication channel, the moment of com-
munication, and the user-friendliness of the communication method. Internet is the
preferred channel for communications, because it enables individuals (via websites,
e-mail, etc.) and systems (via electronic messages) to connect any time of the day.
However, there will always be customers that cannot or do not want to use Internet,
due to some disability, lack of skills, or because they do not have an Internet
connection. Services should also be available to them.

Motivation:
An accessible service will be used more often and does not exclude any customers.

Explanation:
The Online Administrative Business Act states that conventional, paper-based
communications may not be supplanted by electronic communications. One of the
principles upheld by the Act is that a citizen may decide in which form communica-
tions will be effected, and that it is not permitted to deal with certain matters solely
by electronic means unless all parties concerned have given their consent. In line
with that principle, the vision memo ’Better Public Sector Services’ establishes that
all channels should be open and available. Citizens and organizations decide for
themselves which communication channel they wish to use to contact government
organizations. Article 1 of the e-Citizen Charter (Choice of Channel) points out the
importance of the demand-driven use of communication channels.

Implications:
Organizations need to determine how their target group is composed and how
they actually use particular services (user research). Communication channels and
approaches can be selected based on the results of such research. This could lead to
the usage of multiple communication channels (e.g. Internet and telephony), and
multiple entry points (e.g. using different websites for different target groups). In
such cases, concessions may have to be made towards customers. A balance needs
to be found between their preferences and the efficiency of the various channels
and entry points, on the condition that no-one is excluded. The results of services
should be independent of the communication channels and entry points that are
used, even when they are intermixed. It should be irrelevant whether requests are
received by post, e-mail or telephone.

Table 6.1 The principle of accessibility

116 6 Case studies

of the art in government policy. They frequently consulted influential managers and
governors of public institutions as well as influential academics to attain the nec-
essary support. Before the final publication, a beta version was sent out for public
review. The updated and final version was presented to, and approved by the Parlia-
mentary State Secretary of the Interior and Kingdom Relations.

The improvement of the detailed principles of NORA is still in progress. The
detailed articles are sometimes considered too complex or vague, whilst others are
outdated. When this major update has been finalized, which will follow a similar
process to the development of the strategic principles, NORA release 3 can be pub-
lished in its entirety. From that moment, an issue-based process will be followed for
additional improvements. Issues can be submitted through a web site by practition-
ers within government organizations, but can also be derived from NORA compli-
ancy assessments. These assessments can be performed by ICTU, the organizations
themselves or by peers. Figure 6.2 visualizes the approach that will be followed.

Fig. 6.2 Issue based development

6.3 CVZ

This case is contributed by Anne Marie van Rooij and Ronald van den Berg of CVZ.

6.3 CVZ 117

6.3.1 Introduction

The Dutch healthcare insurance board (CVZ) coordinates the implementation and
funding of the national health care insurance acts. Its mission is to safeguard and de-
velop the public preconditions of the health care insurance system, to ensure that all
citizens can exercise their right to health care. The preconditions are the obligation
for insurers to accept all people, the obligation for all to take out insurance, and the
obligation for health care professionals to help everyone. Effectively, CVZ main-
tains the risk adjustment model for insurers, provides health care for specific groups
on the boundaries of the system, and advises on the composition of the health care
package.

For a better understanding of this case, it is important to note that CVZ is cur-
rently being transformed from an advisory into an executive agency. This is mainly
due to the increased number of special regulations for specific groups on the bound-
aries of the system. These are ‘on the boundaries’ because the obligations mentioned
above do not match perfectly. As a result, the number of clients will grow from 100
to more than 700,000 in 5 years time. Obviously this transformation will have its
effects on strategy, structure and daily operations. Basically, CVZ is faced with a
green-field challenge.

In 2007 CVZ introduced architecture to promote a strategy-based implementa-
tion of the new regulations for specific groups on the boundaries of the system.
Strategy-based meant a stronger focus on performance combined with customer inti-
macy. In this context CVZ benefited highly from the launch of NORA (see previous
Section), the reference architecture for the Dutch public sector. Focus on customers
and interoperability are key to this model. NORA is built on best practices in the
field. It provides a framework for plotting principles and visualizing domains and
their inter-relatedness.

The rapid transformation into an executive agency has forced the architects to
adopt a pragmatic approach to developing an architectural framework and setting
up a coherent set of leading principles. CVZ ‘simply’ adopted the NORA frame-
work to create a sense of direction. The idea being that this reference architecture
is highly relevant, based on best practices of similar organizations, and leaves room
to ultimately build our own models. But most importantly, on the level of strategy-
development, the NORA architecture principles supported our focus on ultimate
customers services and performance enhancement.

Not only the speed of innovation forced the architects to take a pragmatic
approach to the introduction of enterprise architecture. Another reason was the
lightweight character of the team: decentralized and staffed with existing positions.
In a way, this group reinvented itself by simply adopting a more ‘architectural atti-
tude’. This rather lightweight set-up forced the architects to think smart and initiate
high leverage activities. For starters, limited resources created room for strategic se-
lection of projects: we opted to participate in innovative high energy projects with
matching ambitions. Evidently, we focused on the future, and opportunistically re-
used existing tools.

118 6 Case studies

6.3.2 Architecture principles

Fortunately, the ongoing transformation brought along a cascade of projects with
a broad array of opportunities. The architects eventually participated in two: one
project building over 50 electronic interfaces to exchange data with sister organi-
zations; another project introducing a standard IT-application landscape for all new
and existing regulations. Through these projects, CVZ realized two important ar-
chitectural principles: processes are optimally supported by ICT and no duplicate
requests for information (also see Table 6.2 and Table 6.3). As a result of the first
principle CVZ opted for an standard application that was used to support all back-
office processes. The second principle lead to the bundling of all information ex-
changes with external partners to support the administrative processes for a wide
range of regulations. The green-field point of departure was beneficial for an archi-
tectural approach in the design phase.

Processes are optimally supported by ICT

Given that 65% of the services should be provided through Internet, and that
services should eventually become available 24 7, it is necessary to automate all
routine processes. This principle is also relevant for citizens and organizations that
require services since they expect status information on their requests to be available
through Internet. Maximal usage of ICT also makes it easier to get processes under
control (with business process management systems), and contributes to better
management information. It can also significantly lower execution costs for the
government, given that it is executed professionally.

Table 6.2 Processes are optimally supported by IT

As a spin-off of the participation of the architects in the above mentioned projects
two basic architectural models were defined: one for processes and one for IT (see
Figure 6.3). The architects deliberately designed rather simple models: they are pri-
marily used for communication within the organization. Detailed models are only
needed on an operational level and are incorporated in the project documentation.
The generic process model helped them speed up the design and implementation of
new regulations. The IT-landscape helped to reduce implementation costs and the
costs for support and maintenance. These models consistently reuse the symbols
that are used in the NORA-models.

6.3.3 Approach

NORA identifies over 160 architecture principles, far too many to provide direc-
tion and guidance. The architects therefore created a game to select a top-5 leading

6.3 CVZ 119

No duplicate requests for information

This principle concerns requesting information only once, and using it multi-
ple times afterwards. Only information that is missing will be acquired. Information
acquisition from citizens and organizations in the context of a specific event, is
limited to what is new in the event. Other information is already available in generic
governmental administrations or in the administration within the organization.
Citizens and organizations may be asked to validate the completeness and accuracy
of the information that is already available, and to confirm and supplement it. This
principle is also known as a ”reverse intake”. The consequence for information
owners is that the information that is stored should be highly actual and reliable,
since otherwise they will be overloaded with corrections and corrections on
corrections.

Table 6.3 No duplicate requests for information

1

Clients

and

public

business

government

Managing appeals
Managing

higher appeals

Managing

external contacts

Processing

incoming

documents

Setting up public policy informationSetting up management information

Managing questions

Maintaining key

data and informatie

Realizing external

communication

Determining

claims

Determining

liabilities

Preparing

final statements

Settling

complaints

Processing

outgoing

documents

Managing

treasury

Business objects

Administrating creditors
Administrating

debtors

OHI

Contracting business

partners

DM5+ Ultimus Globes

DMS + CRM CMS (Hippo)

Executing

payments

Trinicom

Fig. 6.3 Basic model: one application landscape and one set of generic processes

120 6 Case studies

principles that could enhance the organization profile as a customer-oriented exec-
utive agency. The whole organization was involved in the game. Not only the board
of directors, but employees from all departments selected their priorities. To mark
the importance, the president of the board sponsored this activity and presided over
several meetings. Despite the diverse backgrounds of the participants, there was re-
markable agreement on the essential elements of our serving identity.
The top-5 architecture principles that resulted from the game are:

• The customer is leading in strategy and structure.
• Clients can obtain status information on their case.
• CVZ systematically improves quality.
• CVZ offers 24/7 services.
• No duplicate requests for information.

The entire process of identifying and specifying these principles was completed
within a year. The architects maintain the enterprise architecture on the intranet. For
each domain the most important models and principles are presented in a simple
manner. One of the pitfalls for architects is to focus on designing complex detailed
models and on enforcement. The team consciously opted for a pro-active approach:
they either act as project manager for projects that contribute significantly to the
enterprise architecture, or they participate in an advisory role. As a spin-off they
update the architecture products, such as the architecture principles or models. In a
rather elegant way, the architecture is promoted, while at the same time creating an
architecture fit for life.

As a result of these efforts, the new organizational structure has formalized the
role of the architects. The position of architect is now part of our function book,
and formally a team of architects are positioned within the IT department. Looking
back, this case illustrates how a relatively small and young team of architects can
contribute to organizational innovation by opting for a high leverage strategy, con-
sisting of three elements: focus on innovation, create coalitions of the willing and
reuse existing tools.

6.4 Enexis

This case is contributed by Louis Dietvorst, Enterprise Architect at Enexis.

6.4.1 Introduction

Enexis is one of the large Energy Distribution Companies in the Netherlands. The
company operates gas and electricity networks in the northern, eastern and southern
parts of the Netherlands and ensures that energy produced by other parties arrives
timely and securely at the consumer. Enexis is responsible for about 2.5 million

6.4 Enexis 121

electrical and 1.8 million gas customers in domestic, industrial and government
domains, leading to an annual turnover of about 1.3 billion Euros. Enexis contin-
uously works towards an ever improving, smarter and more efficient network that
is prepared for the future. The core business of Enexis is asset management (asset
maintenance and asset operations of the electrical and gas networks). In addition,
non-regulated products and services are provided, such as energy advisory services,
industrial metering services and sustainable energy services. A recent example is
that of the Mobile Smart Grid concept, which supports the nationwide introduc-
tion of electrical vehicles and which is being positioned as an important catalyst for
energy preservation.

The Information Management department consists of departments Policy & In-
novation, Sourcing Management and Functional Management. The architecture
function is positioned in the Policy & Innovation department. The enterprise archi-
tect is responsible for developing and implementing strategy, policy and standards
in the IT-governance, Information architecture and Business Process Management
domains. The enterprise architect maintains strategic relations, internally as well as
externally.

The history of the architecture function goes back to about 2003. The need for ar-
chitecture and architecture governance was identified and a corporate initiative was
started to get things going. At that time, Enexis was one of the divisions of hold-
ing company Essent. The initial architecture governance started off with a federated
construct. Some Business Units did not have any architecture function at all, whilst
others were already far ahead. There was a need to harmonize the architecture func-
tion across all BU’s. After further development and integration of the architecture
function the first joint (cross-BU) effort on enterprise architecture principles was
initiated in 2006. It was well known that the company would undergo tremendous
changes in the coming years and therefore the need to structure that change using
architectural principles was clear. The first generation architecture principles was in
use until 2008. At that time, the Essent Grid division had already been transformed
into a Business Unit as part of preparing it for legislative unbundling. Formally be-
ing an Essent BU but internally positioned ‘At Arms Length’ the Grid BU started
to develop its own set of enterprise architecture principles. The reason for this was
clear: in 2009 Enexis was positioned to be fully independent of Essent and needed
its own IT governance. The re-calibrated set of architecture principles was mapped
to Business drivers of the Grid BU and then approved by the board.

6.4.2 Architecture principles

Table 6.4 shows a subset of the architecture principles that were defined by the ar-
chitects at Enexis. As can be seen from the figure, the architecture principles are
divided into competence domains (Business, Data, Application, Infrastructure) and
mapped to business goals (reliability, efficiency, et cetera). The competence domains
are commonly used by organizations and can be mapped onto most architectural

122 6 Case studies

frameworks. The classification is helpful in the communication with subject matter
experts, which can be found in each of these competence domains. The architec-
ture principles were mapped onto business goals to show that they are a means to
an end. The business goals themselves are derived from the business strategy. One
can see that an architecture principle such as BP7 (One enterprise service has one
implementation) is useful to target service redundancies and thus helps in achiev-
ing the corresponding business goal efficiency. The overarching strategy is derived
from the primary role of the company: that of a energy distribution company that
(by legislation) has to operate as efficient and reliable as possible, within boundaries
determined by the regulator. Two example principles are described in more detail in
Table 6.5 and Table 6.6.

Reliability
BP1 : Changes in the IT ar-
chitecture do not compro-
mize business continuity

BP2 : Compliant with legis-
lation

DP1 : Data registration and
validation at the source

DP2 : Data owner is explic-
itly known for each infor-
mation object

DP3 : Architecture is in line
with a single data model

AP1 : Non Functional re-
quirements are equally im-
portant as Functional re-
quirements

IP1 : The infrastructure ar-
chitecture is aiming to re-
duce the complexity

IP2 : The architecture is de-
signed modularly in order
to support both flexibility
and stability

Efficiency
BP6 : Business initiatives
are executed with ‘enter-
prise focus’ and according
to the Enterprise Architec-
ture

BP7 : An enterprise service
has only one implementa-
tion or instance

BP8 : Business require-
ments are leading at
changes or innovations

DP7 : Information is regis-
tered unambiguously in or-
der to optimally support
sharing of information

DP8 : Data is classified so
that a cost effective data
management strategy can
be realized

AP4: Information systems
are implemented cost effec-
tively

AP5: Information systems
are independent of the un-
derlying technology

AP6: Reuse before buy be-
fore build

AP7: Information systems
are ‘compliant’ with the 5-
layer model in order to re-
alize horizontal integration
and vertical interoperability

IP6 : the infrastructure is
aiming at standardization

IP7 : the infrastructure is
based on open and supplier
independent standards

IP8 : the infrastructure is
aiming at interoperability

Table 6.4 Overview of Enexis Enterprise Architecture principles

6.4.3 Approach

Enexis is currently recalibrating parts of its IT Policy, IT Governance and Enter-
prise Architecture. Previous initiatives for developing Enterprise Architecture prin-
ciples were predominantly IT-driven. By actively measuring compliance to the prin-
ciples, it was detected that the IT-driven development approach, although formally
approved and committed by the complete upper management layer, was not effective
in all cases. This lead to a change in the development approach. The new approach

6.4 Enexis 123

Id: BP6 - Enterprise focus

Group: Business

Strategy/goal: Supporting enterprise efficiency

Principle:
Business initiatives are executed with an ”enterprise focus” and must follow the
enterprise architecture

Rationale:
Business initiatives that are based on enterprise focus deliver more business value
in the long term. To achieve the maximum ROI, information management decisions
should therefore be based on enterprise drivers and priorities.

Implications:
It is no longer sufficient to focus business initiatives only on the technological part
of information technology.

Table 6.5 Enterprise focus

Id: AP4 - Cost effective implementation

Group: Application

Strategy/goal: Supporting enterprise efficiency

Principle:
Information systems will be implemented cost effectively

Rationale:
In order to implement information systems as efficient as possible, it is important to
govern their development and take reuse and standardization into account.

Implications:
A clearly articulated enterprise architecture consisting of principles, standards,
processes, building blocks and models is the starting point for developing cost
effective implementations.

Table 6.6 Cost effective implementation

124 6 Case studies

was to start in the top (the Board) and develop strategic principles that are truly
business-lead, facilitated by the Enterprise Architecture team. One of the follow-up
actions is to recalibrate the existing Enterprise Architecture principles and reduce
them to the absolute minimum (‘just enough’ principles). The EA principles will
be mapped to the new strategic principles so that they are consistent, have no re-
dundancy and can enforce each other. The Enterprise Architecture principles are
positioned directly below the strategic principles to separate pure business princi-
ples from principles that are competence (e.g. IT) specific.

In the view of Enexis, architecture principles should not be used solely to guide
architecture or design decisions. They should also invite people to sit together, start
a dialog and discuss the intention behind the principles. The principles were mod-
elled in an enterprise architecture tool, but only for documentation purposes. They
are used in a multitude of ways, most often in programme or project context. A typ-
ical project includes phases with varying architectural contexts. When guidance is
needed on long term developments, principles are used to test whether future tech-
nologies should be introduced or not. This happens in the pre-project phase where
the architecture function performs scouting and strategic advisory services. Once a
project is initiated, compliance to the principles is used to ‘guide’ the project. This
is a tactical role in the architecture function. In the early phases of a project, empha-
sis may be put on some specific principles, whilst in later phases the emphasis may
shift to other principles or on the total set.

A scorecard approach is used in the compliance review process, where compliance
to principles is scored on a scale from 1 to 5. The following levels are used:

• Level 1: far below expectations.
• Level 2: below expectations.
• Level 3: matching expectations.
• Level 4: above expectations.
• Level 5: far above expectations.

The scorecard approach provides a rough idea of areas where the project might
need some additional (architectural) support. Projects that have been identified up-
front as high impact or high risk usually get scored by more than one architect.
Not all architects score the same project completely identical. This shows that peo-
ple may interpret principles differently, maybe due to personal style or preferences.
When significant deviations occur, they are discussed with the relevant individuals.
This sometimes leads to an update of a certain principle and is part of the regular
architecture maintenance process.

6.5 TKP Pensioen

This case is contributed by Benny Prij of TKP Pensioen.

