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Abstract. We propose to use ORM and Lisa-D as means to formally
reason about domains. Conceptual rule languages such as Lisa-D, RIDL
and ConQuer allow for the specification of rules in a semi-natural lan-
guage format that can more easily be understood by domain experts
than languages such as predicate calculus, Z or OCL. If one would in-
deed be able to reason about properties of domains in terms of Lisa-D
expressions, then this reasoning would be likely to be better accessible to
people without a background in formal mathematics, such as “the aver-
age” domain expert. A potential application domain for such reasoning
would be the field of business rules. If we can reason about business rules
formulated in a semi-natural language format, the formal equivalence of
(sets of) business rules (i.e. various paraphrasings) can be discussed with
domain experts in a language and a fashion that is familiar to them.

1 Introduction

We will propose and explore initial ideas about a fact-based approach to reason-
ing based entirely on concepts that are familiar to a domain expert, as modeled
through ORM/Lisa-D. We show how ORM models [5], combined with and cov-
ered by non-graphical Lisa-D expressions [6], can be subject to reasoning using
an alternative type of reasoning rule. As will be explained, these reasoning rules
are based on “information descriptors” [6]. However, the system is still rooted in
classical predicate logic. This paper proposes to use ORM and Lisa-D as a means
to formally reason about domains. Conceptual rule languages such as Lisa-D [6],
RIDL [9] and ConQuer [I] allow for the specification of rules in a semi-natural
language format that can be more easily understood by domain experts than
languages such as predicate calculus, Z [I1] or OCL [12].

A long term ambition of ours is to relate formal reasoning to styles of (com-
munication about) reasoning close to reasoning in conteztualized (i.e. domain-
related) Natural Language (NL) [8], without loosing formal functionality.
Metaphorically, fact calculus (and our communication-oriented approach to rep-
resenting it) could be presented as a “next generation approach of dealing with
symbol-based reasoning” as opposed to reasoning systems more directly related
to formal logic. If one would indeed be able to reason about properties of do-
mains in terms of Lisa-D expressions, then this reasoning would be likely to be
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better accessible to people without a background in formal mathematics, such as
“the average” domain expert. A potential application domain for such reasoning
would be the field of business rules. When reasoning can be done at the level of
business rules formulated in a semi-natural language format, the equivalence of
(sets of) business rules can be discussed with domain experts in a language that
is familiar to them.

The aim of the modeling process as we see it [§] is to find a representation
mechanism for sentences from some domain language. The result may be seen
as a signature for a formal structure. Each elementary fact type is a relation
in this structure. Assuming a set of variables, we can introduce the expressions
over this signature [2]. This signature forms the base of a formal theory about a
domain. The constraints then are seen as the axioms of this theory.

In classic reasoning (for example, natural deduction [3]), formal variables
are used, through which we can formulate statements and try to prove them
from the axioms, using a conventional reasoning mechanism (containing for ex-
ample modus ponens). In this paper we explore an alternative approach, based
on specific models (populations), and focus on properties of some particular
population.

Statements about a current population can be represented as Lisa-D state-
ments. For clarity’s sake, we include “translations” in regular English for every
Lisa-D statement. The translations sometimes leave out redundant information
that is nevertheless vital in reasoning about information descriptors. Though
such translation cannot currently be produced deterministically or even auto-
matically, we do intend to explore ways of achieving this in the future.

For example, consider the following statement, that could be a query:

EACH Student living in City 'Elst’ MUST ALSO BE attending Course 'Modeling’
Each student that lives in the city of Elst also attends the course Modeling

2 Fact Calculus

2.1 Starting from Predicate Calculus

In existing approaches, reasoning in terms of a conceptual model is closely re-
lated to reasoning in predicate calculus [2] [6]. This form of reasoning is instance
related, for example transitivity of the relation f is expressed as:

Yoy [f(@,9) Ny, 2) = [z, 2)]

Using instances leads to a style of reasoning that may be qualified as reasoning
within the Universe of Discourse. Using a conceptual language such as Lisa-D
provides the opportunity to reason without addressing particular instances. This
may be characterized as reasoning about the Universe of Discourse.
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First it should be noted that a precise formulation of domain rules may
require a way of referring to general instances in order to describe concisely their
relation. In daily practice people use NL mechanisms to make such references.
However, in many situations domain rules can be nicely formulated without
addressing any particular instance. As an example, consider the rule (phrased
in NL):

When a car is returned, then its official documents should also be returned

In this sentence, without explicitly addressing any particular car, the subtle
use of the reference its provides a sufficient reference.

