
1

The Anatomy of the ArchiMate Language
M.M. Lankhorst1, H.A. Proper2,3 and H. Jonkers4

1 Novay, Enschede, The Netherlands
2 Radboud University Nijmegen, Nijmegen, The Netherlands

3 Capgemini, Utrecht, The Netherlands
4 BiZZdesign, Enschede, The Netherlands

Abstract
In current business practice, an integrated approach to business
and IT is indispensable. In many enterprises, however, such an
integrated view of the entire enterprise is still far from reality. To
deal with these challenges, an integrated view of the enterprise is
needed, enabling impact/change analysis covering all relevant
aspects. This need sparked the development of the ArchiMate
language, which was developed with the explicit intention of
becoming an open standard, and as such has been designed such
that it is extendable while still maintaining a clear and orthogonal
structure.

This paper is concerned with documenting some of the key
design decisions and design principles underlying the ArchiMate
language. ArchiMate is designed as an architecture description
language (ADL) for enterprise architectures. We will start by
discussing the challenges facing the design of an architecture
description language. Consequently we discuss the way how the
design principles of the ArchiMate language aim to tackle these
challenges. We then continue with a discussion of the modelling
concepts needed. In this, we make a distinction between concepts
needed to model domains in general, the modelling of dynamic
systems, and the modelling of enterprise architectures.

Introduction
Applying information technology effectively requires a company to have a clear,
integrated vision on the relation between its business and IT. Without such a vision, the
IT infrastructure will never adequately support the business, and vice versa, the business
will not optimally profit from IT developments. A vast amount of literature has been
written on the topic of strategic alignment, underlining the significance of both “soft”
and “hard” components of an organisation. Organisational effectiveness is not obtained
by local optimisations, but is realised by well-orchestrated interaction of organisational
components (Nadler et al., 1992).

In current business practice, an integrated approach to business and IT is therefore
indispensable. In many enterprises, however, such an integrated view of the entire

2

enterprise is still far from reality. This is a major problem, since changes in an
enterprise’s strategy and business goals have significant consequences within all
domains of the enterprise, including organisational structures, business processes,
software systems, data management and technical infrastructure (Lankhorst et al.,
2005a, Op ’t Land et al., 2008). Enterprises find themselves confronted with the need to
adjust processes to their environment, open up internal systems and make them
transparent to both internal and external parties. To deal with the challenges brought
forward by these developments, an integrated view of the enterprise is needed, enabling
impact/change analysis covering all relevant aspects.

Consider for example a (business unit of an) enterprise that needs to assess the
impact of introducing a new product offering. This introduction may require the
definition of additional business processes, hiring extra personnel, changing the
supporting applications, and augmenting the technological infrastructure to support the
additional load of these applications. Perhaps this may even require a change of the
organisational structure. Many stakeholders within and outside the company can be
identified, ranging from top-level management to software engineers. Each stakeholder
requires specific information presented in an accessible way, to deal with the impact of
such wide-ranging developments. It is very difficult to obtain an overview of these
changes and their impact on each other, and to provide both decision makers and
engineers implementing the changes with the information they need.

To manage the complexity of any large system, be it an enterprise, an organisation,
an information system or a software system, an architectural approach is needed. As
IEEE Std 1471 (IEEE, 2000) puts it: “Architecture is the fundamental organisation of a
system embodied in its components, their relationships to each other, and to the
environment, and the principle guiding its design and evolution”.

Enterprise architecture is an important instrument in executing a company-wide,
integrated strategy (Ross et al., 2006). It is a coherent whole of principles, methods and
models that are used in the design and realisation of the enterprise’s organisational
structure, business processes, information systems, and infrastructure (Bernus et al.,
2003). However, in practice these domains are often not approached in an integrated
way. Every domain speaks its own language, draws its own models, and uses its own
techniques and tools. Communication and decision making across domains is seriously
impaired.

To be able to represent “the fundamental organisation of a system embodied in its
components, their relationships to each other, and to the environment”, an architecture
description language for enterprise architectures is needed. At an enterprise level, it is of
the utmost importance to be able to represent the core structures of different aspects of
the enterprise, such as business processes, applications and infrastructures, as well as
the coherence between these aspects.

As discussed in more detail in (Op ’t Land et al., 2008), enterprise architecture is a
steering instrument enabling informed governance. Important applications of enterprise
architecture are therefore the analysis of problems in the current state of an enterprise,
determining the desired future state(s), and ensuring that the development projects
within transformation programs are indeed on-track with regards to the desired future
states. This implies that in enterprise architecture models, coherence and overview are
more important than specificity and detail. This also implies the need for more coarse-

3

grained modelling concepts than the finer grained concepts that can typically be found
in modelling languages used at the level of specific development projects, such as e.g.
UML (OMG, 2009) and BPMN (OMG, 2008). Although several vendor- or tool-
specific solutions to this problem have been around for a while, no open and neutral
enterprise modelling language was available. Therefore a new language was needed,
leading to the development of ArchiMate. In this paper, we will put ArchiMate on the
slab and dissect it layer by layer to show you its anatomy.