6.5 TKP Pensioen 125

6.5.1 Introduction

TKP Pensioen is a general pension administrator for a few dozen company pension
funds. The organization was separated from the Dutch postal and telecommunica-
tions company (KPN) when it was privatized in 1989. It remained their only cus-
tomer until 1998 when it was split into two separate companies for telecommunica-
tions and postal services (KPN Telecom and TPG Post). This led to the servicing of
two separate pension funds with their own pension schemes. In 2003 TKP Pensioen
was purchased by Aegon Netherlands, which was also the starting point for becom-
ing a general pension administrator for more and more company pension funds.
There are two types of pension funds in the Netherlands. The first is the company
pension fund that specifically settles the pension arrangements for one organization.
The second is the sectoral pension fund which settles the pension arrangements for
all organizations that are active in a specific sector. There are around 600 company
pension funds and about sixty sectoral pension funds registered in the Netherlands.

The division of KPN into two separate organizations was the primary driver for
the development of a new IT system that had to support the administration of mul-
tiple pension schemes. These capabilities were not available in the system that was
in use at that time. Another requirement for the new IT-system was the handling
of ongoing changes in pension arrangements. It was decided to base the new sys-
tem on a number of architecture principles to ensure efficient realization of these
requirements. There were also a number of problems in the existing system that re-
quired some fundamental new insights. In particular, a lot of logic in that system
was concerned with handling retrospective mutations.

The architecture principles were perceived essential in order to realize the organi-
zation goals. Over the years, the conviction has grown that realizing and maintaining
them are critical to the success of the organization. This implied repetitive explana-
tion and justification of them every time new changes needed to be incorporated into
the system.

More recently, TKP has decided to grow by expanding its scope to sectoral pen-
sion funds. This required the adaptation of a number of business processes such as
data collection and contributions collection and the systems supporting them. The
enterprise architecture and reference architecture were documented and updated to
support the redesign of these processes and systems. An important reason for the
explicit documentation of the architecture principles was the continuous need for
justification of the architecture principles, and the massive impact of the adminis-
tration of sectoral pension funds on the system.

6.5.2 Architecture principles

This paragraph describes two architecture principles in the enterprise architecture of
TKP in more detail (see Table 6.7 and Table 6.8). These architecture principles were
included in the enterprise architecture given their broad impact on the organization

126 6 Case studies

and its systems. In contrast, the reference architecture contains more generic best-
practices.

The first architecture principle concerns the decoupling of system functions from
specific pension arrangements. This basically means that no pension rules are spec-
ified in the application code. The architecture principle originates from the design
requirement that the system had to be able to handle future unknown changes in
pension rules. Over the years this principle turned out to be very useful when new
clients (with their client specific pension schemes) had to be implemented.

This principle led to the implementation of a rule engine (the ‘calculator’) that
executes all ‘technical’ pension rules that define ‘what has to be done’. ‘How things
are done’ is defined in customized processes, based on the implementation of busi-
ness rules in predefined master processes. The application of the architecture princi-
ple provides the client with a perception of a custom-made service, whilst building
upon an existing solution. Client studies have shown that this has led to higher client
satisfaction.

Another implication of this architecture principle is the definition of a generic
data model which is inspired on object-oriented modeling. The model facilitates the
addition of new parameters without creating new entities or attributes. Despite the
increase of pension schemes supported by the system from four to twenty-one over
the years, no changes were needed in the data model.

The second architecture principle prescribes that no system functions are based
on derived data. This implies that system results are calculated on demand. These
results are calculated based on the data (facts) stored in the database. This archi-
tecture principle originated from the problems that arose due to the complexity of
processing retrospective mutations in the initial system. A retrospective mutation is
a change in a pension claim with a starting date preceding the starting date of prior
changes. The initial system registered the current position of pension claims, which
was common in that era. This however implied that the processing of derived mu-
tations not only led to the registration of new positions but also to the invalidation
of all prior registered positions. It was estimated that 80% of the total data was ab-
sorbed by position data. Furthermore, 80% of the system functions where dedicated
to producing and maintaining the position data.

From day one, this architecture principle caused a lot of debate. People involved
in development of the new system were afraid of performance problems. Others
have posed similar questions in the years that followed. Also, it was often suggested
that the certain pension schemes were just too complex to apply the principles to.
In practice, with 21 different pension schemes supported, no blocking performance
issues have been encountered.

6.5.3 Approach

Upholding the architecture principles has not been easy. Upon the replacement of
the initial system, two parties were invited to make a proposal for the design of a

6.5 TKP Pensioen 127

Systems are decoupled from specific pension schemes and clients

Motivation:

• Systems don’t need rework in case of changing regulations.
• New clients can be implemented in a short period of time.

Implications:

• Processes in the case management are based upon master processes, and cus-
tomized for specific pension schemes.

• The data model used by the applications is generic and does not include scheme-
specific tables.

• Business rules can be changed in systems, without changing program code.

Table 6.7 Systems are decoupled from specific pension schemes and clients

The system does not store derived data

Motivation:

• System results will always be up-to-date.
• System logic can be much simpler given that the processing of retrospective mu-

tations is relatively simple.

Implications:

• Results are calculated on demand using a generic calculation engine.
• Results of previous calculations are not reused.
• Only extreme performance requirements may justify deviation.
• Data will be acquired from the source system.

Table 6.8 The system does not store derived data

new system. Both of them proposed a design that was very similar to the existing
system. This was not what TKP was looking for. TKP employees were given the
opportunity to come up with a concept that could meet the determined criteria. This
resulted in the system concept, that included the architecture principles that were
described in the previous Section.

The mix of different employee skills has been essential in the creation of the
system concept. In particular, practical experience was combined with a clear inter-
pretation of the business goals and analytic capabilities. This resulted in a vision on
data processing for organizations that handle pension arrangements. In particular,
the practical experience has proven to be important since that allowed inclusion of
existing operational issues in the concept.

As it turned out recently, the concept can be explained clearly. The main chal-
lenge has been to translate practical issues into practical solutions. The concept
defines and analyzes problems in a generic fashion, based on generic characteris-

128 6 Case studies

tics that are the basis for the solution. This often leads to debates, since the link
between problem and solution is not always obvious. These debates can undermine
the concept and the architecture principles it is based upon.

The concept has proven its commercial value and has even been a unique selling
point. It has provided prospective customers with administrative requirements, with
a lot of useful answers. It has also eased the implementation of new clients and made
the implementation process much more predictable.

The rapid growth of TKP makes it necessary for more and more people to un-
derstand the system concept and its architecture principles. Maintaining the system
concept was the responsibility of a few IT-employees. Given that it had been poorly
documented, it was decided to document it comprehensively in the enterprise archi-
tecture. The resulting documentation immediately proved to be useful in the devel-
opment of the new system components that support the administration of sectoral
pension funds. It has also provided a stepping stone for enterprise architecture in the
organization. Senior management has again validated and endorsed the architecture
principles, and have recognized the value of architecture.

The experiences of TKP show that choosing the right architecture principles is
extremely important. They are essential for the success of the organization and can
even distinguish it from the competition. The real challenge is in the enforcement
of the architecture, especially under pressure. Since not everyone can be involved in
the definition of architecture principles, there is a risk of recurring debates. In the
end, perseverance has proven key to upholding the architecture principles.

6.6 Schiphol

This case is contributed by Charles Hendriks, Erik Kiel and Joost Peetoom of
Schiphol Group.

6.6.1 Introduction

Schiphol Group owns and operates the main international airport of the Netherlands,
Amsterdam Airport Schiphol. In 2008, Amsterdam Airport Schiphol was the fifth
largest airport in Europe for passengers and the third largest airport for cargo, with
47.4 million passengers and more than 1.5 million tonnes of cargo. It is one of the
four most important hubs in Europe and one of the two home bases of Air France-
KLM and the SkyTeam alliance. Yearly revenue in 2008 was 1,154 million euro
and the number of staff is approximately 2,500. IT is used in almost every aspect of
airport operations, security and asset management. Amsterdam Airport Schiphol is
a typical example of an Airport City. The IT department itself comprises about 140
internal and 60 external employees (as of June, 2009). Of the several hundreds of
systems in use, around 100 require substantial attention of the IT staff.

6.6 Schiphol 129

As of July 2009, the IT architecture team consists of four employees. They man-
age a broad field, from enterprise architecture up to infrastructure architecture. They
also fulfill the role of project architect in company-critical IT programmes. Further-
more, they support the six information managers / business architects in the process
of information planning. The airport has been using architecture principles for a
number of years now, starting in 2003. Their introduction was part of an architec-
tural programme, in which the main goals were:

• Create insight in the coherence of the information provision.
• Deliver guidance for standardization and governance.
• Deliver more effective and efficient IT development and IT management.
• Supply more transparent business support.

These goals were to be established by developing architecture principles and
models, the introduction of project approvals by architects and an overall improve-
ment of the project management process. As of 2005, the IT departments of the main
players at Amsterdam Airport Schiphol, like Schiphol Group itself, Air France-
KLM and the Dutch Air Traffic Control (LVNL) decided to share architecture prin-
ciples for their common business processes. These principles were called the ‘sector
architecture principles’. They were more detailed and elaborate than the set Schiphol
Group had developed for internal use. The availability of an existing set of archi-
tecture principles alleviated the creation of a shared set of architecture principles.
These shared principles are a collaborative decision instrument that guide shared
programmes on Amsterdam Airport Schiphol.

In 2007, the Schiphol Group IT architects revised the existing architecture princi-
ples and dropped those that had not proven to add enough value. New developments
such as the introduction of Service Oriented Architecture and an Enterprise Service
Bus lead to the definition of new architecture principles and changes in existing prin-
ciples. Also, a new architecture principle was added that reflected a new approach
to IT management.

6.6.2 Architecture principles

It was decided to distribute the architecture principles in two forms: a formal policy
document and a more compact version that was spread more widely throughout the
organization. The goal of the latter was to attain a broader acceptance of the prin-
ciples. To that end a handy, full color booklet, enlightened with cartoons, has been
printed. These booklets are greatly appreciated, and can often be found on the desk
of employees.

The architecture principles were described in a standard template. The template in
the booklet consists of:

• Description: what does it mean?
• Added value: what do we gain by applying this principle?

130 6 Case studies

• Consequences: what are the restrictions that follow from the principle?
• Application: how to apply the principle?

The elaborate version in the formal ICT policy document adds the following:

• The current state.
• The IT systems’ future state that is strived for with the architecture principle.

There are currently eleven architecture principles:

• Base decisions on a cost/benefit analysis.
• Align process and ICT to business goals.
• Embrace best practices, open and de-facto standards.
• Design for change.
• Create IT solutions that are easy to manage.
• Secure information carefully.
• Re-use before package selection; package selection before custom development.
• Do not alter a packaged application.
• Expose functionality as services.
• Use the Canonical Data Model.
• Each piece of data has a single official supplier.

The next two paragraphs look at two of the architecture principles in more detail
and reflect upon their application.

6.6.2.1 Principle: Reuse before buy before build

In the previous version of the policy document this architecture principle (also see
Table 6.9) was split into two separate architecture principles: re-use and use of ‘off
the shelf’ solutions. In practice, they were always applied in combination, so that’s
why they were combined. It turned out to be a very effective principle; it has changed
the application landscape of Schiphol Group significantly. In particular, re-use is
more often considered than before, the growth of the application landscape has been
reduced, the number of new custom developed applications has decreased and the
number of incidents has dropped significantly.

6.6.2.2 Principle: Adhere to the Corporate Data model

This architecture principle was part of the initial set and was not very success-
ful. It turned out to conflict with the previous architecture principle, in the sense
that packaged applications come with their own data model. Also, databases were
seldom shared between applications and no common view on corporate data was
achieved. Most importantly, the actual definition of the corporate data model was
never achieved, which undermined most of the other potential added values that
were identified. It was recognized in the revision that the emphasis should on a
clear and standard way of interfacing, and not so much on how an application stores

6.6 Schiphol 131

Re-use before package selection; package selection before custom development

Using applications and infrastructure that are already in use is preferred. If
re-use of existing solutions is not possible, the second choice is to purchase a
standard solution. If it turns out that a standard solution is insufficient, custom
development is the third choice. Applying this principle results in more efficient
use of ICT resources.

Added Value:

• Optimal use of existing functionality.
• Saves time during the initial stages of ICT projects by making clear which func-

tionality is already available and can be re-used.
• Produces reliable and stable ICT environments because knowledge and experi-

ence of suppliers and other users is leveraged.
• Lower diversity and Total Cost of Ownership.

Consequences:

• An overview is required of all functionality within Schiphol Group, and of the
systems in which this functionality is available.

• The project sponsor must balance requirements and functionality that is available
off-the-shelf.

• Purchasing more packages can increase vendor dependency, which should be
manageable and acceptable.

Application:

ICT projects should be able to demonstrate that re-use has been investigated at an
early stage. Deviation is only possible when there are strong arguments not to re-use;
the same applies when opting for a custom-build solution.

Table 6.9 Reuse before buy before build

its data internally. As a result, the principle was dropped in favor of a similar one
that proposes the use of a Canonical Data Model. Such as data model focuses on
standardizing the information that is exchanged between applications.

6.6.3 Approach

Schiphol Group chose to define a small number of architecture principles. Every
principle proposed was discussed with an emphasis on necessity: do we really need
this it? The first version of the architecture principles was defined by external con-
sultants that reused a number of architecture principles they had defined earlier in
the insurance sector. Draft versions were reviewed by a peer group, which consisted

132 6 Case studies

Adhere to the Corporate Data model

The corporate Data Model provides a high level insight into all data that is used in
processes and applications.

Added Value:

• Information is stored centrally, simplifying access to it.
• Preliminary investigations can be performed faster, because insight is provided

in the domains that are impacted by the project, and how they are related to other
domains and applications.

• Project start-up is accelerated, and system exploitation and management is more
efficient.

• Reuse of interfaces and functionality is enabled.
• Lower costs and lower time to market.

Consequences:

• The coherence in information management is a responsibility of the ICT de-
partment. It defines the corporate data model in close consultation with the data
owners.

• Projects take the corporate data model into account during their initial stages.
Initial costs may be higher, but they be recovered during implementation and
management.

Application:

Every project shows which data from the corporate data model is used, recognizing
the coherence of data. New data is added to the corporate data model.

Table 6.10 Adhere to the Corporate Data model

of business consultants, information managers, senior system administrators and se-
nior developers. The peer group as a whole was chosen to represent all major IT
systems and platforms, from the network layer up to application management.

The architecture principles were developed with the following considerations:

• Less is more.
• The architecture principles act as behavioral guidelines.
• The architecture principles are a base for more elaborate IT policies.

The architecture principles act as behavioral guidelines. They are meant to pro-
vide guidance in making architectural decisions. They translate IT policy, practical
knowledge and experience into concrete rules of conduct. They are applied during
the planning and execution of IT projects and management processes, from the ini-
tial stage to final completion. One can deviate from the principles. A temporary
system, for example, does not need to be designed for adaptability. However, devi-

6.7 Key messages 133

ations are only permitted after due consideration. One of the consequences of the
behavioral emphasis of the architecture principles is a weak alignment with the ar-
chitectural modeling process (which is mainly a structuring activity). On the other
hand, every IT policy document within Schiphol Group refers to the applicable ar-
chitecture principles. They also guide the activities of the architects themselves.

In the early years, the main focus has been on the project approval process.
The architecture principles ensure that the most fundamental decisions are iden-
tified early (so there should be less trouble resolving them) and that practices that
best-practices are reused. A template was developed for the project approvals. As
the project management method evolved, the timing and weight of the architecture
compliance process also changed a number of times. The formal involvement of the
IT architects in the start-up of projects turned out to be an important breakthrough.
Project managers were satisfied that architecture approval was provided up-front in-
stead of after the fact. The architecture principles were used in vision documents,
architectural consults and policy documents. They have proven to enable efficient
decision making and have added great value as signposts for the ‘right’ direction.

Even though the set of principles is small, there is a still lot of work left to do.
Some of it is ongoing business: working under architecture continues to be subject
of evangelization. There are instances where the prerequisites for adhering to a prin-
ciple have not yet been established; at the time of writing the canonical data model
is still in an early draft version. Translation of architecture principles to more de-
tailed standards and guidelines is also an ongoing process. Most progress has been
made in the domain of IT security. And finally, since IT keeps changing there is a
constant need for attention to the architectural fit of these changes.

6.7 Key messages

• Architecture principle development is still a young discipline.
• There is a large diversity in architecture principle approaches and specifications.
• Organizations are still in the process of improving their approach to architecture

principle development.

Chapter 7
Architecture principles in context

Abstract This Chapter explores how architecture principle development is actually
applied in a specific context. The approach is strongly determined by a number of
factors such as the type of architecture, the architecture maturity level and the cul-
ture. With respect to the type of architecture, the role of architectures in enterprise
architectures, solution architectures and reference architectures is very different. In
an enterprise architecture they are very strategic, and specific to the organization,
whilst in a reference architecture they are much more tactical and generic in nature.
Architecture maturity determines the amount of rigor that is applied in architec-
ture development. At a low level of maturity the process can be very informal, and
success is determined by the knowledge and experience of individual architects.
At a high level, architecture principles form an integral part of the process, and all
stakeholders are involved in their definition and application. Culture is also a factor
that strongly impacts the architecture principle development process. Architects are
inclined to approach architecture as a rational, top-down process. In practice, orga-
nizations have their own way of dealing with change, such as power, motivation,
learning and inherent change.

7.1 Introduction

Now that the theory behind architecture principles, as well as practical experiences,
have been described, it is time to apply them in practice. A practical approach has
been provided in Chapter 5 showing the reader where to start the journey in a spe-
cific organizational context. Nothing as difficult as a blank piece of paper that is
patiently waiting for the first words to be written. The actual steps one will need to
take depend very much on one’s specific context. What sort of architecture is being
developed? Which stakeholders does one have to deal with? Which information is
at one’s disposal? How much time is available? How much formality is required in
the process? The answers to these types of questions need to be clear at an early
stage.