The main idea behind Lisa-D, as present in its early variant RIDL [9] is
a functional, variable-less description of domain-specific information needs. In
Lisa-D the mechanism of variables is of a linguistic nature. Variables are spe-
cial names that can be substituted once they are evaluated in a context that
generates values for this variable. The set comprehension construct is defined in
that way. Lisa-D expressions are based on a domain-specific lexicon, that con-
tains names for the elements that constitute a conceptual schema. The lexicon
contains a name for each object type, and also provides names for the construc-
tion mechanism in a conceptual schema (such as the roles and object types it
contains).

2.2 Information Descriptors

The names in the lexicon are on par with the words from which NL sentences are
constructed. Lisa-D sentences are referred to as information descriptors. The base
construction for sentences is juxtaposition. By simply concatenating information
descriptors, new information descriptors are constructed. Before describing the
meaning of information descriptors, we will first discuss how such descriptors
will be interpreted.

The semantics of Lisa-D can be described in various ways. The simplest form
is its interpretation in terms of set theory. Other variants use bags, fuzzy sets,
or probabilistic distributions. In order to make a bridge with predicate calculus,
we will view information descriptors as binary predicates.

Let D be an information descriptor, and P a population of the corresponding
conceptual schema. We then see this information descriptor as a binary predicate.
Let Y be a set of variables, then we write P = « [D] y to express that in
population P there is a relation between x and y via D, where z,y € V. For
each object type O we introduce a unary predicate: P = O(z) iff = € P(O)
and for each role R of some fact type F' we introduce a binary predicate: P =
R(z,y) iff y € P(F) Az =y(R). Note that the instances of a fact type (y) are
formally treated as functions from the roles of fact type F to instances of the
object types involved in a role. In other words, y(R) yields the object playing
role R in fact y.

At this point we can describe the meaning of elementary information descrip-
tors as follows. Let o be the name of object type O and r the name of a role R,
then o and r are information descriptors with semantics:
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vy = O@)Aw=y z[rly = R(z,y)

Roles involved in fact types may actually receive multiple names. This is illus-
trated in figure[Il A single role may, in addition to its ‘normal’ name, also receive
a reverse role name. Let v be the reverse role name of role R, then we have:

z [v]y £ R(y, =)

Any ordered pair of roles involved in a fact type may receive a connector
name. The connector names allow us to ‘traverse’ a fact type from one of the
participating object types to another one. If ¢ is the connector name for a role
pair (R, S), then the semantics of the information descriptor ¢ are defined as:

z[c] = £ 3y [R(z,y) A S(y, 2)]

connector name

role name "
~ "F

reverse role name

Fig. 1. Role names

Elementary information descriptors can be composed into complex informa-
tion descriptors using constructions such as concatenation, conjunction, implica-
tion, disjunction and complement. These may refer to the fronts alone or both
fronts and tails of descriptors. In this paper we will use:

@ [D1 Doy £ 3; [z [D1] 2 Az [D2] ]
x [Dy AND ALSO Do)y £ 3. [z [D1] 2] A3, [z [D2] 2] Az =y
x [D1 MUST ALSO BEDy]y £ 3, [# [D1] 2]= 3. [z [Da] 2] Az =y
w[DiORISDo]y 2 3. [z [Di] 2] V3. [z [D2] 2] Az =1y
x [D1BUT NOT Do)y £ 3. [z [D1] 2] A= 3. [z [D2] 2] Az =y

where Dy and D5 are information descriptors and x, y and z are variables. Some
example expression would be:

Person working for Department '1&KS’

People working for department ‘[65KS’

Person (working for Department 'I&KS" AND ALSO owning Car of Brand ‘Seat’)
People working for department ‘I166KS’ who also own a car of brand Seat



724 S.J.B.A. Hoppenbrouwers, H.A. Proper and Th.P. van der Weide

Person (working for Department 'I&KS’ MUST ALSO BE owning Car of Brand ‘Seat’)
People who, if they work for department ‘I&KS’, also own a car of brand ‘Seat’

Person (owning Car of Brand ‘Seat’ OR IS living in City 'Nijmegen’)
People who own a car of brand Seat, or live in the city of Nijmegen

Person (working for Department 'I&KS’ BUT NOT living in City 'Amsterdam’)
People working for department ‘IE&KS’, but who do not live in the city of Amsterdam

Correlation operators form a special class of constructs:

v [DTHAToJy 2 z[DoJyAz =y
x [DMUST BE ANOTHER o]y 2 z[D o]y Az #y

where D is an information descriptor and o is the name of an object type. Some
examples of its use are:

Person working for Department having as manager THAT Person
People who work for a department that has that person as a manager

Person owning Car having Brand being of Car being owned by MUST BE ANOTHER
Person
People who own a car of the same brand as another person’s car

To make some Lisa-D expressions more readable, we also introduce dummy words
AN and A which have no real meaning:

ANP £ AP £ P

Using these ‘dummy words’ the last two Lisa-D expressions can be re-phrased
as:

Person working for A Department having as manager THAT Person

Person owning A Car having Brand being of A Car being owned by MUST BE ANOTHER

Person

In Lisa-D many more constructions exist to create complex information de-

scriptors. However, in this paper we limit ourselves to those constructions that
are needed for the considerations discussed below. Note again that the natural
language likeness of the Lisa-D expressions used in this paper can be improved
considerably. For reasons of compactness, this paper defined fact calculus di-
rectly in terms of (verbalizations of) information descriptors. However, in the
original Lisa-D path expressions were used as the underlying skeleton for rules,
where the information descriptors ‘merely’ serve as the flesh on the bones. Us-
ing linguistic techniques as described in e.g. [T, 4] this ‘flesh’ can obtain a more
natural structure. Future work will also concentrate on improved verbalizations
of path expressions.

2.3 Rules

Lisa-D has a special way of using information descriptors to describe rules that
should apply in a domain. These rules can be used to express constraints and/or
business rules. We will use the more general term rule for such expressions. These
rules consist of information descriptors that are interpreted in a boolean way;
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i.e. if no tuple satisfies the predicate, the result is false, otherwise it is true. This
leads to the following semantics for rules:

[EACHD] £ V.3,[z[D]y] [SOMED] & 3,,[z[D]y]
[R1AND Ry] = [Ri] A [R2] [R1ORRy] = [Ri] V [Ro]
[RiIMPLIESRy] £ [(NOT R;)ORRy] [NOTR,] £ -[Ri]
[NOD] £ [NOTSOME D]

where D is an information descriptor and Ry, Rs are rules.

Note that the 3 and V quantifications in the EACH D and SOME D con-
structs range over all possible instances. Limiting a variable to a specific class
of instances is done similar to set theory, where:

Veep [P(x)] & Vi[r € D= P(z)] & V. [D(z)= P(z)]

In our case we would typically write: EACHT MUST ALSO BE C where T is an
information descriptor representing the domain over which one ranges and C'is
the condition.

In the context of rules, we will also use the following syntactic variations of
THAT and MUST BE ANOTHER:

x [D THAT o] y £ 2 [D MUST BE THAT o] y
 [DMUST BE ANOTHER ] y 2 & [D ANOTHER o] y

3 Examples of Rule Modeling

In this section we provide some illustrations of ways one can reason within the
fact calculus. At the moment most of the reasoning can be done by ‘jumping
down’ to the level of predicate calculus. It indeed makes sense to also introduce
derivation rules at the information descriptor and rules level. This is, however,
beyond the scope of the short discussion provided in this paper.

3.1 Example: Trains and Carriages

As a first example of the use of fact calculus to reason about domains, consider
the following two rules:

EACH Train MUST ALSO BE consisting of A Carriage
FEach train consists of carriages

EACH Carriage MUST ALSO BE having A Class
Fach carriage has a class.

Using predicate calculus based inference, one could infer:

EACH Train MUST ALSO BE consisting of A Carriage having A Class
Each train consists of carriages that have a class.
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3.2 Example: Return of Cars and Papers

Now consider the rule (phrased in NL) that was mentioned earlier in this paper.
When a car is returned, then its official documents should also be returned.

First we note that this rule may be characterized as an action rule; it im-
peratively describes what actions are required when returning a car. From our
perspective, however, we prefer to focus on declarative characterizations of the
underlying Universe of Discourse, as also advocated in [I0-article 4].

As a first step, we formulate a declarative characterization. In some cases
a positive formulation works best; in this case we choose to use negation, and
derive from the action rule the situation that the follow up action of this rule is
intending to avoid:

NO Car being returned AND ALSO having (AN Official-paper BUT NOT being returned)
In no case a car may be returned, if papers belonging to that car are not also returned.
In order to make this expression more readable it is sensible to re-balance
the order of appearance of the types in the expression. By focussing on the role
of the Official-papers we would get:

NO Official-paper of A Car being returned BUT NOT being returned
In no case may papers of a returned car not also be returned.

Using predicate calculus we can formally declare the equivalence of these
statements, while the latter formulation (paraphrasing) is more natural.
Via a negative to positive transformation we can also obtain:

EACH Official-paper from A Car being returned MUST ALSO BE being returned
All papers from returned cars must also be returned.