Background of the ArchiMate Language
The ArchiMate language was realised as part of a collaborative research project on
enterprise architecture, funded partly by the Dutch government and involving several
Dutch research institutes, as well as governmental and financial institutions (Lankhorst
et al., 2005a). ArchiMate was developed with the explicit intention of becoming an
open standard, and as such has been designed such that it is extendable while still
maintaining a clear and orthogonal structure. The results of the project in general are
described in detail by in (Lankhorst et al., 2005a) as well as several papers (Jonkers et
al., 2003, Steen et al., 2004, Jonkers et al., 2004, Lankhorst et al., 2005b, Arbab et al.,
2007). An illustrative example of an ArchiMate model is provided in Figure 1.

4

Figure 1. An example ArchiMate model

Meanwhile, the ArchiMate language has been transferred to the Open Group
(http://www.opengroup.org/archimate), who adopted it as a technical standard in
February 2009 (The Open Group, 2009b). It is slated to become the standard for
architectural description accompanying the Open Group’s architecture framework
TOGAF (The Open Group, 2009a).

The ArchiMate standard consists of the following primary components:
A framework – A conceptual framework consisting of rows (layers) and columns

(aspects), which facilitates classification of architectural phenomena. This
performs a similar role to the Zachman framework (Zachman, 1987). It defines a
theory or “world view” about the way enterprises are structured.

Modelling concepts – A set of modelling concepts allowing for the description of
relevant aspects of enterprises at the enterprise level. This set underlies the
abstract syntax, focussing on the concepts and their meaning, separate from the
language constructs in which they are used.

An abstract syntax – This component contains the formal definition of the language
in terms of a metamodel. The ArchiMate metamodel defines the characteristics of

5

each language construct, and its relationships to other language constructs.
Besides, the metamodel positions the different language constructs in the cells of
the ArchiMate framework and specifies the relationships that may exist not only
between constructs but also between cells. This feature distinguishes ArchiMate
from both UML (OMG, 2009) and the Zachman framework (Zachman, 1987). In
ArchiMate it is therefore possible to explicitly model the dependencies between
the different layers, domains and views of the enterprise architecture, which thus
becomes a coherent whole instead of a collection of isolated diagrams of different
kinds.

The language semantics – This component defines the meaning of each language
construct and relation type.

A concrete syntax in terms of a graphical notation – The concrete syntax defines
how the language constructs defined in the metamodel are represented
graphically. Even though the standard suggests a specific notation, other notations
are possible. Changing an icon or other graphical element does not lead to a
different language.

A viewpoint mechanism – This corresponds to the idea of diagram types in UML,
though it is much more flexible as there is not a strict partitioning of constructs
into views. The separation between the abstract and concrete syntaxes of the
language as noted above facilitates the creation of different views for different
stakeholders.

The first four components (framework, concepts, abstract syntax, and semantics) form
the core of the ArchiMate language. The other two components (graphical notation and
viewpoint mechanism) are crucial in making the standard usable in practice. The focus
of this paper is on documenting some the key design decisions and design principles
underlying the language structure, i.e., the first four components.

Until now, publications on the ArchiMate language have focussed mainly on its
expressiveness and its applicability. Now that the ArchiMate language has been
transferred to the Open Group, the standard is expected to evolve hand-in-hand with the
further development of TOGAF. This also provides a trigger to more explicitly discuss
the extensible nature of the language. In the remainder of this paper, we therefore start
by discussing the challenges facing the design of an architecture description language,
while consequently discussing the way in which the design of the ArchiMate aims to
tackle these. We then continue with a discussion of the modelling concepts needed to
domain models in general, which we then first refine to the modelling of dynamic
systems, and finally to the modelling of enterprise architectures.

Requirements on an Architecture Modelling Language
The design of the ArchiMate language was based on an extensive requirements study.
In this requirements study, both practical requirements from the client organisations
involved in the ArchiMate project (ABN AMRO, ABP Pension Fund, Ordina, and the
Dutch Tax and Customs Administration), as well as general requirements on the
soundness and other qualities of the language were taken into account (Bosma et al.,
2002). Client-specific requirements were elicited by interviewing and studying
architectural material from the client organisations. These were then generalised,

6

combined and augmented with relevant quality requirements from e.g. (Lindland et al.,
1994, Krogstie et al., 1995).

The resulting requirements were grouped into the following areas: modelling,
analysis, visualisation, process and tool support, and organisational implementation.
The first three types of requirements were a primary source for the design of the
language. Below we outline the underlying challenges and describe the resulting ‘must
haves’ for the language.