135

136 7 Architecture principles in context

The generic process as discussed earlier, provides a template for the creation of
principles. However, the actual activities one has to perform still need to be deter-
mined. This is the goal of the preliminary phase in TOGAF in which the initiation
and preparation for architecture development takes place. Objectives of this phase
are to review the organizational context, identify the stakeholders, determine their
goals and concerns, ensure their commitment, determine the scope of the architec-
ture, and to define the methods, tools and governance that are used. This is where
the process is tailored to the specific context at hand. It is also in this phase in which
the architecture maturity of the organization is assessed.

Architecture development is not a trivial process, and it very much depends on the
skills and experience of the architect(s) involved. The approach taken will depend
on contextual factors, as well as on the personal experience and style of the architect.
Some architects work by the book, whilst others have a much more informal style.
Prescribing the work of the architect in terms of what he actually does is nearly
impossible, and even undesirable. As indicated by Van Rees (1982), a method is a
guarantee for success. On the other hand, careful planning is necessary to ensure
that the architect delivers in time. Architects should understand that they need to
deliver added value, and deliver this added value timely.

Although this is not a book on enterprise architecture development in general,
we do want to provide some additional guidance in how to apply architecture prin-
ciple development. We especially want to provide assistance in how the type of
architecture, the architecture maturity of the organization, and the culture impacts
architecture principle development. The next Section will therefore describe how the
generic process can be applied to enterprise architectures, solution architectures and
reference architecture. The subsequent Section describes an Architecture Maturity
Model, and shows how architecture principle development relates to this maturity
model. The last Section uses an existing model on organizational change, to show
the impact of culture on architecture principle development.

7.2 Types of architectures

This Section provides some insights into how the generic process described in the
previous Chapter applies to the development of enterprise architectures, reference
architectures and solution architectures. It shows that the type of architecture highly
influences the development process.

7.2.1 Enterprise architecture development

An enterprise architecture provides the properties of an enterprise that are neces-
sary and sufficient to meet its essential requirements. These properties are typi-
cally represented as architecture principles, models, and a high-level implementa-

7.2 Types of architectures 137

tion and migration plan. The enterprise architecture can be partitioned into various
sub-architectures, such as a strategic architecture and segment architectures. These
architectures have a different level of detail, and may focus on specific areas of ch-
ange. All of these architectures may contain architecture principles, but the guiding
architecture principles are documented in the strategic architecture.

What makes the development of architecture principles for enterprise architec-
tures specific? Since the enterprise architecture is the basis for all other architectures
it has the highest impact on the organization as a whole. The architecture princi-
ples in an enterprise architecture are the most fundamental ones; they drive most
of the other architecture principles. Given their importance people will put more
effort into understanding, following and undermining them. This poses additional
requirements on the specification of the architecture principles. Also, it requires
more formalized processes for their specification, validation and governance. They
also require involvement of senior management during identification and validation.
Their main drivers are the enterprise-wide, top-down and strategic drivers. In terms
of architecture principle determination techniques, derivation from drivers will be
the most appropriate given its top-down nature. It is also extremely important to se-
lect the right guiding architecture principles. Since the architecture principles in an
enterprise architecture are closest to the strategy and environmental factors, and are
the most organization-specific.

7.2.2 Reference architecture development

A reference architecture is a generalized architecture, based on best-practices. It
can be applied to multiple solutions and potentially even to multiple organizations.
Organizations can define their own reference architectures, based on their own best-
practices or based on external reference architectures and best-practices. Reference
architectures should contain models as well as architecture principles and design
instructions. If either the models or the principles are missing then the reference
architecture is strictly spoken incomplete (Greefhorst et al, 2009). The architecture
principles in a reference architecture should ideally be traceable to the guiding archi-
tecture principles, although full traceability is not achievable in practice. Depending
on the scope of the reference architecture it can contain hundreds of architecture
principles and design instructions.

Reference architectures are quite different in nature than enterprise architectures,
and so are the principles in them. These principles are more generic in nature, and
often reflect common best-practices. They focus on guiding at a more tactical level
as opposed to the strategic focus in enterprise architectures. This requires more con-
crete guidance for designers and implementers. Also, more architecture principles
are needed in a reference architecture given the broad target audience that all ex-
pect guidance in their daily work. In terms of the 80/20 rule, they form 80% of
the total number of architecture principles within an organization. This is in line
with Bouwens (Bouwens, 2008) who states that 80% of the architecture principles

138 7 Architecture principles in context

are best-practices that are not specific to the organization. The drivers for reference
architectures will be much more bottom up; especially issues in the current envi-
ronment are relevant. Issues are often quite generic, and solutions for them can be
found in all sorts of best-practices, such as design patterns, heuristics and other ref-
erence architectures. Harvesting of existing architecture principles is particularly
relevant for reference architectures. The amount of effort put into the determination
and specification can vary, but typically a lot of useful architecture principles can be
gathered in a fairly short amount of time. Specifying actions for architecture princi-
ples in a reference architecture is not very relevant, since the architecture is unaware
of the current state. Architecture principles in reference architectures may include
more implications than their (organization-specific) realizations. Strictly speaking,
that would either imply that the original architecture principles contain more impli-
cations than what is essential or that their realizations do not contain enough impli-
cations. In practice, the ambiguity is in the architecture principle statement. When
one leaves out certain implications of a generic architecture principle, one really
opts for an architecture principle with more specific semantics which the statement
should reflect. Classification is important for architecture principles in a reference
architecture, given that there may be a large number of them. This also makes an
architecture repository especially relevant. The validation and governance of ref-
erence architectures can be less formalized, and architecture dispensations can be
given easier since they have a more limited impact to the organization as a whole.
Given that they mostly contain a selection of best-practices, one would expect them
to be more stable than enterprise architectures.

7.2.3 Solution architecture development

A solution architecture provides the properties of a solution that are necessary and
sufficient to meet its essential requirements. A solution is a system that offers a
coherent set of functionalities to its environment. Some architectural issues may still
be unclear during the development of the solution architecture, which justifies why
it may still contain architecture principles. Design issues are typically solved with
design decisions, but motivation for these decisions may be found in more general
design principles.

Given that the scope of a solution architecture is much more limited than an
enterprise architecture, the architecture principles often have a smaller reach and
impact. This also implies that a more limited number of stakeholders will need to
be involved in their determination, specification and validation. In small projects
the project manager may even feel comfortable when the solution architect defines
them on his own. Note that solution architectures may also be very strategic, and
as such have a large impact on the enterprise architecture (which may even not
exist). An important driver for the principles will be the architecture principles in
the upstream architectures. Architecture principle determination will rely mostly on
the elicitation of domain knowledge. This rests on the knowledge of the solution

7.3 Architecture maturity 139

architect, but also requires the involvement of subject matter experts. The process
can be more informal. Architecture compliance review can be part of the daily work
of the solution architect, encompassing not much more than an informal inspection
of designs and code. Governance is mostly depending on the solution architect itself,
and will depend on his own personal preferences and work style.

7.3 Architecture maturity

In this Section we aim to relate the development of architecture principles to archi-
tecture maturity. To measure architecture maturity, architecture (capability) maturity
models (AMMs or ACMMs) have been created. These maturity models are based
upon capability maturity models (Humphrey, 1989) that are formal ways to gain
control over and improve architecture processes as well as to assess organization’s
development competence. Several architecture maturity models are in existence, for
instance the USA Department of Commerce (DoC) ACMM (Department of Com-
merce, Government of the USA, 2003) which provides a framework that represents
the key components of a productive (IT) architecture process. Other maturity mod-
els include those defined by Van der Zee et al (2000), (Van Grembergen and Saull,
2001), Wagter et al (2005) and Schekkerman (2004). All these models have five or
six levels of maturity that vary from initial to optimized.

Depending on the maturity level, the enterprise will be familiar with the usage
and benefits of architecture. The higher the level, the higher the acceptance of archi-
tecture as a means and less focus on marketing of enterprise architecture or the pro-
cess of designing an enterprise architecture is necessary. Each level has its specific
subjects to manage: on the lower levels the emphasis is on managing architecture
awareness within the organization, architecture skills and architecture processes. On
the higher levels the emphasis is on managing the architecture results, participating
in transformation steering, informed decision making and continuing improvement
of the architecture function within the organization. At the lower levels the focus
will be on the creating enterprise architecture process, while at the middle levels the
apply enterprise architecture process will be introduced followed by the maintain
enterprise architecture process at the higher levels.

Given that the creation and use of architecture principles is an integral part of
the architecture process, these maturity models generally also apply to the creation
and use of architecture principles. Depending on the different levels of maturity, the
role of principles will differ. The architecture maturity models focus on architecture
governance, and say very little about the architecture artifacts themselves. In that
sense they provide limited guidance in how to handle architecture principles. Nev-
ertheless, we do think that a maturity model approach is helpful in determining how
to handle architecture principles at various levels of maturity. The next subsection
will therefor describe a specific architecture maturity model. Based on that maturity
model, the subsequent subsection shows how architecture principle development
can be mapped onto the various maturity levels.

140 7 Architecture principles in context

7.3.1 Department of Commerce Maturity Model

We use the DoC ACMM as a basis for describing the architecture maturity of orga-
nizations. This model is widely accepted in the market (TOGAF, 2009) and publicly
available. The model contains six maturity levels (see Figure 7.1 (page 141)). Each
level has its specific characteristics, which can be summarized as follows:

Level 0: None – At this level an organization does not have an explicit architecture.
Level 1: Initial – This level is characterized by limited architecture processes, doc-

umentation and standards, limited management team awareness and no explicit
governance.

Level 2: Under Development – At this level, current-state architectures and archi-
tecture processes have been defined, there is an explicit linkage to business strate-
gies, management is aware, and governance is in place.

Level 3: Defined – At this level the architecture is well defined and communicated,
the process is largely followed, senior management and other stakeholders are
aware and supportive.

Level 4: Managed – At this level the architecture process is part of the culture, pro-
cesses and architectures are periodically assessed and updated, senior manage-
ment is directly involved in the architecture review process, and other stakehold-
ers accept and actively participate in the architecture process.

Level 5: Optimizing – This level is characterized by concerted efforts to optimize
and continuously improve the architecture process, with direct involvement of
the business and senior management.

7.3.2 Architecture maturity and architecture principles

Given the maturity levels in the DoC ACMM we can now describe a typical growth
path in the development of architecture principles. We have translated the charac-
teristics of the various maturity levels to their implications on architecture principle
development. Although this mapping is not based on formal research, we do feel
that it provides useful insights in how to improve architecture principle practices
in organizations. As an exercise, try to determine where the organization stands in
terms of architecture maturity level, then read the description of the maturity level
that is one level higher and consider if this would be a good way to improve current
practice.

Level 0: None – There are no explicitly documented architecture principles, al-
though principle-like statements may appear in documents. Almost everyone in
the organization, including senior management, is unaware of what architecture
principles are, and how they can contribute. Architects may have personal opin-
ions, that are really architecture principles (probably without them being aware
of it). These opinions are based on what they feel is important, and have not been

7.3 Architecture maturity 141

None (0)

Initial (1)

Under Development (2)

Defined (3)

Managed (4)

Optimizing (5)

Fig. 7.1 Architecture maturity model

based upon opinions of other stakeholders. Communication and governance on
architecture principles is irrelevant at this level.

Level 1: Initial – Some architecture principles are defined, but they are limited in
number, informally documented and not very specific to the organization. They
are mostly selected from reference architectures, and slightly tweaked to the or-
ganization. They are typically documented in the form of organization-specific
reference architectures, that have a strong IT focus. Processes for developing ar-
chitecture principles may be defined, but not followed consistently nor governed
explicitly. Enforcement is primarily depending on individual architects that de-
fend them at will, without any support of management. Most stakeholders are
unaware of the architecture principles, do not understand them and/or simply
ignore them.

Level 2: Under Development – Architecture principles are defined and explicitly
linked (where relevant) to the strategy of the organization. They may exist at
multiple levels, where lower level architecture principles are linked to higher
level architecture principles. There are a limited number of business architec-
ture principles, that mostly exist because their definition strongly influences IT.
There are also a number of information security related architecture principles,

142 7 Architecture principles in context

although they are not aligned with the formal information security policy. A
standard template containing a statement, rationale and implications is used for
documenting all architecture principles. There are documented processes for the
development of architecture principles, including validation and compliance re-
view processes. They may not always be followed, and may not optimally match
the organizational context. Architecture principle deviations may be escalated to
management, although they may not feel committed to actually defend them. The
architecture principles are published on a pre-defined location, which is commu-
nicated to all stakeholders. IT investment and acquisition processes may include
criteria that are based on architecture principles.

Level 3: Defined – There is a well-defined hierarchy of architecture principles at
various levels, starting from guiding architecture principles that are defined in
the strategic enterprise architecture. All architecture principles are fully upwards
traceable to drivers, including other architecture principles. There is a fair amount
of business architecture principles, although their development is still lead by ar-
chitects with an IT background. Information security is an integral part of the
set of architecture principles, and aligned with the formal information security
policy. A more elaborate template for architecture principles may be used, where
each architecture principle is documented in a form that fits on a single page.
Architecture principle development processes are defined, tuned to the organiza-
tional context and applied consistently. There are regular escalations due to de-
viations to architecture principles, and management defends them towards other
stakeholders. Support at the highest management levels and with business man-
agement may not be optimal. The architecture principles are pro-actively com-
municated to all relevant stakeholders. Presentation sessions are organized that
inform specific groups of stakeholders. Architecture principles are embedded in
the criteria used in IT investment and acquisition processes, but may have a rela-
tively small weighting.

Level 4: Managed – The business itself drives the architecture principles, and in-
volves IT where it is necessary. All advised attributes as described in Chapter 4
are used in the definition of architecture principles. The assurance attribute pro-
vides a measurable way to determine whether architecture principles are adhered
to, and this is used by the organization to actually measure architecture compli-
ance. Management information is provided to all stakeholders that show how they
comply to the architecture, and management is judged based on their compliance
to the architecture principles. There are specific metrics associated with informa-
tion security, allowing a representative view on security issues in the organiza-
tion. Architecture principles are all documented in the central architecture repos-
itory, and enriched with various forms of meta-data. This includes all sorts of
relationships with other architecture principles, drivers and downstream artifacts
providing full traceability. Stakeholders are informed of changes, and directed
to a web-based view on the architecture repository. The architecture principles
have a pre-defined release cycle, that is strictly adhered to. Architecture principle
development processes are adjusted based upon metrics and insights. Due to the
pro-active communication about architecture principles, as well as constructive

7.3 Architecture maturity 143

discussions in their application escalations due to deviations are more limited.
Escalations that do occur are fully supported by management at all levels. They
are part of the architecture compliance review process in which senior manage-
ment participates, and which is considered business as usual. Architecture prin-
ciples are fully embedded in the criteria used in all investment and acquisition
processes, and have a realistic weighting in the total set of criteria.

Level 5: Optimizing – Architects are continuously seeking for new developments,
insights, experiences and requirements. This may require updates to the existing
collection of architecture principles. There is a more fine-grained release process
for architecture principles, where individual principles may even be updated and
communicated to all stakeholders that are impacted by them. The architecture
repository uses collaborative technology, allowing stakeholders to share expe-
riences with architecture principles and suggest changes to them. Architecture
principle development processes are continuously improved, based upon regu-
larly updated metrics. Senior management, as well as other stakeholders are ac-
tively involved in this process. Architecture principles play an important role in
all investment and acquisition processes.

It is important to note that architecture maturity is not a goal in itself. Not all or-
ganizations have the ambition to achieve the highest maturity level. They may feel
that the benefits of that level may not outweigh the costs of actually attaining that
level. It could also conflict with the size, culture or innovativeness of the organi-
zation. A large organization requires much more rigor and formality than a small
organization. The latter distinguishes itself from the competition by its agility, and
a high maturity level would impose too much overhead. Some organizations are a
lot more formal that others. A more formal culture fits better with a high maturity
level. Organizations that are very innovative do not want to restrict themselves to
all sorts of directives. They focus on out-of-the-box thinking and creativity, and this
does not fit very well with a high maturity level. This in contrast to an organization
that is providing commodity services. These services can be standardized to a high
level, and adhering to architecture principles is much more important.

A staged maturity model also provides a rather artificial view on organizations.
It provides the illusion that organizations can be plotted onto a single maturity level,
whilst in practice organizations may have characteristics of various maturity levels.
A continuous approach provides a more realistic view on maturity. It enables an or-
ganization to implement improvement in different areas at different rates. The DoC
ACMM provides enough information to improve various characteristics in parallel.
We do not provide a continuous model of architecture principle development in this
book. This may be part of future research, just as the formalization of our mapping
of architecture principle development to the maturity levels.

Abstracting from the maturity levels we see various levels of ambition that or-
ganizations may have with architecture principles. At the lowest level, architecture
principles are used only as a source of inspiration. At the other end of the spectrum
architecture principles are an essential part of the decision proces. The following
four ambition levels of architecture principle development express this spectrum:

144 7 Architecture principles in context

• To build common understanding and commitment.
• To provide guidance in the design of systems.
• To make fundamental decisions and govern their implementation.
• To make critical decisions that require a formal proof of compliance.

Examples of the latter are decisions that relate to safety of people, the organization
or even the country. Where informal statements (credos) may suffice for the first two
levels of ambition, the third and fourth clearly require more formalized and elaborate
specifications (making them norms). The third level suits most organizations and
contexts, and requires the specifications to follow the basic structure: statement,
rationale and implications. The fourth level requires a more formal specification,
including at least the definition and assurance attributes described in Section 4.3.

Although the ultimate goal of architecture principles is to use them to govern
organizational change, one should not underestimate their value as source of inspi-
ration. In general, we feel that architecture is also a form of knowledge management.
A lot of bad decisions would have been made differently if the proper information
would have been available. It is the responsibility of the architect to ensure that those
stakeholders that make important decisions are provided with the right information.