3.3 Example: Car Registration

As another example, we consider the reasoning that leads to the conclusion that:
each person has a license plate, under the assumption that each person has a
car and that each car has a license plate. We are thus given the following rules:

1. Each person must own a car
2. Each car must be registered by a licence plate

The resulting rules will serve as domain axioms for our reasoning system:
EACH Person MUST ALSO BE owning Car
FEach person must own a car
EACH Car MUST ALSO BE being registered by License plate

FEach car must be registered by a licence plate

The reasoning rule we apply to combine these two rules is the First Implica-
tion Rule:

D; MUST ALSO BE D; Ds D3 MUST ALSO BE D4
D, MUST ALSO BE D, (D3 MUST ALSO BE Dy)
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where Dy, Dy, D3 and D, are information descriptors. Before proceeding with
the example, we first will show the validity of the First Implication Rule (see
figure 2)). Suppose z [D1] p for some x and p. Then we can conclude from the
first rule that also = [Ds D3] r for some r, and thus for some ¢ we have ¢ [Ds] r.
Applying the second rule leads to the conclusion ¢ [D4]y for some y. Combining
the arguments leads to: « [Dy (D3 MUST ALSO BE D4)] y.

Fig. 2. Situation

Applying the above two reasoning rules by setting:

Dy = Person D2 = owning
D3 = Car D4 = being registered by License plate

we obtain the validity of the following expression in each population:

EACH Person MUST ALSO BE owning (Car MUST ALSO BE being registered by Li-
cense plate)
FEach person must own a car, and that car must be registered by a licence plate.

Furthermore, we also have the following Absorbtion Rule:
oMUST ALSO BED

oD

where D is an information descriptor, while o is an object type name. This rule
allows us to rewrite the previous expression to:

EACH Person MUST ALSO BE owning Car being registered by License plate
FEach person must own a car that must be registred by a licence plate.

3.4 Example: Car Ownership

Next we focus on uniqueness within binary relationships. The following rule
expresses the rule that a person may not own more than one car:
NO Car being owned by A Person owning MUST BE ANOTHER Car

No car may be owned by a person who also owns another car

With respect to binding rules, the concatenation operator has the highest
priority. Furthermore, the MUST BE ANOTHER operator has a higher priority
than the NO operator. As a consequence, we get the following binding structure:
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NO ((Car being owned by A Person owning) MUST BE ANOTHER Car)

We first will transform this rule into a positive formulation. This positive
formulation is better suited for reasoning, but is less obvious to understand from
an intuitive point of view.

EACH Car being owned by Person owning Car MUST BE THAT Car
FEach car that is owned by a person owning a car, must be this person’s only car

Next we add the rule that a licence plate may be associated with at most
one car, or in its positive formulation:

EACH Licence plate registering A Car being registered by A Licence plate
MUST BE THAT License plate
FEach licence plate that registers a car, must be a unique licence plate for that car

In order to combine these two uniqueness constraints, we apply the following
reasoning rule:

EACH D; 01 D2 MUST BE THAT o2 EACH D3 MUST BE THAT o,
EACH Dy D3 D2 MUST BE THAT o2

where D1, Dy and D3 are information descriptors, while 01 and oo are names
of object types. We first prove the validity of this rule. Presume the rules
EACH D; 01 Dy MUST BE THAT 02 and EACH D3 MUST BE THAT o1, and as-
sume x [Dy; D3 D3] y, then from the definition of concatenation we know that
for some p and ¢ we have z [D1] p[D3] ¢ [D2] y. From p [Ds] ¢ we conclude that
also p [o1] ¢, and thus z [Dy o2 Ds] y. Applying the first rule yields z [oz2] y.
Applying this reasoning rule by setting:

D1 = License plate registering o1 = Car
D> = being registered by License plate 02 = Licenseplate
D3 = Car being owned by Person owning Car

we get:

EACH Licence plate registering A Car being owned by A Person owning A Car being
registered by A Licence plate MUST BE THAT License plate

Each licence plate that registers a car (owned by a person), must be a unique licence
plate for that car owned by that person

As a negative formulated sentence:

NO Licence plate is registering A Car being owned by A Person owning A Car being
registered by ANOTHER Licence plate

No licence plate may register a car (that is owned by a person), that is also registered
by another licence plate

4 Discussion and Conclusion

In this paper we proposed to use ORM and Lisa-D as a means to formally
reason about domains. We explored some aspects of such reasoning. During
conceptual modeling, a modeler can add consistency rules that describe the
intended populations of the conceptual schema. We assumed that such rules can
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be formulated in the conceptual language Lisa-D. We discussed reasoning with
Lisa-D expressions. Especially, we speculated that such reasoning may well be
closer to the way people naturally reason about specific application domains
than more traditional forms of (formal) reasoning. If this is indeed the case, we
may be able to “reverse the modeling process”, and focus on sample reasoning in
the application domain, deriving from explicit reasoning examples an underlying
system of reasoning rules and domain-specific axioms.

In the near future the original definition of Lisa-D will be adapted to better
suit the needs for formal reasoning about domains. More work is also needed in
providing more natural verbalisation/paraphrasing of Lisa-D expressions, more
specifically the verbalisation of path expressions as mentioned in section A
link to formal theorem proving tools will be considered as well.
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