Modelling
From a modelling perspective, the essential requirements were the following:

Concept coverage – Several domains for grouping concepts have been identified,
such as product, process, organisation, information, application, technology
(infrastructure, system development, maintenance). The concepts in the language
must at least cover the concepts in these domains.

Enterprise level concepts – At an enterprise level, it is important to be able to
represent the core elements from the different domains such as product, process,
et cetera, as well as the coherence between these aspects. In enterprise
architecture models, coherence and overview are more important than specificity
and detail. This also implies the need for more coarse grained modelling
concepts. As mentioned before, the concepts which can typically be found in
modelling language used at the level of specific development projects, such as
UML and BPMN, were found to be too fine-grained.

Concept mapping – Organisations and/or individual architects must be able to keep
using their own concepts and descriptions in development projects. This requires
a mapping from the coarse grained concepts in ArchiMate to the fine-grained
concepts used in languages at the project level.

Unambiguous definitions of concepts – The meaning and definition of the
modelling concepts offered by the language must be unambiguous. Every concept
must be described taking into account: informal description, specialisation,
notation, properties, structuring, rules and restrictions and guidelines for use.

Conformance to international standards – The architecture description language
must follow, and whenever possible, influence international standards.

Structuring mechanisms – Composition & decomposition, generalisation &
specialisation, and aggregation of concepts must be supported.

Abstraction – It must be possible to model relations at different abstraction levels.
For example, relations can be formulated between concepts, groups of concepts or
different architectural domains.

Consistency – It must be possible to perform consistency checking of architectures.
Tracing of design decisions – It must be possible to register, trace and visualise the

requirements, constraints, design decisions and architectural principles that are
used in the construction of the architecture.

Extensibility – The language should be easy to maintain and extend, should the need
for new concepts arise.

7

Analysis
The ability to perform various kinds of analyses was also recognised as an important
benefit of using architecture models. These benefits also contribute towards the return
on modelling effort (RoME) of the creation of architectural models. The following
demands were therefore also taken into account in designing the modelling language:

Analysis of architectural properties – It must be possible to perform qualitative
and quantitative analysis of properties of architectures.

Impact of change analysis – Impact of change analysis must be supported. In
general, such an analysis describes or identifies effects that a certain change has
on the architecture or on characteristics of the architecture. We identify three
types of change analysis:
• The impact of a change in an architectural element on other architectural

elements, e.g. what is the impact of the introduction of new products or
modifications in products on processes, applications and infrastructure?

• The impact of a change in a characteristic of the architecture on the
architecture itself, e.g. what is needed to improve the required throughput by
20%?

• The impact of an event or change in the architecture on the characteristics of
the architecture e.g. what are the consequences of a fatal failure in a
technological component?

Visualisation
Requirements concerning visualisation are about the way architectural results are
presented to stakeholders. Following (IEEE, 2000), the information need of
stakeholders is addressed by viewpoints consisting of views and models.

Representation of concepts – The visual representation of concepts must be easily
adaptable.

Consistency of presentation – The visual presentation needs to be consistent and
unambiguous.

Visualisation independence – Visualisation techniques and solutions should be
independent of the actual concepts used in a model, i.e., it should be possible to
modify/add the concepts in a model without consequences for visualisation
techniques.

Visualisation generation – Automatic generation of visualisations from architecture
models must be supported.

Viewpoint definition – A viewpoint definition must
• state the stakeholder(s) it is created for,
• define the concerns covered by the viewpoint, and
• explain how views are created for this viewpoint (in terms of the concepts to

be presented and the format of the presentation).
Adaptability of viewpoints – Viewpoints must be adaptable and extensible

independent of visualisation techniques.

8

Viewpoint coverage – ArchiMate has to support often used ‘general’ viewpoints,
i.e., viewpoints for frequently occurring stakeholders.

Several of these requirements imply a clear separation between concepts and their
notation(s) in the modelling language. This is different from e.g. UML, in which the
notation is tied closely to the individual concepts. Separating these makes it much easier
to create architectural views for specific stakeholders, using symbols that these
stakeholders are familiar with.

Since this paper is concerned with the structure of the ArchiMate language and not
with its notation, most of these requirements on visualisation will not be dealt with here,
although we will explain the language symbols in later sections. Visual aspects of
enterprise architecture modelling have been addressed in (Lankhorst et al., 2005,
chapter 7).