7.4 Culture

Organizational culture has a big impact on the development of architecture princi-
ples. It will largely determine the way that people interact, and how decisions are
formed. In an organization which has a culture of consensus decision-making, work-
shops with all stakeholders are needed to get them involved, to reach consensus and
to make decisions. On the other hand, in an organization where the most powerful
person or group decides, communication of decisions to all stakeholders is very im-
portant. Although we do not wish to provide a complete view on cultural aspects,
we do want to provide some feeling of the impact of culture on architecture princi-
ple development. In that context, it is relevant to look at some theory on culture and
translate that to the context of architecture principles.

A well-known theory is the one from De Caluwé and Vermaak (2003). De
Caluwé and Vermaak distinguish five types of thinking on organizational change
that they expresses in the form of colors. These five types of thinking have a differ-
ent way of dealing with change. They all include ‘print’ in their name (e.g. ‘blueprint
thinking’) to express that there always is some planning of change, even when things
are let to happen.

The model of De Caluwé and Vermaak has been applied to enterprise architecture
by several authors (Lendvai et al, 2008; Bot, 2004; Bosma, 2007; Nijhuis, 2007).
Lendvai et al (2008) state that architects should take the change style of the organi-
zation into account. Bot (2004) positions service architects and solution architects
as ‘green’ mediators between ‘yellow’ sponsors and ‘blue’ providers. Bosma (2007)
states that design is important in change processes, but that design (and architec-
ture) is often focused on ‘blueprint thinking’. Nijhuis (2007) confirms the ‘blueprint

7.4 Culture 145

thinking’ mindset of architects, and states that architects should recognize the influ-
ence of the other colors.

Yellowprint thinking – is based on the symbolism of power and the nature of coali-
tion forming. It assumes that the formation of power is a change process in itself.
Once the power has been formed, changes can be enforced, but balancing power
remains a constant challenge.

Blueprint thinking – is based on describing the result in advance, specifying the
requirements, executing activities and adjust the course towards the result. The
intention is to use rational arguments, as much as possible.

Redprint thinking – is based on insights that people are not only motivated by eco-
nomical factors, but much more by good mutual relationships and common goals.
The idea is that people change under the influence of rewards and penalties. They
may be tempted or encouraged. It must be made attractive and pleasant to change.

Greenprint thinking – is based on the idea that people change when they are mo-
tivated, and one enables them to learn and increase their learning abilities. In
this mindset changing is very close to learning, and the end-result is strongly
dependent on the ability to learn.

Whiteprint thinking – is based is on the fact that things also change by themselves,
and that change is a permanent process. This process can be controlled by tak-
ing away obstacles, critically observe, interpret what is going on and focus on
meaning. Meaning, motivation and will of individuals and groups prevail.

In all the forms of thinking there are different ways to influence change of people
or things. Note the similarity of some of these colors with the roles of architecture as
described in Chapter 3. Blueprint thinking is very close to the regulative and instruc-
tive roles of architecture, whilst greenprint thinking is close to the informative role.
Let’s illustrate how the process of architecture principle development would look in
these five forms of thinking. We start with a sentence that shows how De Caluwé
and Vermaak think about how change can be attained in these five forms, and then
translate that to the context of architecture principle development. This translation
is based upon our own interpretation of the theory of De Caluwé and Vermaak, as
well as knowledge and experience in architecture principle development.

Yellowprint thinking – requires bringing together people, letting them take stand-
points, forming coalitions, showing them the advantages of certain standpoints
and creating consensus. This implies a collaborative approach to architecture
principle development, where stakeholders have a high influence on the iden-
tification of drivers and architecture principles. Drivers can be based on personal
values and/or beliefs or stakeholders. Understanding the stakeholders and their
concerns is very important, and requires explicit stakeholder management of the
architect. A workshop setting with minimal preparation suits this approach; just
let people suggest architecture principles, explain their motivations and discuss
freely with others. Do however ensure that the proper discussions take place, that
all relevant arguments have been touched upon and that the participants agree
on the end result. Compliance should not require a lot of effort, given that the

146 7 Architecture principles in context

proper stakeholders have been included in the determination and specification
of the architecture principles. Just make sure that proper escalation paths are in
place.

Blueprint thinking – requires defining a clear result upfront, careful planning,
monitoring of intermediate results, keeping things under control and reducing
complexity. This implies a process which is carefully planned, where all relevant
input is gathered and filtered beforehand, where the focus is on goals as drivers,
and where suggestions for drivers and architecture principles are provided to the
stakeholders. Preferably, architecture principles are founded in quantitative ana-
lyses. Workshops may be used, but must be prepared carefully. Participants will
have more limited influence on the workshop results. The main goal is to validate
that the proper information has been gathered. Compliance should be planned be-
forehand, and requires one or more formal checkpoints in the process.

Redprint thinking – requires setting the right incentives and penalties, rewarding
people for their effort and giving them something back. This implies a process in
which the stakeholders are actively involved in the development of architecture
principles, and the architect is much more a facilitator of the process. Stakehold-
ers could be made responsible for developing architecture principles for a certain
change area, including gathering all relevant drivers. The architect can ensure the
consistency of the result. Compliance should be based on the fact that stakehold-
ers are personally made responsible, for example by including related objectives
it in their personal goals and/or basing development paths on it.

Greenprint thinking – requires making people aware of certain viewpoints and
their own limitations, motivating them to see, learn, do new things and create
collective learning situations. This implies a process that is focused on provid-
ing stakeholders with new information that forms and/or changes their opinions
on certain subjects. The architect spends a lot of time on collecting information,
and then bringing people together to learn this information and draw collective
conclusions. These conclusions become the architecture principles. The archi-
tect could invite guest speakers that provide new information, such as domain
experts, peer organizations or vendors of specific solutions. Compliance can be
attained by understanding the decisions that stakeholders need to make, when
they need to be made and by providing them with the proper information to base
their decision on.

Whiteprint thinking – requires assuming that the personal will and desires are es-
sential, building on the energy of participants, showing complexity, taking away
obstacles and using symbols and rituals. This implies a lightweight approach to
architecture principle development, with a focus on issues and risks as drivers
for architecture principles, and creative work forms. Architecture principles are
positioned as a solution to solve important issues, and to ensure that stakehold-
ers can focus on their own primary goals. Compliance is attained by ensuring
that prerequisites (that may be formulated as implications) of architecture princi-
ples are taken care of, for instance by implementing the required infrastructure.
The architect should be constantly aware that stakeholders are able to reach their
goals.

7.5 Key messages 147

Each of the mentioned colors has its positive and negative sides. The environment
(context), the required change, the stakeholders and the person leading the change
are four factors that have a high influence on the selection of a color. Combinations
of colors will be common in practice, although certain colors will be dominant. The
colors can also be seen as phases in a change process, although certain colors may
not fit the actual situation. Another way of looking at the colors is to see them as
approaches to certain types of change or activities in the change process. Also, col-
ors may be personal styles of the architect. Blueprint thinking is typically a style
of a more junior architect, whilst whiteprint thinking may better suit a more experi-
enced architect. Conflicts between colors derived from the four factors may lead to
tensions in the process.

7.5 Key messages

• The approach taken to architecture principle development depends on contextual
factors, as well as on the personal experience and style of the architect.

• The development of architecture principles for an enterprise architecture requires
a different approach than for a reference architecture or solution architecture.

• The maturity of the architecture function also highly influences the approach to
architecture principle development.

• The environment, the required change, the stakeholders and the person leading
the change strongly determine the best change management approach.

Chapter 8
Summary, conclusions and future work

Abstract This Chapter summarizes the most important messages of the book and re-
flects on them. As such it provides a an overview of what has been presented before.
It also looks at future work that is necessary in order to make architecture principle
development mature, recognizing that this book is only a step in that direction.

8.1 Summary and conclusions

We have started this book with an overview of enterprise transformation and enter-
prise architecture in general. This overview also showed how the field of enterprise
architecture is still very much in development, and that there is no general consen-
sus on terminology, frameworks, methods and techniques. As such, describing the
field of architecture principles is a daunting task. There will always be practitioners
that have a different interpretation of architecture principles, and may even defend
that at all costs. We believe, however, that our interpretation of architecture prin-
ciples is in line with most common interpretations. Even more, our interpretation
has provided us with an instrument which we have applied in several organizations.
These organizations have confirmed that the architecture principles that have been
specified indeed help them in achieving their goals.

The conceptual framework in Chapter 3 has shown that there are two main cat-
egories of principles: scientific principles and normative principles. Architecture
principles are normative principles that normatively prescribe properties of the de-
sign of an artifact, which is necessary to ensure that the artifact meets its essential
requirements. Architecture principles, appear in various forms, varying from very
informal statements (credos) to statements that are formulated in a much more spe-
cific form (norms). This level of precision is important to use them to really restrict
design freedom. More tangible, and guiding, statements (instructions) can be for-
mulated to restrict the design space even further. One of the main goals of these
restrictions is to reduce risks, and thereby ensure that organizations can reach their
goals. In practice we do see that it is far from trivial to really ensure that designs

149

150 8 Summary, conclusions and future work

conform to the architecture principles. As it turns out, theory and practice are very
different and practical approaches are needed to bridge this gap.

The complexity of architecture in general, and architecture principles in partic-
ular, has been highlighted by showing that there are various dimensions that influ-
ence the type of architectural information. Understanding these dimensions is key to
understanding how architecture principles can address the goals at hand, and which
architecture principles are needed. We have provided a basic structure, in addition to
several attributes, that show how architecture principles can be specified. Adhering
to the basic structure ensures a minimal form of quality. Furthermore, quality criteria
have been provided that can be used in the specification and validation of architec-
ture principles. Architecture principles should be specific, measurable, achievable,
relevant and time framed. Also, architecture principles are clustered into architecture
principle sets that are published as a whole. Organizations that are further down the
road in the development of architecture principles will need to carefully consider
which sets need to be defined and/or reused. Although the dimensions, attributes
and/or quality criteria may seem theoretical, we believe that they provide the foun-
dation for effective architecture principles.

A practical approach has been provided to actually develop architecture princi-
ples. This approach consists of a generic process, accompanied by guidance on how
to actually perform the activities in this process. The development of architecture
principles starts with the determination of drivers; architecture principles without
drivers are pointless. Based on the drivers the actual architecture principles can be
determined, specified, classified and validated. These processes are best performed
collaboratively to ensure involvement and commitment of stakeholders. We have
also shown that usage of architecture principles is an important process on its own.
In the end, principles are not only there to simply provide constraints. They repre-
sent important design knowledge as well, and can, as such, be a source of inspiration
and derivation of downstream artifacts. A compliance review is needed as well, but
should ideally be very lightweight given that stakeholders know and understand the
architecture principles and are committed to them. Relevant developments and in-
sights should be incorporated in the architecture principles. As such, the architecture
is never finished, although architecture should provide a stable basis for the future.
The generic process does not provide detailed instructions how to actually develop
architecture principles. An organization-specific tailoring of the process is needed.
Even more important, knowledge and experience of the architect remains key in the
effective execution of the process.

Case studies have been provided that show how architecture principles are de-
veloped in practice. They show that organizations are still struggling with the de-
velopment of architecture principles. A lot of organizations are still using their first,
second or third generation architecture principles. There are quite some differences
in the forms of specifications used, although the basic template does seem to be a
constant factor. Architecture principles are still fairly generic, which does not posi-
tion them as strategically and thereby effective as they could be. They often origi-
nate from the IT departments within organizations, making them less visible for the
organization as a whole. The case contributors also recognize that further improve-

8.2 Future work 151

ment is needed, and that there is still a lot to learn. They also see that architecture
principles have provided added value, and thereby acknowledge their importance.

It has been shown that the development of architecture principles is very situa-
tional. In particular, the type of architecture, the maturity level of the organization
and the culture very much influence the approach. Enterprise architectures, solution
architectures and reference architectures are different in nature, and as a result so
is the process. The maturity level indicates the extent to which architecture devel-
opment and application is under control. At one extreme, architecture can be com-
pletely depending on local heroes that make or break the organization. At the other
end, architecture can be fully internalized by the organization. At this level, every-
one understands it value and is actively and continuously involved in the process.
Given that architecture principle development is part of architecture in general, this
also has a profound effect on that process. Culture is always a factor that is hard to
get a hold of. The management of change theory of De Caluwé and Vermaak (2003)
does provide a practical way of dealing with this. The environment (context), the
required change, the stakeholders and the person leading the change are four factors
that have a high influence on the selection of a color. Selecting a process that fits the
color is key. We feel that this cultural view on architecture principle development
can open the eyes of a lot of architects, that by nature tend to be blueprint thinkers.
Reality however, more closely resembles other colors and just setting the target does
not automatically lead to change.

A catalogue of architecture principles has also been provided. This catalogue
mostly consists of generic architecture principles that can be applied in a broad
range of organizations. They are classified according to their architecture domain
and quality attributes, showing their value and area of application. The catalogue
is meant as a source of inspiration for practitioners. Given a certain value, a list of
potential architecture principles is at hand. The actual specification of the architec-
ture principle should however be tailored to the specific context. The drivers will
be much more specific, and especially the implications should be carefully selected
and formulated for the organization at hand. However, a warning is called for as
well. Although the catalogue provides a quick-start into the process, they examples
contained in the catalogue should not be an excuse to truly understand the organi-
zation specific drivers underpinning the organizational adoption of a principle. Even
more, when the drivers are clear the architecture principles follow quite naturally.
Experienced architects probably do not need the catalogue; they completely depend
on their personal instinct, experiences and knowledge.

8.2 Future work

As we have already mentioned a number of times, the field of enterrise architec-
ture is very much in development and the same holds for the theory and practice
on architecture principles. Although architecture principles can be used as-is, and
already help in attaining the organizational goals, their effectivity can certainly be

152 8 Summary, conclusions and future work

improved. More theory and practice is needed to mature our profession. In this Sec-
tion we provide a number of areas that require further research. Results of such
research, as well as new practical insights will be incorporated into a future release
of this book.

With respect to the basic theory of architecture principles, more research is
needed into how architecture principles relate to other concepts. We have shown
how architecture principles relate to drivers, as well as downstream artifacts. There
however remains a certain grey area on both sides. Policies are very close to archi-
tecture principles, and if shown a specific statement, some people will say that it is
a policy, whilst others will see it as an architecture principle. The same holds for
downstream artifacts such as instructions, design principles, design decisions and
requirements. More criteria are needed to objectively discern these concepts. Cur-
rently, it is the type of practitioner that mostly determines the naming of the concept.
For example: if the architect defines it, then it must be an architecture principle. We
have also discussed the relation between architecture principles and business rules.
However, more work remains to be done to define the concept of business rules, and
then relate them to the notion of architecture principles and desired properties in
general.

With respect to the specification of architecture principles, more research is
needed into how to include more formalism in the specification. We have tried to
show how formal languages can increase the quality of architecture principles. An
important finding however is that formal languages are hard to understand for vari-
ous stakeholders. So how can insights from formal languages be applied in a practi-
cal way to improve architecture principles. Another area of research with respect to
specification is how the quality criteria that were proposed can be integrated more
closely into the specification process. Ideally, tool support is available that helps in
formulating architecture principles that conform to these criteria. Expert systems
may be developed to support this process.

The generic process for the formulation and use of architecture principles we
provided can be defined in more detail. More detailed guidance can be provided on
the actual development, for instance in the form of heuristics or checklists. Also, the
process should be integrated into other process frameworks, where integration into
TOGAF seems to be a first logical step. We are supportive in any activity that would
adapt TOGAF to include our ideas. However, the integration with other processes is
also needed. We see a requirement for an overall process framework that includes
all change processes from strategy to policy to architecture to design to develop-
ment to implementation to maintenance. This would increase the understanding and
thereby the consistency and effectivity of change in organizations. It would also
create boundary spanners that are able to bridge the gaps that exist between depart-
ments and roles in organizations.

Furthermore, since principles bridge from strategy to design, and since principles
should be durable in a given organisation, it is of the utmost importance that princi-
ples are formulated in a collaborative process involving all key stakeholders. More
research is needed into effective ways to organise these collaborative processes.

8.2 Future work 153

On a few occasions we have mentioned that the structures depicted in Subsec-
tion 2.4.3 (page 19) and Figure 3.3 (page 47) should not be thought of as a pure
top-down steering mechanism. We have argued that architecture principles not only
provide a control mechanism, but also an indicator mechanism since violations may
indicate the need to change principles, while emergence may even lead to the formu-
lation of new principles. Nevertheless, as already admitted before, the generic pro-
cess as discussed in this book does not explicitly cater for this yet. Therefore, more
research is needed into ways of better dealing with the top-down versus bottom-up
and design-first versus emergence ‘game’.

Finally, more experience and practical insights are needed as well. We currently
have insufficient metrics to relate the various architecture development practices
to their effectivity. A better understanding of this relationship will improve the ef-
fectivity of architecture principles in general. The same holds for the relationship
between architecture principle practices in relation to the types of architectures,
maturity levels and culture. In general, the further development of the architecture
profession lacks support of quantative data.

Appendix A
Principles catalogue

Abstract This Appendix provides a catalogue of architecture principles that can be
used as a source of inspiration by practitioners in the field. They have been harvested
from real-world architectures and are thus representative for what you can encounter
in architectures in practice. We have combined, abstracted and reformulated the
architecture principles we have found, in order to increase their reusability. Also,
we have selected those architecture principles we feel are the most relevant. They
are applicable in a broad range of organizational contexts. For every principle a
statement, motivation and implications has been (re)defined. The motivation and
implications are presented in summarized form; the goal is not to be complete but
to highlight the major considerations. There are no actions defined for the principles
since they are context-independent.

The architecture principles listed span a broad range; from business to technol-
ogy, and from generic best-practice to specific choices that are close to the organiza-
tion strategy. We have classified the architecture principles in two dimensions; the
quality attribute(s) that are positively influenced by the architecture principle and
the architecture domain that is impacted (business, data, application, technology).
The main characteristics of the Extended ISO 9126 (Van Zeist et al, 1996) model
have been chosen for defining the quality attributes.

A.1 Business units are autonomous

Type of information: business

Quality attributes: maintainability, portability

155

156 A Principles catalogue

Rationale:

• Autonomous business units can adapt to changes quickly because they do not
need to align with other business units.