General Quality Criteria
In addition to the specific requirements outlined above, the ArchiMate language also
needed to address general quality criteria for modelling and modelling languages.
Pioneers in the design of complex systems (Dijkstra, 1968, Brooks Jr., 1987) have
described principles to ensure the conceptual integrity of a design: ‘It is not enough to
learn the elements and rules of combination; one must also learn idiomatic usage, a
whole lore of how the elements are combined in practice. Simplicity and
straightforwardness proceed from conceptual integrity. Every part must reflect the same
philosophies and the same balancing of desiderata. (…) Ease of use, then, dictates unity
of design, conceptual integrity’ (Brooks Jr., 1987).

Conceptual integrity is the degree to which a design can be understood by a single
human mind, despite its complexity. The core idea of conceptual integrity is that any
good design exhibits a single, coherent vision, which is easy to understand by others.
This allows someone with a limited knowledge and understanding of a model to
understand easily yet unknown parts of the model. To ensure conceptual integrity, one
can use subordinate design principles such as: do not link what is independent
(orthogonality), do not introduce multiple functions that are slightly divergent
(generality), do not introduce what is irrelevant (economy; sometimes denoted as
parsimony), and do not restrict what is inherent (propriety).

These principles not only apply to the design of architectures, but also to the design
of the modelling languages in which these architectures are expressed. To convey this
notion of conceptual integrity, the language should help the architect in expressing his
design in such a way that it conforms to these design principles. If a language only
allows a convoluted way of describing an architecture, the resulting design will never
achieve this conceptual integrity. Furthermore, the language itself should exhibit
conceptual integrity: similar things should be expressed in a similar way, using a simple
set of core concepts that are easy to learn and understand. Cobbling together a language
from many different sources (viz. UML) is not the ideal way to achieve this.

The literature on quality requirements for models shows a broad consensus about the
general applicability of these heuristics (Lindland et al., 1994, Krogstie et al., 1995,
Teeuw & Berg, 1997). Applying these design principles increases the internal quality of
a design (Teeuw & Berg, 1997).

9

Additionally, the quality of an architecture is also determined by its stakeholders: an
architecture that is a ‘correct’ and ‘complete’ representation of the real-life enterprise
that is being modelled, given the objectives of stakeholders, has a high external quality.
In short, external quality refers to the fitness for use of a model (Biemans et al., 2001).
This implies that the modelling language should also be fit for use by these
stakeholders: its expressive power and ease of use should cover their needs. This is
something we will address in the following sections.

Fulfilling the Requirements
In this section we start with a discussion of the key design principles used in the
construction of the ArchiMate language, together with their motivations as well as their
actual impact on the design of the language. This is followed by the introduction of the
concept of a stack of metamodels, forming the backbone of the definition of the
ArchiMate language.

Key Design Principles
The requirements posed in the previous section were the basis for formulating a set of
key design principles for the structure of our language:

The language should be as compact as possible – The most important design
restriction on the language was that it was explicitly designed to be as compact as
possible, while still being usable for most enterprise architecture related
modelling tasks. Many other languages, such as UML, try to accommodate as
much as possible all needs of all possible users. In the case of UML, this has
resulted in a language specification of nearly 1000 pages that has become
extremely hard to implement and difficult to learn. In the interest of simplicity of
learning and use, ArchiMate has been limited to the concepts that suffice for
modelling the proverbial 80% of practical cases. When it is clear for each of the
concepts what its contribution is, the language becomes easier to use and easier to
learn (Proper et al., 2005). Furthermore, having a large number of concepts makes
it difficult to extend the language in the future, potentially requiring an
exponentially rising number of connections to existing concepts. Finally, adding
concepts later on is much easier than removing something, since somewhere
someone may depend on that specific concept; the continuing growth of UML is
witness to this bane of downwards compatibility.

Core concepts should not dependent on a specific framework – Many
architecture frameworks are in existence. Therefore, it is not desirable for a
general purpose architecture description language to be too dependent on a
specific architecture framework. Doing so will also make the language more
extendible in the sense that can more easily be adapted to other frameworks.

However, in order to provide a useable architecture description language, the
ArchiMate standard does include the definition of a (general) framework as well,
to ensure the standard is specific enough to be applicable in practice.
Nevertheless, the core concepts are independent of the framework as will be
illustrated later.

10

Concepts should be mapped easily to and from those used in project level
languages – To enable traceability from the enterprise level to the project level, a
strong relationship should exist between the modelling concepts used at project
level and those used in the enterprise architecture. Therefore, the ArchiMate
language needed to be set up in such a way that project level modelling concepts
be expressed easily in terms of the more general concepts defined in the language
(e.g., by specialisation or composition of general concepts).

A Stack of Metamodels
The key challenge in the development of the language metamodel was actually to strike
a balance between the specific concepts used by project-level modelling languages on
one extreme, and the very general modelling concepts suggested by general systems
theory (Beer, 1985). The triangle in Figure 2 illustrates how concepts can be described
at different levels of specialisation.

Figure 2. Conceptual hierarchy

To meet this challenge of balancing generality and specificity, the design of the
ArchiMate language started from a set of relatively generic concepts (higher up in the
triangle) focussing on domain modelling in general. These were then specialised
towards the modelling of dynamic systems (at a course grained level), and consequently
to enterprise architecture concepts. At the base of the triangle, we find the metamodels
of the modelling concepts used by project-level modelling languages such as UML,
BPMN, et cetera. The ArchiMate metamodel defines the concepts somewhere between
these two extremes. In moving from the top of the triangle to the lower levels, we will
each time argue what the utility (towards our general modelling goals) of the added
concepts (Proper et al., 2005). This makes the exercise of creating such a stack of
metamodels comparable to the creation of a metamodel hierarchy (Falkenberg & Oei,
1994). However, we do not use a branching structure here, and hence not create a
hierarchy but merely a stack. When defining the language in this way, it also becomes
easier to position and discuss possible extensions of the language in relation to higher
level core concepts and/or the specialisations of these at the lower levels.

11

In this paper we have chosen to use Object-Role Modelling (ORM2 to be precise)
(Halpin & Morgan, 2008) as a metamodelling language, since it allows for precise
modelling and elaborate verbalisations, making it well suited for the representation of
metamodels. Furthermore, due to its elaborate formalisation (Hofstede & Weide, 1993,
Hofstede et al., 1993), the graphical ORM models (and any textual constraints) can be
regarded as a graphical representations of underlying logical theory. This provides a
better foundation for logic reasoning on models and metamodels than given by e.g. the
Meta Object Facility (MOF) (OMG, 2006), the metamodelling language underpinning
UML.

The two main elements in ORM are entity types, representing ‘things’ being
modeled, and fact types, representing facts about (i.e., relationships between) these
things. Entity types are depicted as named rectangles with rounded corners. Fact types
(relationship types) are shown as named sequences of role boxes, with the predicate
name in or beside the first role of the predicate. Bars over or under one or more role
boxes indicate a uniqueness constraint over the(se) role(s). Black dots on the connection
between an entity type and a role-box indicate a mandatory role constraint, whereby all
instances of the involved entity type are required to play the specific role. A solid arrow
from one entity type to another indicates that the first is a (proper) subtype of the
second. Each instance of a subtype is also an instance of it supertype. Similarly, dotted
arrows represent subset relations on the populations of relationships.

In the remainder of the paper, we discuss the stack of metamodels taking us from the
top of the triangle to the level of the ArchiMate metamodel. At each level, we will
present a metamodel of the additional modelling concepts provided by this level. Each
level also inherits the concepts from the previous level, while also providing
specialisations of the existing concepts. Formally, each level l involves the specification
of a metamodel Schema(l) and a mapping Mapping(l), where at the base of the stack the
mapping is empty: Mapping(0) = ∅. The total metamodel at each level can be defined
recursively as:

TotalSchema(0) ≡ Schema(0)
TotalSchema(n) ≡ TotalSchema(n – 1) ∪ Schema(n) ∪ Mapping(n)

As an example metamodel stack, involving two levels, consider Figure 3.

12

— Level 0 —

— Level 1 —

— Integrated model —

Figure 3. Example metamodel

The mappings between the levels are represented as a :: b. As a rule we will required
that if Mapping(n + 1) � a :: b, then a must be a type from TotalSchema(n) and b must
be a type in Schema(n + 1). Furthermore, as also illustrated in Figure 3, if a and b are
both object types, b is subtype of a, while if both are fact types, b is a subset of a. More
specifically, in Figure 3, A and B are a subtype of X, while fact type h is a subset of fact
type f.

Sometimes we will want to repeat fact types that already exist between two super-
types for subtypes of these supertypes. This may be needed as a clarification, or to
define more specific constraints that hold for the instances of the subtypes participating
in the fact type. In this case we will write :: a as a shorthand for a :: a. In the example
shown in Figure 3 we see how g is repeated at level 1, while the mandatory role (the
black dot on entity type B) requires the instances of subtype B to all play a role in fact
type g (which is not required for all instances of supertype X).

It should be noted that, although the triangle in Figure 2, as well as the stack of
metamodels to be discussed in the next sections, played an important part in the
construction of the current ArchiMate standard, they are not formally part of the
standard. Making explicit these intermediate structures, however, will also support the
future evolution ensuring the clarity, coherence and orthogonality of the concepts of the
language are maintained.

13

Domain Modelling
In this section we are concerned with the establishment of a metamodel covering a set
of modelling concepts that would allow us to model domains in general. We do so by
defining three levels as depicted in Figure 4.

— Level 0 —

— Level 1 —

— Level 2 —

Figure 4. Basic layers: Levels 0, 1 and 2

The first level in Figure 4 shows a metamodel comprising a single modelling concept:
Element. This constitutes a first important step. The domains we want to model are not
just black boxes. We want to discern several elements within each domain (and its
environment). On its own, this is of course still highly impractical. For practical reasons
we need the ability to identify relations between these elements. This, therefore, leads to
the refinement suggested by level two.