• Autonomous business units can be separated more easily from a financial and
organizational perspective, and eases future restructuring.

Implications:

• Business units have their own profit and loss, based on which they are evaluated.
• Business units can make their own decisions and investments.

A.2 Customers have a single point of contact

Type of information: business

Quality attributes: usability, efficiency

Rationale:

• It is much more customer friendly when the customer can direct all his communi-
cation to a single point, is serviced directly, and does not have to contact multiple
people.

• A single point of contact also ensures that consistent information is provided to
the customer.

• It is more efficient to dedicate resources to handling customer contacts, and pre-
vent interruptions in operational activities.

Implications:

• There is one access point for customers, which may be a customer contact center
or a dedicated person for important customers.

• The access point attempts to shield the customer from the internal organization,
and handle the request completely.

• The access point is provided with sufficient information in order to handle cus-
tomer requests.

• Customers are only directed to others in exceptional situations, and in those cases
the access point ensures that the proper information about the customer is for-
warded.

A.4 Processes are straight through 157

A.3 Stock is kept to a minimum

Type of information: business

Quality attributes: reliability, efficiency

Rationale:

• Keeping stock at a minimum saves costs since unnecessary investment, storage
and transport is prevented.

• A small stock allows quality problems to be detected and solved quickly, so that
the quality of additional delivery increases.

Implications:

• Items are ordered on-demand when possible.
• The stock is registered and pro-actively monitored in order to prevent it falling

below certain thresholds.

A.4 Processes are straight through

Type of information: business

Quality attributes: usability, efficiency

Rationale:

• Straight through processes strive to deliver the output with a minimum delay,
which increases customer satisfaction.

• Straight through processing aims to streamline processes and make them as effi-
cient as possible.

Implications:

• Buffers between activities are prevented as much as possible.
• Routine processes are automated.

158 A Principles catalogue

A.5 Processes are standardized

Type of information: business

Quality attributes: reliability, efficiency, maintainability, portability

Rationale:

• Standard processes are repeatable, predictable, scalable and more efficient.
• Process standardization is often required in order to comply with certain legisla-

tion or quality standards.

Implications:

• A standard process exists and is based upon current and best practices of depart-
ments.

• All departments adhere to the standard process.

A.6 Management layers are minimized

Type of information: business

Quality attributes: reliability, usability, efficiency, maintainability

Rationale:

• Elimination of management layers minimizes overhead costs.
• By eliminating management people tend to take more responsibility for their

work, which increases the quality and efficiency.

Implications:

• There are as few layers of management as possible.
• The ultimate objective is to have self-directed teams throughout an organizational

unit with no layers of management at all.
• People who perform the actual work have responsibility for making decisions.

A.8 Routine tasks are automated 159

A.7 Tasks are designed around outcome

Type of information: business

Quality attributes: reliability, usability, efficiency

Rationale:

• By making workers responsible for the delivery of the outcome they feel more
involved and tend to take more responsibility for their work, which increases the
quality and efficiency.

• Giving people more responsibility also increases their job satisfaction.

Implications:

• Tasks are designed around an objective or outcome instead of a single function.
• Workers have autonomy over when and how to perform the tasks they are lined

up for.

A.8 Routine tasks are automated

Type of information: business, application

Quality attributes: reliability, efficiency

Rationale:

• Routine tasks require relatively little specific knowlegde and can be automated
fairly easy.

• Automated tasks are more efficient in time and costs, and less error-prone than
manual tasks.

Implications:

• The knowledge required to perform certain tasks is analysed, and embedded in
an IT system when it can easily be formalized.

• Employees are assigned to tasks that require complex knowledge.

160 A Principles catalogue

A.9 Primary business processes are not disturbed by
implementation of changes

Type of information: business, application, technology

Quality attributes: reliability

Rationale:

• Primary business processes are the core of the organization, and disturbances in
these have a major impact on the organization.

• Organizations change continuously, and frequent disturbances are unacceptable.

Implications:

• New processes and systems are not employed until they have been tested and
approved.

• Downtime of applications is minimized during deployment, and preferably per-
formed outside business hours.

A.10 Components are centralized

Type of information: business, data, application, technology

Quality attributes: efficiency, maintainability

Rationale:

• Central components are easier to manage since management can be targeted at
one location.

• Centralization eases consolidation and standardization.
• Centralization can benefit from economies of scale.

Implications:

• Components are placed centrally, unless requirements dictate a decentralized ap-
proach.

A.12 Channel-specific is separated from channel-independent 161

A.11 Front-office processes are separated from back-office
processes

Type of information: business, data, application

Quality attributes: maintainability

Rationale:

• Front-office processes are different from back-office processes: the first is fo-
cused on customer-intimacy whilst the other is focused on operational excel-
lence.

• Front-office processes require different skills and knowledge than back-office
processes.

• Separating back-office processes from front-office processes allows reusing these
back-office processes.

Implications:

• Processes are dedicated to the front-office or back-office.
• Disengagement between front-office and back-office processes is clearly defined.
• Front-office applications do not contain back-office logic.

A.12 Channel-specific is separated from channel-independent

Type of information: business, data, application

Quality attributes: reliability, efficiency, maintainability, portability

Rationale:

• A lot of business activity is independent of the channel (telephone, mail, Internet,
office) through which customers are contacted, and can be shared for multiple
channels.

• Data is ideally available through all channels, which is only possible when the
data is managed in channel-independent processes.

162 A Principles catalogue

Implications:

• The activities at the borders of an end-to-end business process are specific to a
channel and communicate with other activities in a channel-independent format.

• Applications have dedicated components for channel-specific processing, that
interface with components that provide channel-independent business logic and
data.

A.13 The status of customer requests is readily available inside
and outside the organization

Type of information: data, application

Quality attributes: usability

Rationale:

• Customers want to know when to expect a a response to their request.
• The status of a customer request is also important for the internal organization,

since service levels must be met.

Implications:

• The status of customer requests is administered in a central administration and
updated when changed.

• The up-to-date status is available to customers via electronic channels (telephone,
website).

A.14 Data is provided by the source

Type of information: data, application

Quality attributes: reliability, efficiency

Rationale:

• When those that have the data also provide it, unnecessary intermediate layers
(e.g. people or IT components) are prevented.

• The performance and reliability of the data also increases, since each link in the
chain adds performance overhead and potential errors.

A.16 Data is captured once 163

Implications:

• Electronic forms are provided to customers to enter their requests.
• Applications acquire data from the source application.

A.15 Data is maintained in the source application

Type of information: data, application

Quality attributes: reliability, efficiency, maintainability

Rationale:

• Maintaining data in multiple places introduces risks of inconsistencies, which is
undesirable at best.

• It is inefficient to gather similar data from multiple places and resolve any poten-
tial conflicts.

Implications:

• The source application for all types of data is known.
• Applications acquire data from the source application.
• Replication of data is accepted when properly motivated.
• Replicas are never updated, unless a controlled synchronization mechanism is in

place.
• Data is not copied before it is finalized.

A.16 Data is captured once

Type of information: data, application

Quality attributes: usability, efficiency

Rationale:

• It is inefficient and user-unfriendly to ask for the same data twice or more.

164 A Principles catalogue

Implications:

• Before acquiring data it is first determined whether the data is already available.
• Data that is already available is pre-filled in forms.
• Applications expose shared data for reuse by other applications.

A.17 Data is consistent through all channels

Type of information: data

Quality attributes: usability, efficiency

Rationale:

• This enables sharing data more effectively, through all channels (e.g. branch,
Internet, mail).

• It enables users to work at their preferred appropriate time, location, and device
for given task.

Implications:

• Data updates are shared across channels.
• Data is stored in a channel-independent format.

A.18 Content and presentation are separated

Type of information: data

Quality attributes: usability, maintainability

Rationale:

• Content that is separated from presentation can be reused in mutliple channels.
• If content and presentation are separated they can be authored independently

from each other.

A.20 Data that is exchanged adheres to a Canonical Data Model 165

Implications:

• All data that is acquired is translated to a presentation independent form.
• Separate authoring environments exists for content and presentation.
• Dedicated IT systems and/or IT components are used for enriching content with

presentation data.

A.19 Data is stored and exchanged electronically

Type of information: data

Quality attributes: reliability, efficiency

Rationale:

• Storing data in electronic form makes sharing the data much easier.
• Data that is available electronically can be manipulated and retrieved in struc-

tured form and makes it available for automated handling in IT systems.
• Electronic data exchange is much more efficient and less error-prone than manual

exchange.

Implications:

• Manual re-entry and/or exchange of data is prevented, especially when volumes
are high.

• Physical data is transformed in electronic form, structured and attributed with the
proper meta-data.

A.20 Data that is exchanged adheres to a Canonical Data Model

Type of information: data

Quality attributes: reliability, maintainability

Rationale:

• Using common data definitions prevents unnecessary translations and semantic
differences.

• A Canonical Data Model standardizes the definitions of data that is exchanged
within the organization.

166 A Principles catalogue

Implications:

• A Canonical Data Model exists and is managed centrally.
• All messages exchanged between applications use the schemas that codify the

Canonical Data Model.
• Applications that are unable to adhere to the Canonical Data Model rely on

integration middleware to translate their application-specific data model to the
Canonical Data Model.

A.21 Data is exchanged in real-time

Type of information: data

Quality attributes: usability, efficiency

Rationale:

• Users expect the most recent data in most of their work processes.
• Decisions made based on old data have a lower accuracy and may lead to errors

and/or inconsistencies.

Implications:

• All changes to data are processed immediately.
• Data changes are propagated immediately to all other IT systems that have a copy

of the data.
• Batch processes are prevented.

A.22 Bulk data exchanges rely on ETL tools

Type of information: data, technology

Quality attributes: efficiency

Rationale:

• ETL tools provide the most efficient solution for bulk data exchanges, minimiz-
ing the time needed for the exchange.

• ETL tools are proven solutions for bulk data exchanges.

A.24 Reporting and analytical applications do not use the operational environment 167

Implications:

• Data that is larger than 1 MB is exchanged using ETL tools.

A.23 Documents are stored in the document management system

Type of information: data

Quality attributes: functionality, reliability, usability

Rationale:

• This allows finding and retrieving documents from one location and sharing them
between workers.

• Electronic storage of documents prevents physical handing of documents.
• Generic measures for security and archiving the documents can be enforced by

the document management system.

Implications:

• There is a document management system that is available to all users.
• All incoming physical documents are scanned and stored in the document man-

agement system.
• All outgoing documents are stored in the document management system.
• There is no other location than the document management system for storing

documents.
• Records management functionality is configured in the document management

system.

A.24 Reporting and analytical applications do not use the
operational environment

Type of information: data, application

Quality attributes: reliability, efficiency, maintainability

168 A Principles catalogue

Rationale:

• Reporting from a separate environment prevents interruptions and delays in the
operational environment.

• Reports often require data that is spread over multiple applications.
• Analytical applications require their own data, and using a separate environment

prevents polluting the operational data.

Implications:

• A data warehouse environment is created that is loaded periodically.
• Reports are not based on current data, but on data that has been loaded some time

earlier.

A.25 Applications have a common look-and-feel

Type of information: application

Quality attributes: usability

Rationale:

• Inconsistency leads to a lower productivity and irritation of users.
• A consistent user interface optimally supports the business process.

Implications:

• User Interface guidelines exist and are applied consistently.
• Applications are custom developed to support the user interface guidelines.
• The application of packaged applications is limited.

A.26 Applications do not cross business function boundaries

Type of information: application

Quality attributes: maintainability, portability

A.28 Applications are modular 169

Rationale:

• This allows business functions (e.g. procurement, sales, production, et cetera.) to
operate as independently as possible.

• It shields business functions from changes in other business functions.

Implications:

• Applications that provide functionality in multiple business functions are split
into multiple applications.

• Packaged applications have separate instances for separate business functions.
• Dependencies between business functions are clearly defined and drive integra-

tion.

A.27 Applications respect logical units of work

Type of information: data, application

Quality attributes: reliability

Rationale:

• Business processes consist of logical units of work that need to succeed or fail as
a whole.

• Inconsistency of data should be prevented.
• Logical units of work provide well-defined moments in time in which data is

consistent.

Implications:

• Applications use technical transactions or other mechanisms (e.g. compensating
actions) to ensure that all functionality related to a logical unit of work is com-
mitted as a whole or rolled back otherwise.

• Application functionality (e.g. application services) is defined to resemble logical
units of work.

A.28 Applications are modular

Type of information: application

170 A Principles catalogue

Quality attributes: reliability, maintainability, portability

Rationale:

• Modularized applications are much easier to develop, maintain, reuse and mi-
grate than monolithical applications.

• Modularized applications are also more reliable since changes have a more lo-
calized and therefore predictable impact.

Implications:

• Applications are decomposed into components that have limited and acyclical
dependencies on other components.

• Application components are units of configuration management and deployment.
• Application components have a logical and documented layered structure, where

lower level layers are independent of higher level layers.
• Presentation logic, process logic , business logic and data exist in separate layers

or components.

A.29 Application functionality is available through an enterprise
portal

Type of information: application

Quality attributes: usability

Rationale:

• A portal provides functionality that is targeted at the role and personal prefer-
ences of the user, optimally supporting users in their work.

• A portal provides a single point of access, and integration of functionality at the
glass, relieving users from manually finding and integrating functionality.

• A portal can provide single sign-on to users.

Implications:

• There is an Enterprise Portal that provides access to all application functionality.
• All applications are portal-enabled, exposing their functionality as portlets/web

parts.

A.31 Application interfaces are explicitly defined 171

A.30 Applications rely on one technology stack

Type of information: application, technology

Quality attributes: efficiency, maintainability

Rationale:

• Components within an application are tightly coupled.
• By using one technology stack development and maintenance is more efficient

since the knowledge required and transformations needed are minimized.
• Integration within one technology stack is much more efficient and leads to a

better performance.

Implications:

• One programming language, development environment, application server and
database management system is defined as standard and used for all components
within the application.

• There is no need for integration middleware and/or Web Services within the ap-
plication.

A.31 Application interfaces are explicitly defined

Type of information: application

Quality attributes: maintainability

Rationale:

• Explicit interfaces ensure that dependencies between applications are made ex-
plicit.

• Explicit interfaces are needed in order to determine whether the interface fulfils
functional and non-functional requirements.

• Explicit interfaces are a prerequisite for change control, and thereby a controlled
evolution of application interfaces.

Implications:

• There is a functional and technical specification of all application interfaces.
• Application interfaces are administered centrally.

172 A Principles catalogue

A.32 Proven solutions are preferred

Type of information: application, technology

Quality attributes: functionality, reliability, maintainability

Rationale:

• Proven solutions minimize operational risks (stability, performance, security) be-
cause they have been tested in multiple situations.

• Proven solutions have a large installed base, which provides much more confi-
dence in current and future support of the product.

Implications:

• Solutions are only acquired when there are multiple references of clients in the
same region and with a similar business.

• The track-record of the supplier is assessed before solutions are acquired.

A.33 IT systems are scaleable

Type of information: application, technology

Quality attributes: efficiency

Rationale:

• Future volumes are hard to predict, but must be supported.
• Enable the business to adapt to unpredictable market opportunities.
• Buying IT systems for the maximum future capacity is relatively expensive since

the capacity is not needed directly and capacity will be cheaper in the future.

Implications:

• IT systems are selected that can be scaled horizontally, or otherwise vertically.
• IT systems are sized at the current volumes, and volume growth is monitored

periodically.
• ICT and business units need to agree an appropriate over-capacity level, to cater

for short-term, unpredicted business growth requirements.

A.35 Components have a clear owner 173

A.34 Only in response to business needs are changes to IT
systems made

Type of information: application, technology

Quality attributes: efficiency

Rationale:

• This will foster an atmosphere where the information environment changes in
response to the needs of the business, rather than having the business change in
response to IT changes.

• This is to ensure that the purpose of the information support is the basis for any
• proposed change.
• Unintended effects on business due to IT changes will be minimized.

Implications:

• Changes in implementation will follow full examination of the proposed changes
using the enterprise architecture.

• We do not fund a technical improvement or system development unless a docu-
mented business need exists.

• Change management processes confor ming to this principle will be developed
and implemented.

A.35 Components have a clear owner

Type of information: business, data, application, technology

Quality attributes: reliability, maintainability

Rationale:

• Without a clear ownership of components it is unclear who decides in and pays
for changes in the component.

• Changes to components should be streamlined in order to ensure their quality
and (re)usability.

174 A Principles catalogue

Implications:

• All business components (processes, services, information) and IT components
(data, services, applications and infrastructure) are assigned an owner.

• The owner has a clear stake in the component and has budget for adapting the
component to requirements and needs.

A.36 IT systems are standardized and reused throughout the
organization

Type of information: application, technology

Quality attributes: reliability, efficiency, maintainability, portability

Rationale:

• Standardized systems are cheaper because redundant investments are prevented,
and economies of scale can be exploited.

• It is easier to focus attention, resources, knowledge and investments in a stan-
dardized environment.

Implications:

• Standards are determined for all IT functionality.
• IT systems do not provide functionality that overlaps with other IT systems.
• IT systems are reused throughout the organization by all business units.
• Concessions may be needed in user requirements.

A.37 IT systems adhere to open standards

Type of information: data, application, technology

Quality attributes: maintainability, portability

Rationale:

• Open standards ease the integration of IT systems.
• Open standards prevent a vendor lock-in.

A.39 IT systems are available at any time on any location 175

Implications:

• Standards are selected based on their maturity and relevance to the organization.
• Support for open standards is an important criterion in the acquisition of IT sys-

tems.
• Application interfaces that use proprietary standards are wrapped into open

standards-based interfaces.

A.38 IT systems are preferably open source

Type of information: application, technology

Quality attributes: efficiency, maintainability

Rationale:

• Open source software prevents vendor lock-in.
• Open source software is much cheaper to procure and maintain than commercial

software.

Implications:

• When functionality of an open source system is equivalent to commercial sys-
tems that are available in the marker, the open source system is selected.