At the second level, we identify two kinds of elements: Concepts (graphically
represented by ‘boxes’) and Relations (graphically represented by lines or arrows
between the boxes). Concepts are the source of Relations as well as the destination of
Relations. In other words, Concepts can be related by way of a Relation. This is
abbreviated by the derived (as marked by the asterisk) fact type is related to. The
definition of this derived fact type is provided in the style of SBVR (SBVR Team,
2006).

14

The domains we are interested in tend to be large and complex. To be able to harness
this complexity we need special relationships between Concepts which provide us with
abstraction, aggregation and specialisation mechanisms. This leads to three
specialisations of the is related to fact type: is realisation of representing the fact that
one concept may be the physical realisation of another concept, is specialisation of
dealing with specialisation of concepts, and is aggregation of concerned with the
aggregation of multiple concepts into a complex concept. A special class of
aggregations are compositions, as signified by the is composition of fact type.

Distinguishing Extensional and Intentional Perspectives
Next, we make a distinction between the real-world things we want to model and the
intentions we have with these things. These real-world entities are modelled with so-
called extensional concepts, which provide an objective view on the world, i.e., they
describe what is ‘out there’. In addition, we discern (in line with e.g. the why
perspective in the Zachman framework), a subjective, intentional1 perspective, to
capture the intentions that stakeholders have with these real-world entities and hence
with the extensional concepts. This leads to a separation between extensional and
intentional concepts, as shown in Figure 5.

Figure 5. Level 3 – Intensional and extensional concepts

Modelling Dynamic Systems
Based on the foundation established in the previous sections, we will now describe
general concepts for modelling dynamic systems. In this context, a dynamic system is
any (discrete-event) system in which one or more subjects (actors or agents) display
certain behaviour, using one or more objects. Examples of dynamic systems are
business systems, information systems, application systems, and technical systems.

The concepts we define here should be suitable for modelling a variety of informa-
tion-intensive organisations. If desired, they can be further specialised or composed to
form concepts tailored towards a more specific context. The structure of the metamodel

1 Note that this is not an intensional perspective!

15

is consistent with the structure of several common architectural frameworks or methods,
such as TOGAF (The Open Group, 2009a), the Zachman framework (Zachman, 1987),
and DYA (Wagter et al., 2005), and the architectural practice within user organisations.
We have also re-used concepts from existing languages (such as UML and several
business process modelling languages) as much as possible, although we use many of
these concepts in a more abstract sense.

In this section, we gradually extend the set of concepts, using three more or less
orthogonal aspects or ‘dimensions’; we distinguish:

1. the aspects active structure, behaviour and passive structure,
2. an internal and an external view, and
3. an individual and a collective view.

In the following three subsections, we introduce the concepts that follow from this. We
also motivate the relevant design decisions (e.g., not all the possible combinations of the
aspects lead to new concepts).

Active Structure, Behaviour and Passive Structure
Next, we distinguish active structure concepts, behavioural concepts and passive
structure concepts within the extensional view. These three classes have been inspired
by structures from natural language. When formulating sentences concerning the
behaviour of a dynamic system, concepts will play different roles in the sentences
produced. In addition to the role of a proposition dealing with some activity in the
dynamic system (selling, reporting, weighing, et cetera), two other important roles are
the role of agens and the role of patiens (note, further refinements of these roles do
indeed exist, but we regard these two as the primary roles in addition to the
proposition). The agens role (the active structure) refers to the concept which is
regarded as executing the activity, while the patiens role (the passive structure) refers to
the concept regarded as undergoing/experiencing the activity.

Figure 6. Level 4 – Passive structure, behaviour and active structure

16

Active structure concepts are concepts concerned with the execution of behaviour; e.g.,
(human) actors, software applications or devices that display actual behaviour.
Behaviour concepts represent the actual behaviour, i.e., the processes and activities that
are performed. The active structure concepts can be assigned to behaviour concepts, to
show who (or what) performs the behaviour. Passive structure concepts are the
concepts upon which behaviour is performed. In the domain that we consider, these are
usually information or data objects, but they may also be used to represent physical
objects. Even more, concepts may play the role of active structure in one occasion, but
the role of passive structure in another. For example, an actor may execute a process,
but that same actor may be managed by another one. This is shown in Figure 6.

In the standard ArchiMate notation, the convention is that active and passive
structure concepts are represented by rectangular shapes, while behavioural concepts are
represented by round or oval shapes, or rectangular shapes with rounded corners.

Meaning, Value and Reason
Mirroring the structure of the previous section, we subdivide the intentional perspective
into three different concepts. We identify the Meaning concept to express the meaning
attached by stakeholders to extensional concepts and in particular to passive structure
concepts. The Value concept expresses the value exchange or addition that may be
associated with concepts, e.g. with the performance of the behaviour or with passive
structure concepts. The Reason concept, expresses the rationale underlying the design of
concepts. This leads to the refined metamodel as is shown in the top half of Figure 7.

Figure 7. Level 4 – Meaning, value and reason added

17

Unlike Meaning and Value, Reason is not (yet) a concept that is available to the users of
the ArchiMate language; it rather remains ‘hidden’ under the surface. However, it is an
important extension point for future augmentation of ArchiMate with requirements
modelling concepts.

Internal and External Perspective
In the ArchiMate language a distinction is made between an external perspective and an
internal perspective on a system. When looking at the behaviour aspect, these
perspectives reflect the principles of service orientation. The Service concept represents
a unit of essential functionality that a system exposes to its environment. This leads to
the extension as depicted in Figure 8.

Figure 8. Level 5 – Internal and external concepts

A Service is accessible through an Interface, which constitutes the external view on the
active structural concept. An interface is a (physical or logical) location where the
functionality of a service is exposed to the environment. When a service has assigned an
interface, then this assignment must be mirrored by the assignment of relevant internal
active structure concepts to the internal behaviour concepts involved in the realisation
of the service (the dotted arrow between the two has assigned fact types).

For the passive structural concepts, the internal and external views are collapsed:
objects may be accessed by both internal behaviour concepts and services. This actually
suggests a possible extension of the language, where a distinction is made between
objects that are internally accessible and those that are externally accessible. Note that
with the Object concept we do not only refer to an informational abstraction of objects.
For example, at the business level, the objects are likely to include physical objects as
well.

Individual and Collective Behaviour
Going one level deeper in the structure of the language, we distinguish between the
individual behaviour, performed by a single active structure concept, and the collective
behaviour performed by multiple active structure concepts which collaborate. This leads
to the refinements shown in Figure 9.

18

Figure 9. Level 6 – Individual and collective concepts

In describing individual and/or collective behaviour in more detail, the internal
behaviour concept needs refinement in terms of temporal ordering of Exhibited
behaviour. This leads to the precedes fact type and its subsets: triggers (for activities)
and flows to (for information processing). A further refinement needed is the distinction
between Role and Actor as active structure concepts. An Actor represents an essential
identity that can ultimately be regarded as executing the behaviour, e.g. an insurance
company, a mainframe, a person, et cetera. The actual execution is taken to occur in the
context of a Role played by an Actor; a Role represents the responsibility for performing
the behaviour. Needless to say that actors can fulfil multiple roles.

A collective of co-operating Roles is modelled by the Collaboration concept: a
(possibly temporary) aggregation of two or more active structure concepts, working
together to perform some collective behaviour. A Collaboration is defined as a
specialisation of a Role. The collective behaviour itself is modelled by the Interaction
concept, which is defined as a specialisation of the Exhibited behaviour concept.

In the current version of the language, the distinction between individual and
collective behaviour is only made for the internal view: both individual internal
behaviour concepts and interactions may realise services. The reason for this is that we
focus on models from the perspective of a single system (i.e., one system realises
services which may be used by other systems). Also for passive structural aspects, the
individual and collective views are collapsed.

An extension of the language is conceivable in which a collective external view is
also explicitly described. For example, the Transaction concept, which is used in some
modelling languages to express the mutual exchange of services or value items (see,
e.g., (Dietz, 2006)), could be considered an external collective behaviour concept.

Modelling Enterprise Architectures
In this section we further extend the metamodel stack to arrive at the actual ArchiMate
language. Two steps remain. The first step involves the introduction of an architecture

19

framework allowing us to consider enterprises as a layered set of systems. The final step
is to refine the metamodels to the specific needs of each of these layers.

Multiple Layers of Systems
As a common denominator of the architecture frameworks in use by the client
organisations participating in the ArchiMate project, as well as a number of standard
frameworks used in the industry, with of course TOGAF as a prominent example, a
framework was created involving three layers of systems:

Business layer This layer is concerned with the products and services offers to
external customers, which are realised in the organisation by business processes
performed by business actors and roles.

Application layer This layer supports the business layer with application services
which are realised by (software) application components.

Technology layer This layer offers infrastructural services (e.g., processing, storage
and communication services) needed to run applications, realised by computer
and communication hardware and system software.

Figure 10. Level 7 – Generic layer

Since each of these layers involves a dynamic system, the metamodel at level 7
comprises three copies of the fragment depicted in Figure 10 for Business, Application
and Technology respectively (each time replacing the X in Figure 10). These fragments,
however, need to be connected as well, therefore for each of the 〈X, Y〉 two
combinations: 〈Business, Application〉 and 〈Application, Technology〉 the fragments
shown in Figure 11 should be added.