A.39 IT systems are available at any time on any location

Type of information: application, technology

Quality attributes: reliability, usability, efficiency

Rationale:

• People perform their work at various locations (in the office, at the client, at
home) and at various times (day and evening) and expect to be supported in all
these locations.

• It is inefficient to reserve fixed office space and facilities (e.g. workstations) for
employees when they are mobile.

176 A Principles catalogue

Implications:

• Software is server-based, allowing access to them from all locations.
• Strong authentication services are available to ensure secure access to applica-

tions from other locations.

A.40 IT systems are sustainable

Type of information: technology

Quality attributes: efficiency

Rationale:

• IT contributes significantly to to the polution of the Earth due to energy con-
sumption and the generation of waste.

• There is a general awareness that measures need to be taken to protect our natural
resources and prevent global warming as much as we can.

Implications:

• Energy consumption and the usage of environment-friendly materials are criteria
in the acquisition of new IT systems.

• Energy consumption is explicitly taken into account in the design of IT environ-
ments such as data centers.

A.41 Processes are supported by a Business Process
Management system

Type of information: application, technology

Quality attributes: efficiency, maintainability

Rationale:

• Explicitly defining and automating processes eases process standardization.
• Automation of business processes increases efficiency.
• This allows changing processes independently from application functionality.
• Business Process Management systems provide management information, and

thereby provide insight in process execution.

A.43 IT systems communicate through services 177

Implications:

• Business processes are modelled explicitly using business process modeling
tools.

• Business processes run in the Business Process Management system.

A.42 Presentation logic, process logic and business logic are
separated

Type of information: application

Quality attributes: maintainability

Rationale:

• These forms of logic are inherently different, and it should be possible to change
them independently.

• By separating these forms of logic they can be reused independently from each
other.

Implications:

• Presentation logic, process logic and business logic are implemented in separate
application components.

• Components have a layered dependency structure, with minimal dependencies.
• Data is only managed in components that implement the business logic.

A.43 IT systems communicate through services

Type of information: data, application, technology

Quality attributes: efficiency, maintainability, portability

Rationale:

• Services can be reused, which leads to less interfaces and is thus much more
efficient.

• By reusing services new solutions can be assembled much faster, resulting in a
shorter time-to-market.

178 A Principles catalogue

Implications:

• Services are defined for all data and functionality that IT systems provide to other
IT systems.

• Services are defined as reusable as possible, shielding implementation details and
adhering to interface standards, formats and protocols.

• Services are published in a service directory where they can be found for reuse.

A.44 Reuse is preferable to buy, which is preferable to make

Type of information: application, technology

Quality attributes: efficiency, maintainability

Rationale:

• Reusing IT systems that are already available is often the simplest and cheapest
solution, assuming that the IT system can be reused.

• Custom development of IT systems is often very expensive, especially mainte-
nance is taken into account.

• Buying standard IT solutions is cheaper than custom building them, as long as
they are not adapted, and maintenance is left to the supplier.

• Use available expertise from the market.

Implications:

• When functionality is required existing IT systems in the organization are first
evaluated and used, unless they do not exist and/or are a mismatch to the required
functionality.

• Package selection criteria exist. Custom developing systems is the last resort and
should be prevented as much as possible.

A.45 IT systems support 24*7 availability

Type of information: application, technology

Quality attributes: reliability

A.47 Sensitive data is exchanged securely 179

Rationale:

• Channels such as the Internet require functionality to be available around the
clock.

• It should be prevented that applications have inherent restrictions to be available
through these channels.

Implications:

• Batch and support windows are minimized.
• Service level agreements are aligned to 24*7 availability requirements.
• Sourcing partners have been selected based on the ability to provide 24*7 sup-

port.
• Applications support hot backup.

A.46 IT systems are selected based on a best-of-suite approach

Type of information: application, technology

Quality attributes: efficiency, maintainability

Rationale:

• A suite of IT systems from one vendor provides the highest level of integration,
and any integration problems that arise should be solved by the vendor.

• Buying a suite from one vendor provides opportunities to get a high discount.

Implications:

• A limited number of vendors that provide broad suites have been selected strate-
gically.

• There are environments specifically targeted to the vendor suites.
• New functionality required is realized with the appropriate IT system in the suite.

A.47 Sensitive data is exchanged securely

Type of information: data

Quality attributes: functionality

180 A Principles catalogue

Rationale:

• The confidentiality and integrity of sensitive data needs to be ensured.
• Security attacks are often performed from inside the organization.

Implications:

• Data is associated with a security classification.
• Sensitive data is encrypted when transported accross the network, preferably at

the content level.
• Sender and receiver mutually authenticate before sensitive data is exchanged.

A.48 IT Systems may under no circumstances revert to insecure
mode

Type of information: application, technology

Quality attributes: functionality

Rationale:

• Confidentiality and integrity must be maintained under all circumstances.
• When many systems fail in any way, they revert to insecure behaviour. In such

systems, attackers only need to cause the right kind of failure, or wait for the
right kind of failure to happen.

Implications:

• Systems that fail must not accept any further inputs.
• Operational Management measures must be taken to detect system failure and

act timely.

A.49 Management of IT systems is automated as much as
possible

Type of information: application, technology

Quality attributes: reliability, efficiency, maintainability

A.51 Access rights must be granted at the lowest level necessary for performing the required operation181

Rationale:

• By minimising manual intervention costs are reduced.
• Human tasks are error-prone and self-management may decrease error levels.

Implications:

• All systems that require remote operation and system management must be net-
work attached and can be managed remotely.

• Systems must be capable of measurement by providing metrics and facilities for
instrumentation.

• System management functionality is included in applications, including the abil-
ity to recover from errors and provide degraded functionality in case of interrup-
tions.

A.50 End-to-end security must be provided using multiple
defensive strategies

Type of information: application

Quality attributes: functionality

Rationale:

• Confidentiality, integrity and availability must be ensured whenever one layer is
compromised.

• Security that is not end-to-end might be compromised in the intermediate layers.

Implications:

• Multiple security measures are taken to secure an object.
• Multiple security zones are defined in the network.
• Data that is exchanged is encrypted at the content level, rather than at the trans-

port level.

A.51 Access rights must be granted at the lowest level necessary
for performing the required operation

Type of information: application

182 A Principles catalogue

Quality attributes: functionality

Rationale:

• Providing users or systems with more access rights or for a longer period than
strictly necessary introduces unnecessary risk of abuse.

• Management of permissions is more complex when excessive access right are
granted because they do not match the rights needed.

Implications:

• Users do not log in using administrator accounts.
• Access rights are based on the role of the user.
• Access should be granted only for the amount of time necessary.
• Access rights that are no longer needed are revoked.

A.52 Authorizations are role-based

Type of information: application, technology

Quality attributes: maintainability

Rationale:

• A role based authorization model is less sensible for changes in the organizational
structure.

• Users with the same role usually have the same authorizations, which makes a
role-based model more efficient to maintain.

Implications:

• There is a central administration of roles which is the basis for all authorizations.
• Roles are related to responsibilities and not to specific applications.

A.53 The identity management environment is leading for all
authentications and authorizations

Type of information: application, technology

A.54 Security is defined declaratively 183

Quality attributes: functionality, maintainability

Rationale:

• The identity management environment ensures that authorizations are defined
and enforced in an efficient, reliable, traceable and manageable manner.

• The identity management environment enforces that all access to IT systems is
authenticated, that authentications are performed uniformly and that users have
to authenticate only once.

Implications:

• There is a central administration of identities, roles and authorizations.
• There is a provisioning environment that propagates user, role and authorization

data to target environments.
• There are authentication and authorization services that enforce access to IT sys-

tems.

A.54 Security is defined declaratively

Type of information: application, technology

Quality attributes: functionality, maintainability

Rationale:

• Security is a cross-cutting concern that should be defined only once for maintain-
ability and consistency reasons.

• Security should not depend (solely) upon the discipline of application developers
to embed security controls in programming code.

Implications:

• Security functionality is not hard-coded in programming code.
• Infrastructural components are used for authentication and authorization that en-

force security policies.

184 A Principles catalogue

A.55 Access to IT systems is authenticated and authorized

Type of information: application, technology

Quality attributes: functionality

Rationale:

• People should not have access to data and/or functionality for which they are not
authorized.

• Preventing unauthorized access requires measures in all IT systems involved (a
chain is as strong as its weakest link).

Implications:

• Users are identified and authenticated before using an IT system, and the users
identity is used to determine access rights.

• Automated access to IT systems (e.g. through electronic messaging) also relies
on authentication and authorization.

A.56 Integration with external IT systems is localized in
dedicated IT components

Type of information: application, technology

Quality attributes: functionality, maintainability

Rationale:

• Using dedicated IT components for integration with external IT systems is more
efficient and manageable since interface costs are spent only once, and changes
can be limited to one component.

• Dedicated IT components can provide a first line of defense for security attacks.
• B2B integration is often more complex due to special interchange protocols, for-

mats and agreements which requires dedicated middleware.

Implications:

• Applications contain IT components dedicated to integration in the business logic
layer, which can be used from the presentation layer.

• IT components are selected and used to support the interchange protocols, for-
mats and agreements that are needed for integration with other organizations.

A.58 All messages are exchanged through the Enterprise Service Bus 185

A.57 Application development is standardized

Type of information: application

Quality attributes: reliability, maintainability

Rationale:

• Application development is labor intensive, error prone and relatively costly.
• The business should focus time, money, people and knowledge on business inno-

vations.

Implications:

• Software development standards and guidelines exist.
• Standard software factories, based on software generation techniques are em-

ployed.
• Declarative techniques are used for defining logic, such as business rule and pro-

cess languages.

A.58 All messages are exchanged through the Enterprise Service
Bus

Type of information: data, application, technology

Quality attributes: maintainability, portability

Rationale:

• The Enterprise Service Bus shields IT systems from changes in other systems,
such as changes in location, data model or technology.

• Manageability of message exchanges increases since all exchanges are defined
in the bus, and the bus can guard the quality of service.

• Message exchanges defined in the bus can be reused by other applications.

Implications:

• Applications do not send messages directly to other applications.
• An additional layer of definition is introduced for all message exchanges.

186 A Principles catalogue

A.59 Rules that are complex or apt to change are managed in a
business rules engine

Type of information: application

Quality attributes: maintainability

Rationale:

• Changing business rules in a busines rules engine is easier than changing rules
that are hard-coded.

• Business rules engines require less technical knowledge and can be used by busi-
ness analists.

• Using business rules engines eases the reuse of business rules in different appli-
cations.

Implications:

• Business rules are explicitly identified and documented in the analysis phase.
• The complexity and changeability of every business rule is determined.
• Separate business rules engines exist for all relevant types of business rules (e.g.

process rules, accounting rules, acceptance rules).
• The business itself can change business rules, but they are tested before they are

implemented.

Appendix B
Architecture principles in TOGAF

Abstract We believe that TOGAF is an important standard in the architecture field,
given that it is the most elaborate architecture method that is freely available to
everyone. This Appendix therefore shows how architecture principles are handled
in TOGAF, and in the Architecture Development Method (ADM) in particular. In
addition, a mapping between our generic process and the TOGAF ADM is provided.

B.1 Architecture principles in TOGAF

Architecture principles are touched upon in various Chapters of the TOGAF spec-
ification (TOGAF, 2009), including those that describe the ADM. There is even a
Chapter that is entirely dedicated to architecture principles. It provides general in-
formation on the topic, provides guidance on how to handle architecture principles
in the ADM and includes a catalog of architecture principles.

TOGAF positions architecture principles as “general rules and guidelines, in-
tended to be enduring and seldom amended, that inform and support the way in
which an organization sets about fulfilling its mission”. It perceives architecture
principles as a special form of IT principles that relate to architecture work. IT prin-
ciples in turn are a special form of enterprise principles that provide guidance on the
use and deployment of IT resources and assets. Architecture principles are typically
informed by the enterprise principles and IT principles. We believe that TOGAF
has a rather limited view on architecture principles by perceiving them as specific
IT principles. We believe that enterprise architecture should cover all architecture
domains, and not just IT.

Important sources for architecture principles identified in TOGAF are: enterprise
mission and plans, enterprise strategic initiatives, external constraints, current sys-
tems and technology and computer industry trends. TOGAF does not provide any
guidance in exactly how these sources are translated into architecture principles. It
states that a good set of principles will be founded in the beliefs and values of the
organization and expressed in language that the business understands and uses. Prin-

187

188 B Architecture principles in TOGAF

ciples should be few in number, future-oriented, and endorsed and championed by
senior management. Also, a number of quality characteristics for architecture prin-
ciples are provided: understandable, robust, complete, consistent and stable. Archi-
tecture principles should have a name, statement, rationale and implications.

B.2 Architecture principles in TOGAF ADM

The Architecture Development Method (see Figure B.1) “describes a method for
developing an enterprise architecture”. It provides a number of architecture devel-
opment phases in a cycle, as an overall process template for architecture develop-
ment activity. It also provides a narrative of each architecture phase, describing the
phase in terms of objectives, approach, inputs, steps, and outputs. The inputs and
outputs Sections provide an informal definition of the architecture content struc-
ture and deliverables. The ADM does not prescribe any set of specific enterprise
architecture deliverables; therefore it may be used in conjunction with the set of
deliverables of another architecture framework. The method is iterative in nature,
allowing iterations in the whole process, between phases, and within a phase. All
phases are supported by a the requirement management process. The ADM consists
of a eleven phases, a number of which explicitly mention architecture principles.
They are first defined in the preliminary phase, and reviewed and extended in the
architecture vision, business architecture, information system architecture and tech-
nology architecture phases. Changes to them are handled in the architecture change
management phase.

The preliminary phase builds the foundation for the architecture and is where the
main architecture principles are described. In terms of TOGAF one of the objec-
tives of this phase is to “to define the architecture principles that will form part of
the constraints on any architecture work”. Architecture principles are positioned as
derivatives of business principles, which should be defined outside the architecture
function. However, depending on how such principles are defined and promulgated
within the enterprise, it may be possible for the set of architecture principles to
also restate, or cross-refer to a set of business principles, business goals, and strate-
gic business drivers defined elsewhere within the enterprise. The architect normally
needs to ensure that the definitions of these business principles, goals and strategic
drivers are current, and to clarify any areas of ambiguity. The architecture principles
are identified and established after the organizational context is understood and a tai-
lored architecture framework is in place. Business and architecture principles may
also influence the order of phases, which is determined in the preliminary phase.
For example, business principles may dictate that the enterprise be prepared to ad-
just its business processes to meet the needs of a packaged solution, so that it can
be implemented quickly to enable fast response to market changes. Just as all other
architecture artifacts, architecture principles are stored in the architecture repository
where they can be retrieved by all architecture stakeholders.

B.2 Architecture principles in TOGAF ADM 189

C
Information

Systems
Architecture

F
Migration
Planning

A
Architecture

Vision
B

Business
Architecture

D
Technology
Architecture

E
Opportunities
and Solutions

G
Implementation

Governance

Preliminary

H
Architecture

Change
Management

Requirements

Fig. B.1 Architecture Development Methodology, from (TOGAF, 2009)

The goal of the architecture vision phase is to translate the organizational context
into a first draft of the architecture; the architecture vision. The architecture vision
provides the sponsor with a key tool to sell the benefits of the proposed capabil-
ity to stakeholders and decision-makers within the enterprise. Architecture vision
describes how the new capability will meet the business goals and strategic objec-
tives and address the stakeholder concerns when implemented. It is concerned with
ensuring that the architecture principles definitions are current, and clarifying any
areas of ambiguity. If not already defined in the preliminary phase, it entails defining
the architecture principles for the first time.

The ADM provides separate phases for the definition of specific architecture do-
mains: business architecture, information systems architecture and technology ar-
chitecture. These phases will use the architecture principles that were defined in the
preliminary and architecture vision phases to build the specific architecture domains
upon. Also, they may work upon architecture principles that are specific to the ar-
chitecture domain: business architecture principles, data architecture principles, ap-
plication architecture principles and technology architecture principles. Note that
TOGAF is not very strict in naming and often leaves out the ”architecture” part in
these principles. The consequence is that the distinction between ”business princi-

190 B Architecture principles in TOGAF

ples” and ”business architecture principles” is not always clear. The three phases
follow a generic pattern of steps:

1. Select reference models, viewpoints, and tools
2. Develop baseline architecture description
3. Develop target architecture description
4. Perform gap analysis
5. Define roadmap components
6. Resolve impacts across the architecture landscape
7. Conduct formal stakeholder review
8. Finalize the architecture
9. Create architecture definition document

Architecture principles are mentioned in the first step where reference models,
viewpoints, and tools are selected. In this step architecture principles are reviewed
and validated, and may even be generated. This is an indication that architecture
principles in TOGAF may be hierarchical; general architecture principles may be
specialized into architecture principles for the specific architecture domains (busi-
ness architecture principles, data architecture principles, et cetera). Also, there is
a reference to ”domain-specific” architecture principles in this step, as a type of
requirement. This acknowledges that architecture principles may also come from
other sources. In the fourth step of the architecture domain phases a gap analysis
is performed, where the architecture is verified for internal consistency and accu-
racy. This step also validates that the models support the principles, objectives, and
constraints.

The architecture change management phase is responsible for managing change
to the architecture. An explicit objective of this phase is to assess changes to the
framework and principles set up in previous phases. Although the ADM is not ex-
plicit about how architecture principles are handled in this phase, it does provide
a lot of useful information about handling architecture change in general. It shows
that drivers for change can be strategic (top-down), operational (bottom-up) or come
from project experiences. Another way to classify drivers is to distinguish between
technology-related and business drivers.

B.3 Mapping the generic process to TOGAF’s ADM

Given that TOGAF is an important standard in the architecture field, it is interest-
ing to see how our generic process fits onto the TOGAF Architecture Development
Method. Table B.1 describes how we see the mapping between the generic activities
and the ADM phases. Not all mappings can be traced back to specific texts in TO-
GAF, since TOGAF does not make the handling of architecture principles explicit
in all phases and steps. What one can also see from the diagram is that our generic
process is more detailed than the ADM. The latter does not distinguish between de-

B.3 Mapping the generic process to TOGAF’s ADM 191

termining, specifying, classifying and validating principles. Also, the actual usage
of architecture principles and their governance is not explicit in the ADM.

Pr
el

im
in

ar
y

A
rc

hi
te

ct
ur

e
vi

si
on

B
us

in
es

s
ar

ch
ite

ct
ur

e
In

fo
rm

at
io

n
sy

st
em

ar
ch

ite
ct

ur
e

Te
ch

no
lo

gy
ar

ch
ite

ct
ur

e
O

pp
or

tu
ni

tie
s

an
d

so
lu

tio
ns

M
ig

ra
tio

n
pl

an
ni

ng
Im

pl
em

en
ta

tio
n

go
ve

rn
an

ce
A

rc
hi

te
ct

ur
e

ch
an

ge
m

an
ag

em
en

t

Determine drivers 4 4 4 4 4 4
Determine principles 4 4 4 4 4

Specify principles 4 4 4 4 4
Classify principles 4 4 4 4 4

Validate and accept principles 4 4 4 4 4
Apply principles 4 4 4 4 4 4 4

Manage compliance 4
Handle changes 4

Table B.1 Mapping the generic process to TOGAF’s ADM

References

Achterbergh J, Vriens D (2009) Organisations: Social Systems Conducting Experi-
ments. Springer, Berlin, Germany, ISBN-13: 9783642001093

Aitken C (2010) EA Management Patterns for Future State Design. In: 2nd
European Workshop on Patterns for Enterprise Architecture Management
(PEAM2010), Paderborn, Germany

Althaus C, Bridgman P, Davis G (2007) Australian Policy Handbook. Allen & Un-
win

Amdahl G, Blaauw G, Brooks F (1964) Architecture of the IBM System/360. IBM
Journal of Research and Development

Anderson J (1975) Public Policy–making. Praeger, New York, New York
Apostel L (1960) Towards the formal study of models in the non-formal sciences.

Synthese 12:125–161
Ashby W (1956) An Introduction to Cybernetics. Chapman & Hall, London, United

Kingdom, ISBN-10: 0412056704
Beer S (1985) Diagnosing the System for Organizations. Wiley, New York, New

York
Beijer P, De Klerk T (2010) IT Architecture: Essential Practice for IT Business

Solutions. Lulu
Binnendijk B, Lommers J, Roovers E (2010) Vastleggen van architectuurprincipes.

Via Nova Architectura URL http://www.via-nova-architectura.
org, in Dutch

BIS (2004) Basel II: International Convergence of Capital Measurement and Capital
Standards: A Revised Framework. Tech. rep., Bank for International Settlements,
Basel, Switzerland

Bloesch A, Halpin T (1996) ConQuer: A Conceptual Query Language. In: Thalheim
B (ed) Proceedings of the 15th International Conference on Conceptual Modeling
(ER‘96), Cottbus, Germany, Springer, Berlin, Germany, Lecture Notes in Com-
puter Science, vol 1157, pp 121–133

BMM (2006) Business Motivation Model (BMM) Specification. Tech. Rep. dtc/06–
08–03, Object Management Group, Needham, Massachusetts

193

194 References

Bosma H (2007) Het belang van ontwerpen voor organisaties. In: Landelijk Archi-
tectuur Congres 2007, Nieuwegein, The Netherlands, In Dutch

Bot H (2004) Blauwdruk moet groener: noodzaak voor inspirerende en motiverende
rol architect. Informatie (April), In Dutch

Bouwens S (2008) DYA Architectuurprincipes – Deel 1: Basics (DYA Architecture
Principles – Part 1: Basics). White paper, Sogeti, The Netherlands, In Dutch

BPMN (2008) Business process modeling notation, v1.1. OMG Available Specifi-
cation OMG Document Number: formal/2008-01-17, Object Management Group

Buckl S, Ernst A, Lankes J, Matthes F (2008) Enterprise Architecture Management
Pattern Catalog - Version 1. Technical Report TB 0801, Technische Universität
München, Garching bei München, Germany

Buitenhuis P (2007) Fundamenten van het principle (Foundations of Principles).
Master’s thesis, Institute for Computing and Information Sciences, Radboud Uni-
versity Nijmegen, Nijmegen, The Netherlands, in Dutch

Bunge M (1979) A World of Systems, Treatise on Basic Philosophy, vol 4. D. Reidel
Publishing Company, Dordrecht, The Netherlands

Campbell L, Halpin T, Proper H (1996) Conceptual Schemas with Abstractions –
Making flat conceptual schemas more comprehensible. Data & Knowledge Engi-
neering 20(1):39–85

Capgemini (2009) TechnoVision 2012 – Bringing Business Technology to Life. Re-
search report, Capgemini, Utrecht, The Netherlands

Chorus G, Janse Y, Nellen C, Hoppenbrouwers S, Proper H (2007) Formalizing Ar-
chitecture Principles using Object–Role Modelling. Via Nova Architectura URL
http://www.via-nova-architectura.org

Chung L, Gross D, Yu E (1999) Architectural design to meet stakeholder require-
ments. In: Donohue P (ed) First Working IFIP Conference on Software Architec-
ture (WICSA1), San Antonio, Texas, Kluwer, Deventer, The Netherlands, Soft-
ware Architecture, pp 545–564

CIAO (2010) Enterprise Engineering – The Manifesto. Tech. rep., The
CIAO! Network, URL http://ciaonetwork.org/publications/
EEManifesto.pdf

CMMI (2006) CMMI for Development Version 1.2. Tech. Rep. CMU/SEI-2006-
TR-008, Carnegie Mellon University/Software Engineering Institute, Pittsburgh

Creasy P, Proper H (1996) A Generic Model for 3–Dimensional Conceptual Mod-
elling. Data & Knowledge Engineering 20(2):119–162

Davenport T, Hammer M, Metsisto T (1989) How executives can shape their com-
pany’s information systems. Harvard Business Review 67(2):130–134, DOI
10.1225/89206

De Caluwé L, Vermaak H (2003) Learning to Change: A Guide for Organiza-
tion Change Agents. Sage publications, London, United Kingdom, ISBN-10:
9014961587

De Leeuw A (1982) Organisaties: Management, Analyse, Ontwikkeling en Veran-
dering, een systeem visie. van Gorcum, Assen, The Netherlands, in Dutch

References 195

De Leeuw A, Volberda H (1996) On the Concept of Flexibility: A Dual Control
Perspective. Omega, International Journal of Management Science 24(2):121–
139

Delbecq A, Van de Ven A (1971) A Group Process Model for Problem Identification
and Program Planning. Journal Of Applied Behavioral Science VII pp 466 –91

Department of Commerce, Government of the USA (2003) Introduction - IT Archi-
tecture Capability Maturity Model. Government of the United States of America

Dietz J (2006) Enterprise Ontology – Theory and Methodology. Springer, Berlin,
Germany, ISBN-10: 9783540291695

Dietz J (2008) Architecture – Building strategy into design. Netherlands Architec-
ture Forum, Academic Service – SDU, The Hague, The Netherlands, ISBN-13:
9789012580861, URL http://www.naf.nl

ECPD (1941) The Engineers’ Council for Professional Development. Science
94(2446):456

Engelsman W, Jonkers H, Quartel D (2010) ArchiMate Extention for Modeling and
Managing Motivation, Principles and Requirements in TOGAF. White paper, The
Open Group

Eulau H, Prewitt K (1973) Labyrinths of Democracy. Bobbs–Merrill, Indianapolis
Falkenberg E, Verrijn–Stuart A, Voss K, Hesse W, Lindgreen P, Nilsson B, Oei J,

Rolland C, Stamper R (eds) (1998) A Framework of Information Systems Con-
cepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, ISBN-10:
3901882014

Farenhorst R, De Boer R (2009) Architectural Knowledge Management: Supporting
Architects and Auditors. PhD thesis, Free University of Amsterdam, Amsterdam,
The Netherlands

Fattah A (2009) Enterprise Reference Architecture. Via Nova Architectura URL
http://www.via-nova-architectura.org

Fehskens L (2008) Re-Thinking architecture. In: 20th Enterprise Architecture Prac-
titioners Conference, The Open Group

Fehskens L (2010) What the “Architecture” in “Enterprise Architecture” Ought to
Mean. In: Open Group Conference Boston, The Open Group

Fischer C, Winter R, Aier S (2010) What is an Enterprise Architecture Design Prin-
ciple? Towards a consolidated definition. In: Proceedings of the 2nd International
Workshop on Enterprise Architecture Challenges and Responses, Yonezawa,
Japan

Friedman T (2005) The World is Flat: A Brief History of the Twenty-first Century.
Farrar, Straus and Giroux, New York, New York, ISBN-10: 0374292884

Friedrich C (1963) Man and His Government. Wiley, New York, New York
Galbraith J (2000) Designing the Global Corporation. Jossey-Bass, San Fransisco,

California, ISBN-13: 9780787952754
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of

Reusable Object–Oriented Software. Addison Wesley, Reading, Massachusetts
Goikoetxea A (2004) A mathematical framework for enterprise architecture repre-

sentation. International Journal of Information Technology & Decision Making
3(1):5–32

196 References

Gordijn J, Akkermans H (2003) Value based requirements engineering: Exploring
innovative e-commerce ideas. Requirements Engineering Journal 8(2):114–134,
DOI 10.1007/s00766-003-0169-x

Government of the USA (2002) Sarbanes-Oxley Act of 2002. H.R.3763
Graves T (2009) Doing enterprise architecture – Process and practice in the real

enterprise. Tetradian Books, Colchester, England, United Kingdom, ISBN-13:
9781906681180, URL http://tetradianbooks.com

Greefhorst D (2007) Ervaringen met het opstellen van architectuurprincipes bij een
verzekeraar (Experiences with the formulation of architecture principles at an
insurance company), Academic Service – SDU, The Hague, The Netherlands,
chap 2, pp 53–62. No. 35 in ICT bibliotheek, ISBN-13: 9789012119511, in Dutch

Greefhorst D, Koning H, Van Vliet H (2006) The many faces of architectural de-
scriptions. Information Systems Frontiers 8(2):103–113

Greefhorst D, Proper H, Van den Ham F (2007) Principes: de hoeksteen voor ar-
chitectuur – Verslag van een workshop op het Landelijk Architectuur Congres
2007 (Principles: The Cornerstone of Architecture – A report of a workshop held
at the Dutch National Architecture Congres 2007. Via Nova Architectura URL
http://www.via-nova-architectura.org, in Dutch

Greefhorst D, Grefen P, Saaman E, Bergman P, Van Beek W (2009) Herbruikbare
architectuur – Een definitie van referentiearchitectuur. Informatie In Dutch

Hagel III J, Armstrong A (1997) Net Gain – Expanding markets through virtual
communities. Harvard Business School Press, Boston, Massachusetts

Hagel III J, Singer M (1999) Unbundling the Corporation. Harvard Business Review
Halpin T, Morgan T (2008) Information Modeling and Relational Databases, 2nd

edn. Data Management Systems, Morgan Kaufman, ISBN-13: 9780123735683
Harmsen A, Proper H, Kok N (2009) Informed Governance of Enterprise Trans-

formations. In: Proper H, Harmsen A, Dietz J (eds) Advances in Enterprise En-
gineering II – Proceedings of the First NAF Academy Working Conference on
Practice-Driven Research on Enterprise Transformations, PRET 2009, held at
CAiSE 2009, Amsterdam, The Netherlands, June 2009, Springer, Berlin, Ger-
many, Lecture Notes in Business Information Processing, vol 28, pp 155–180,
ISBN-13: 9783642018589

Henderson J, Venkatraman N (1993) Strategic alignment: Leveraging information
technology for transforming organizations. IBM Systems Journal 32(1):4–16

Hevner A, March S, Park J, Ram S (2004) Design Science in Information Systems
Research. MIS Quarterly 28:75–106

Hoogervorst J (2004) Enterprise Architecture: Enabling Integration, Agility and Ch-
ange. International Journal of Cooperative Information Systems 13(3):213–233

Hoogervorst J (2009) Enterprise Governance and Enterprise Engineering. Springer,
Diemen, The Netherlands

Hoppenbrouwers S, Proper H, Van der Weide T (2005) Fact Calculus: Using ORM
and Lisa–D to Reason About Domains. In: Meersman R, Tari Z, Herrero P (eds)
On the Move to Meaningful Internet Systems 2005: OTM Workshops – OTM
Confederated International Workshops and Posters, AWeSOMe, CAMS, GADA,
MIOS+INTEROP, ORM, PhDS, SeBGIS, SWWS, and WOSE 2005, Springer,

References 197

Berlin, Germany, Agia Napa, Cyprus, Lecture Notes in Computer Science, vol
3762, pp 720–729, ISBN-10: 3540297391, DOI 10.1007/11575863 91

Horan T (2000) Digital Places – Building our city of bits. The Urban Land Institute
(ULI), Washington DC, ISBN-10: 0874208459

Humphrey W (1989) Managing the Software Process. The SEI Series in
Software Engineering, Addison-Wesley Professional, Massachusetts, ISBN-13:
9780201180954

Iacob ME, Jonkers H, Lankhorst M, Proper H (2009) ArchiMate 1.0 Specification.
The Open Group, ISBN-13: 9789087535025

Iacob MEI, Jonkers H (2007) Quantitative analysis of service-oriented architectures.
International Journal of Enterprise Information Systems 3(1):42–60

IEEE (2000) Recommended Practice for Architectural Description of Software In-
tensive Systems. Tech. Rep. IEEE P1471:2000, ISO/IEC 42010:2007, The Ar-
chitecture Working Group of the Software Engineering Committee, Standards
Department, IEEE, Piscataway, New Jersey, ISBN-10: 0738125180

ISO (1987) Information processing systems – Concepts and Terminology for the
Conceptual Schema and the Information Base. ISO/TR 9007:1987

ISO (2001) Software engineering – Product quality – Part 1: Quality model.
ISO/IEC 9126–1:2001

Johnson G, Scholes K, Whittington R (2005) Exploring Corporate Strategy, seventh
edn. Prentice Hall, Englewood Cliffs, New Jersey, ISBN-10: 0273687344

Johnson P, Ekstedt M (2007) Enterprise Architecture: Models and Analy-
ses for Information Systems Decision Making. Studentlitteratur, ISBN-13:
9789144027524

Kersten J (2009) Propositions. Master’s thesis, Radboud University Nijmegen, Nij-
megen, The Netherlands, in Dutch

Kruchten P (1998) The Rational Unified Process: an introduction. Addison Wesley
Longman, Inc., Massachusetts

Kruchten P (2004) An ontology of architectural design decisions in software inten-
sive systems. In: The Second Groningen Workshop Software Variability, Gronin-
gen, The Netherlands

Lankhorst M, Van der Torre L, Proper H, Arbab F, Steen M (2005a) Viewpoints and
Visualisation. In: (Lankhorst et al, 2005b), pp 147–190, ISBN-10: 3540243712

Lankhorst M, et al (2005b) Enterprise Architecture at Work: Modelling, Communi-
cation and Analysis. Springer, Berlin, Germany, ISBN-10: 3540243712

Lee C (2006) Aerospace Logistics architecture program: Action Research at Air
France Cargo – KLM Cargo. Master’s thesis, Delft Technical University, Delft,
The Netherlands

Lendvai R, Morsink P, Otzen E (2008) Twintig jaar enterprisearchitectuur: tijd voor
verandering. Informatie In Dutch

Lidwell W, Holden K, Butler J (2003) Universal Principles of Design. Rockport
Publishers, Inc., Massachusetts

Lindström A (2006a) An Approach for Developing Enterprise-Specific ICT Man-
agement Methods – From Architectural Principles to Measures. In: IAMOT 2006
– 15th International Conference on Management of Technology, Beijing, China

198 References

Lindström A (2006b) On the Syntax and Semantics of Architectural Principles. In:
Proceedings of the 39th Hawaii International Conference on System Sciences

Linstone H, Turoff M (eds) (2002) The Delphi Method: Techniques and Applica-
tions. URL http://is.njit.edu/pubs/delphibook/delphibook.
pdf

Luijpers J (2009) De PSA bevat geen Solution Architecture! Via Nova Architectura
URL http://www.via-nova-architectura.org

Malone T (2004) Making the Decision to Decentralize. Harvard Business School –
Working Knowledge for Business Leaders

Martin R (2002) Agile Software Development, Principles, Patterns, and Practices.
Prentice–Hall, Englewood Cliffs, New Jersey, ISBN-10: 0135974445

MDA (2003) MDA Guide v1.0.1. Tech. Rep. omg/2003-06-01, Object Management
Group

Meersman R (1982) The RIDL Conceptual Language. Tech. rep., International Cen-
tre for Information Analysis Services, Control Data Belgium, Inc., Brussels, Bel-
gium

Meriam–Webster (2003) Meriam–Webster Online, Collegiate Dictionary
Mesarović M, Macko D, Takahara Y (1970) Theory of Hierarchical, Multilevel,

Systems, vol 68. Academic Press, ISBN10: I0124915507
MOF (2002) MetaObjectFacility (MOF) Specification v1.4. Tech. rep., Object Man-

agement Group
Mulholland A, Thomas C, Kurchina P, Woods D (2006) Mashup Corporations - The

End of Business as Usual. Evolved Technologist Press, New York, New York,
ISBN-13: 9780978921804

Nabukenya J (2005) Collaboration Engineering for Policy Making: A Theory of
Good Policy in a Collaborative Action. In: Proceedings of the 15th European
Conference on Information Systems, pp 54–61

Nabukenya J, Van Bommel P, Proper H (2007a) Collaborative IT Policy-making as
a means of achieving Business-IT Alignment. In: Pernici B, Gulla J (eds) Pro-
ceedings of the Workshop on Business/IT Alignment and Interoperability (BUSI-
TAL’07), held in conjunctiun with the 19th Conference on Advanced Information
Systems (CAiSE’07), Trondheim, Norway, Tapir Academic Press, Trondheim,
Norway, pp 461–468, ISBN-10: 9788251922456

Nabukenya J, Van Bommel P, Proper H (2007b) Repeatable Collaboration Processes
for Mature Organizational Policy Making. In: Proceedings of the 14th Collabora-
tion Researchers’s International Workshop on Groupware (CRIWG08), Omaha,
Nebraska, Springer, Berlin, Germany, Lecture Notes in Computer Science

Nabukenya J, Van Bommel P, Proper H (2007c) Towards a method for collaborative
policy making. In: Ralyté J, Brinkkemper S, Henderson-Sellers B (eds) Poster
Proceedings of the IFIP WG8.1 Working Conference on Situational Method En-
gineering: Fundamentals and Experiences (ME07), Geneva, Switzerland, Depart-
ment of Information and Computing Sciences, Utrecht University, Technical Re-
port UU-CS-2007-026, pp 4–12, ISSN: 09243275

Nabukenya J, Van Bommel P, Proper H (2009) A theory–driven design approach to
collaborative policy making processes. In: Proceedings of the 42nd Hawaii In-

References 199

ternational Conference on System Sciences (HICSS-42), Los Alamitos, Hawaii,
IEEE Computer Society Press

Nijhuis R (2007) Fricties tussen kleuren. In: Landelijk Architectuur Congres 2007,
Nieuwegein, The Netherlands, In Dutch

NORA (2007) Nederlandse Overheid Referentie Architectuur 2.0 – Samenhang en
samenwerking binnen de elektronische overheid. ICTU, URL http://www.
ictu.nl, in Dutch

Op ’t Land M, Proper H (2007) Impact of Principles on Enterprise Engineering. In:
Österle H, Schelp J, Winter R (eds) Proceedings of the 15th European Conference
on Information Systems, University of St. Gallen, St. Gallen, Switzerland, pp
1965–1976

Op ’t Land M, Proper H, Waage M, Cloo J, Steghuis C (2008) Enterprise Archi-
tecture – Creating Value by Informed Governance. Springer, Berlin, Germany,
ISBN-13: 9783540852315

Österle H, Winter R (2003) Business Engineering – Auf dem Weg zum Un-
ternehmen des Informationszeitalters, 2nd edn. Springer, Berlin, Germany, ISBN-
13: 9783540000495

Osterwalder A, Pigneur Y (2009) Business Model Generation: A Handbook for
Visionaries, Game Changers, and Challengers. Self Published, Amsterdam, The
Netherlands, ISBN-13: 9782839905800

Paauwe M (2010) The History of Architecture Principles. White paper, Paauwe Re-
search

PMBOK (2001) Project Management Body of Knowledge. Tech. rep., The Project
Management Institute

PRINCE (2009) Managing Successful Projects with PRINCE2. The Stationery Of-
fice, ISBN-13: 9780113310593

PRISM (1986) PRISM: Dispersion and Interconnection: Approaches to Distributed
Systems Architecture, Final Report. Tech. rep., CSC Index, Inc. and Hammer &
Company, Inc., Cambridge MA.

Proper H, Greefhorst D (2010) The Roles of Principles in Enterprise Architec-
ture. In: Proceedings of the 5th workshop on Trends in Enterprise Architecture
Research, Springer, Berlin, Germany, Delft, The Netherlands, Lecture Notes in
Business Information Processing

Proper H, Hoppenbrouwers S, Veldhuijzen van Zanten G (2005) Communication
of Enterprise Architectures. In: (Lankhorst et al, 2005b), pp 67–82, ISBN-10:
3540243712

Pyzdek T (2003) The Six Sigma Handbook: The Complete Guide for Greenbelts,
Blackbelts, and Managers at All Levels, Revised and Expanded Edition, 2nd edn.
McGraw–Hill, New York, New York, ISBN-13: 9780071410151

Regev G, Wegmann A (2005) Where do goals come from: the underlying principles
of goal-oriented requirements engineering. In: In Proc. of the 13th IEEE Interna-
tional Conference on Requirements Engineering (RE05), Paris, France, August
2005.

200 References

Richardson G, Jackson B, Dickson G (1990) A Principles-Based Enterprise Archi-
tecture: Lessons from Texaco and Star Enterprise. MIS Quarterly 14(4):385–403,
URL http://www.jstor.org/stable/249787

Rifaut A, Dubois E (2008) Using Goal-Oriented Requirements Engineering for Im-
proving the Quality of ISO/IEC 15504 based Compliance Assessment Frame-
works. In: Proceedings of the IEEE International Conference On Requirements
Engineering (RE’08), Barcelona, Spain, IEEE Press

Rijsenbrij D, Schekkerman J, Hendrickx H (2002) Architectuur, besturingsinstru-
ment voor adaptieve organisaties – De rol van architectuur in het besluitvorm-
ingsproces en de vormgeving van de informatievoorziening. Lemma, Utrecht, The
Netherlands, ISBN-10: 9059310934, in Dutch

Rivera R (2007) Am I Doing Architecture or Design Work? It Professional 9(6):46–
48

Robbins S, Bergman R, Stagg I (1997) Management. Prentice Hall Australia Pty
Ltd., Prentice–Hall, Sydney

Robertson S, Robertson J (1999) Mastering the Requirements Process. Addison
Wesley, Reading, Massachusetts, ISBN-10: 0201360462

Rose R (ed) (1969) Policy Making in Great Britain. Macmillan, London, Great
Britain

Sabatier P (ed) (1999) Theories of the Policy Process. West view Press, Boulder,
Co.

SBVR (2006) Semantics of Business Vocabulary and Rules (SBVR). Tech. Rep.
dtc/06–03–02, Object Management Group, Needham, Massachusetts

Scheer AW (1986) Neue Architektur für EDV-Systeme zur Produktionsplanung
und -steuerung. Institut für Wirtschaftsinformatik im Institut für Empirische
Wirtschaftsforschung an der Universität des Saarlandes, Saarbrücken, Germany,
In German

Scheer AW (1988) Computer integrated manufacturing : CIM. Springer, Berlin,
Germany, ISBN-10: 3540191917

Scheer AW (2000) ARIS – Business Process Modeling. Springer, Berlin, Germany,
ISBN-10: 3540658351

Schekkerman J (2004) Enterprise Architecture Score Card. Tech. rep., Institute for
Enterprise Architecture Developments, Amersfoort, The Netherlands

Schekkerman J (2008) Enterprise Architecture Good Practices Guide: How to Man-
age the Enterprise Architecture Practice. Trafford Publishing, Victoria, British
Columbia, Canada, ISBN-13: 9781425156879

Schneider A, Ingram H (1997) Policy Design for Democracy. University Press of
Kansas, Lawrence, Kansas

Shaw M, Garlan D (1996) Software Architecture: Perspectives on an Emerging Dis-
cipline. Prentice–Hall, Englewood Cliffs, New Jersey, ISBN-10: 0131829572

Software & Systems Engineering Standards Committee (1998) IEEE Std 1061-1998
- IEEE Standard for a Software Quality Metrics Methodology. Tech. rep., IEEE
Computer Society

Stapleton J (1997) DSDM, Dynamic Systems Development Method: The Method
in Practice. Addison Wesley, Reading, Massachusetts, ISBN-10: 0201178893

References 201

Stelzer D (2009) Enterprise Architecture Principles: Literature Review and Re-
search Directions. In: Proceedigs of the Workshop on Trends in Enterprise Ar-
chitecture Research (TEAR 2009), pp 21—36

TAFIM (1996) Department of Defence Technical Architecture Framework for In-
formation Management – Overview. Tech. rep., Defence Information Systems
Agency Center for Standards, United States of America

Tapscott D (1996) Digital Economy – Promise and peril in the age of networked
intelligence. McGraw–Hill, New York, New York, ISBN-10: 0070633428

Tapscott D, Caston A (1993) Paradigm Shift – The New Promise of Information
Technology. McGraw–Hill, New York, New York, ASIN 0070628572

Taylor F (1911) Principles of Scientific Management. Harper & Row, New York,
New York

Taylor J, Van Every E (2010) The Situated Organization: Case studies in the prag-
matics of communication research. Routledge, ISBN-13: 9780415881685

Ter Hofstede A, Proper H, Van der Weide T (1993) Formal definition of a conceptual
language for the description and manipulation of information models. Informa-
tion Systems 18(7):489–523

TOGAF (2009) The Open Group – TOGAF Version 9. Van Haren Publishing, Zalt-
bommel, The Netherlands, ISBN-13: 9789087532307

Tribolet J, Winter R, Caetano A (2008) Special track on organizational engineering:
editorial message. In: SAC ’08: Proceedings of the 2008 ACM symposium on
Applied computing, ACM, New York, New York, pp 516–517, 978-1-59593-753-
7, DOI http://doi.acm.org/10.1145/1363686.1363815

Trog D, Vereecken J, Christiaens S, Leenheer PD, Meersman R (2006) T–Lex: A
Role–Based Ontology Engineering Tool. In: Meersman R, Tari Z, Herrero P (eds)
On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops -
OTM Confederated International Workshops and Posters, AWESOMe, CAMS,
COMINF, IS, KSinBIT, MIOS-CIAO, MONET, OnToContent, ORM, PerSys,
OTM Acadamy Doctoral Consortium, RDDS, SWWS, and SebGIS, Proceedings,
Part II, Montpellier, France, Springer, Berlin, Germany, Lecture Notes in Com-
puter Science, vol 4278, pp 1191–1200

Umar A (2005) IT infrastructure to enable next generation enterprises. Information
Systems Frontiers 7(3):217–256, DOI 10.1007/s10796-005-2768-1

UML2 (2003) UML 2.0 Superstructure Specification – Final Adopted Specification.
Tech. Rep. ptc/03–08–02, OMG

USA Government (1996) Clinger–Cohen; IT Management Reform Act
Van Boekel K (2009) Architectuurprincipes: Functie en Formulering (Architecture

Principles: Function and Formulation. Master’s thesis, Radboud University Nij-
megen, Nijmegen, The Netherlands, in Dutch

Van Bokhoven N (2008) Things called Propositions. Master’s thesis, Institute for
Computing and Information Sciences, Radboud University Nijmegen, Nijmegen,
The Netherlands

Van Bommel P, Hoppenbrouwers S, Proper H, Van der Weide T (2006) Giving
meaning to enterprise architectures – architecture principles with orm and orc. In:
Meersman R, Tari Z, Herrero P (eds) On the Move to Meaningful Internet Sys-

202 References

tems 2006: OTM Workshops – OTM Confederated International Workshops and
Posters, AWeSOMe, CAMS, GADA, MIOS+INTEROP, ORM, PhDS, SeBGIS,
SWWS, and WOSE 2006, Springer, Berlin, Germany, Montpellier, France, Lec-
ture Notes in Computer Science, pp 1138–1147, DOI 10.1007/11915072 17

Van Bommel P, Buitenhuis P, Hoppenbrouwers S, Proper H (2007) Architecture
Principles – A Regulative Perspective on Enterprise Architecture. In: Reichert
M, Strecker S, Turowski K (eds) Enterprise Modelling and Information Systems
Architectures (EMISA2007), Gesellschaft fur Informatik, Bonn, Germany, no.
119 in Lecture Notes in Informatics, pp 47–60

Van den Tillaart M (2009) Propositions into a Framework. Master’s thesis, Radboud
University Nijmegen, Nijmegen, The Netherlands

Van der Zee H, Laagland P, Hafkenscheid B (2000) Architectuur als managementin-
strument – Multi Client Study. Ten Hagen & Stam, Den Haag, The Netherlands,
ISBN-10: 904400087X, In Dutch

Van Grembergen W, Saull R (2001) Aligning business and information technology
through the Balanced Scorecard at a major Canadian financial group: its status
measured with an IT BSC Maturity Model. In: Proceedings of the 34th Hawaii
International Conference on System Sciences, Maui, Hawaii

Van Lamsweerde A (2001) Goal-Oriented Requirements Engineering: A Guided
Tour. In: Proc. RE’01: 5th Intl. Symp. Req. Eng.

Van Rees J (1982) De Methode Doet Het Niet. Informatie 1982(2), In Dutch
Van Zeist B, Hendriks P, Paulussen R (1996) Kwaliteit van softwareprodukten:

Praktijkervaringen met een kwaliteitsmodel. Sdu, ISBN-10: 9026724306
Van’t Wout J, Waage M, Hartman H, Stahlecker M, Hofman A (2010) The Inte-

grated Architecture Framework Explained. Springer, Berlin, Germany, ISBN-13:
9783642115172

Vermeulen E (2009) De principegenerator – Principes in de 5e versnelling. Via
Nova Architectura URL http://www.via-nova-architectura.org,
in Dutch

Wagter R (2009) Sturen op samenhang op basis van GEA – Permanent en
event driven. Van Haren Publishing, Zaltbommel, The Netherlands, ISBN-13:
9789087534066, In Dutch

Wagter R, Van der Berg M, Luijpers J, Van Steenbergen M (2001) DYA: snel-
heid en samenhang in business en ICT architectuur. Tutein Nolthenius, ISBN-10:
9072194624

Wagter R, Van den Berg M, Luijpers J, Van Steenbergen M (2005) Dynamic Enter-
prise Architecture: How to Make It Work. Wiley, New York, New York, ISBN-10:
0471682721

Womack J, Jones D (2003) Lean Thinking: Banish Waste and Create Wealth in Your
Corporation. Free Press, ISBN-13: 9780743231640

Yu E, Mylopoulos J (1994) Understanding ‘why‘ in software process modelling,
analysis, and design. In: Proceedings of the 16th international conference on Soft-
ware engineering, Sorrento, Italy, Los Alamitos, California, IEEE, Los Alamitos,
California, pp 159–168, ISBN-10: 081865855X

References 203

Yu E, Mylopoulos J (1996) Using goals, rules, and methods to support reasoning
in business process reengineering. International Journal of Intelligent Systems
in Accounting, Finance and Management 5(1):1—13, special issue on Artificial
Intelligence in Business Process Reengineering.

Zachman J (1987) A framework for information systems architecture. IBM Systems
Journal 26(3)

Zachman J (2009) The Zachman Framework Evolution. URL http://
zachmaninternational.com/

Zijlstra H, Rijsenbrij D, Laagland P (2009) De CIO spreekt: Rob de Haas. Via
Nova Architectura URL http://www.via-nova-architectura.org,
In Dutch

Glossary

In the definitions provided in this glossary, terms which are already defined else-
where in the glossary are printed in a bold typeface.

ARCHITECTURE PRINCIPLE – A design principle included in an architecture.
As such, it is a declarative statement that normatively prescribes a property of
the design of an artifact, which is necessary to ensure that the artifact meets its
essential requirements.

ARCHITECTURE – Those properties of an artifact that are necessary and sufficient
to meet its essential requirements.

CREDO – A normative principle expressing a fundamental belief.
DESIGN INSTRUCTION – An instructive statement that describes the design of an

artifact.
DESIGN PRINCIPLE – A normative principle on the design of an artifact. As such,

it is a declarative statement that normatively restricts design freedom.
ENTERPRISE ARCHITECTURE – The architecture of an enterprise. As such, it

concerns those properties of an enterprise that are necessary and sufficient to
meet its essential requirements.

ENTERPRISE ENGINEERING – The creative application of scientific principles to
develop (which includes design and implementation) enterprises, or parts/aspects
thereof; or to operate the same with full cognizance of their design; or to forecast
their behavior under specific operating conditions; all as respects an intended
function, economics of operation and safety to life and property.

NORMATIVE PRINCIPLE – A declarative statement that normatively prescribes a
property of something.

NORM – A normative principle in the form of a specific and measurable statement.
POLICY – A purposive course of action followed by a set of actor(s) to guide and

determine present and future decisions, with an aim of realizing goals.
REFERENCE ARCHITECTURE – A generalized architecture, based on best-prac-

tices.
REQUIREMENT – A required property of an artifact.

205

206 Glossary

SCIENTIFIC PRINCIPLE – A law or fact of nature underlying the working of an
artifact.

SOLUTION ARCHITECTURE – An architecture of a solution, where a solution is
a system that offers a coherent set of functionalities to its environment. As such,
it concerns those properties of a solution that are necessary and sufficient to meet
its essential requirements.

About the authors

Danny Greefhorst – is a principal consultant and owner of ArchiXL, and works
for clients in the financial and public sector. Danny acts as an IT architect and
IT consultant, and is TOGAF 9 certified. He has extensive experience with the
definition and implementation of enterprise architectures, application architec-
tures and technical architectures. In addition, he coaches organizations in setting
up and executing their architecture function, and is active as an instructor for
several classes on architecture. Before starting ArchiXL he worked as a principal
consultant at Yellowtail, as a senior IT architect at IBM Business Consulting Ser-
vices and as a researcher at the Software Engineering Research Centre. Danny
is active in the architecture community and regularly publishes on IT and archi-
tecture related topics. He is the chairman of the governing board of Via Nova
Architectura, a portal and electronic magazine on enterprise architecture. He is
also a member of the governing board of the architecture department of the Dutch
Computer Science Association (Ngi).

Erik (H.A.) Proper – is a senior research manager at the Public Research Centre –
Henri Tudor in Luxembourg, where he leads Services-oriented Enterprise Engi-
neering programme. He also holds a chair in Information Systems at the Radboud
University Nijmegen in the Netherlands. Erik has a mixed industrial and aca-
demic background. In the past, Erik worked for companies such as Asymetrix,
InfoModeller, Origin, ID Research, Ordina and Capgemini, while interleaving
this with his work at research institutions such as the Radboud University of
Nijmegen, Queensland University of Technology, the Distributed Systems Tech-
nology Centre, and the University of Queensland. His general research drive is
the modeling of systems. He applies this drive mainly in the fields of service sci-
ence, enterprise modeling, enterprise engineering and enterprise architecting. He
was co-initiator of the ArchiMate project, and currently also serves on the board
of the ArchiMate forum of The Open Group. Erik is also one of the editors in
chief of Springer’s series on enterprise engineering.

207