20

Figure 11. Level 7 – Inter-layer links

As can be seen in Figure 11, we distinguish two flavours of inter-layer relationships:
• Relationships related to the use of services, providing a rather loose coupling

between layers. These are expressed by used by relations, between a service and
an internal behaviour concept, and between an interface and an active structure
concept.

• Implementation relationships, providing a tighter coupling between layers.
These are expressed by realisation relations.

Although, in principle, both types of relations can be used for all three aspects, used by
relations are mainly used to link layers for the active structure and behaviour aspects,
while realisation relations are mainly used to link layers for the passive structure aspect.

Layer-Specific Refinements
Given the focus of each of the layers, further refinements are needed to better cater for
the specific needs of the respective layers.

Business layer
For the business layer, as shown in Figure 12, the concepts of Contract and Product
have been introduced. At the business level, Business services may be aggregated to
form Products, which are treated as (complex) services. A Business service offers a
certain Value (economic or otherwise) to its (prospective) users, which provides the
motivation for the service’s existence. For the external users, only this external
functionality and value, together with non-functional aspects such as the quality of
service, costs, et cetera, are of relevance. These can be specified in a Contract or
Service Level Agreement (SLA). This leads to the situation as depicted in Figure 12.
The concepts of Meaning and Value (see Figure 7) have been repeated to stress the fact
that they specifically play a role in the business layer.

21

Figure 12. Level 8 – Business layer

Table 1 summarises the business layer concepts, including their default graphical
notations.

Table 1. Business layer concepts

Concept Description Notation

Business actor An organisational entity that is capable of
performing behaviour. Business

actor

Business role A named specific behaviour of a business

actor participating in a particular context. Business
role

Business
collaboration

A (temporary) configuration of two or
more business roles resulting in specific
collective behaviour in a particular
context.

Business
collaboration

Business interface Declares how a business role can connect
with its environment. Business

interface

Business object A unit of information that has relevance
from a business perspective.

Business
object

22

Concept Description Notation

Business process A unit of internal behaviour or collection
of causally related units of internal
behaviour intended to produce a defined
set of products and services.

Business
process

Business function A unit of internal behaviour that groups
behaviour according to, for example,
required skills, knowledge, resources, etc.,
and is performed by a single role within
the organisation.

Business
function

Business
interaction

A unit of behaviour performed as a
collaboration of two or more business
roles.

Business
interaction

Business event Something that happens (internally or

externally) and influences behaviour. Business
event

Business service An externally visible unit of functionality,

which is meaningful to the environment
and is provided by a business role.

Business
service

Representation The perceptible form of the information

carried by a business object. Representation

Meaning The knowledge or expertise present in the

representation of a business object, given
a particular context.

Meaning

Value That which makes some party appreciate a

service or product, possibly in relation to
providing it, but more typically to
acquiring it.

Value

Product A coherent collection of services,
accompanied by a contract/set of
agreements, which is offered as a whole to
(internal or external) customers.

Product

Contract A formal or informal specification of
agreement that specifies the rights and
obligations associated with a product.

Contract

Figure 13 illustrates the use of the main business layer concepts with a small self-
explanatory example of how an insurance claim is processed.

23

Figure 13. Business layer example model

Application layer
The application layer, shown in Figure 14, does not lead to the introduction of
additional concepts, and only involves the re-naming of some of the existing concepts.
The renamings results in new names for existing concepts, which correspond better to
the names already used by the partners participating in the ArchiMate project, as well as
to existing standards such as the UML. For example, an Application component is the
application-layer specialisation of the Role concept. Not shown in the figure is that
Application services may also be aggregated in a Product.

Figure 14. Level 8 – Application layer

Table 2 summarises the application layer concepts, including their default graphical
notations.

24

Table 2: Application layer concepts

Concept Definition Notation

Application
component

A modular, deployable, and replaceable
part of a system that encapsulates its
contents and exposes its functionality
through a set of interfaces.

Application
component

Application
collaboration

An application collaboration defines a
(temporary) configuration of two or more
components that co-operate to jointly
perform application interactions.

Application
collaboration

Application
interface

An application interface declares how a
component can connect with its
environment.

Application
interface

Data object A coherent, self-contained piece of

information suitable for automated
processing.

Data
object

Application
function

A coherent group of internal behaviour of
a component. Application

function

Application
interaction

A unit of behaviour jointly performed by
two or more collaborating components. Application

interaction

Application
service

An externally visible unit of functionality,
provided by one or more components,
exposed through well-defined interfaces,
and meaningful to the environment.

Application
service

Figure 15 illustrates the use of the main application layer concepts with a small
example.

Figure 15. Application layer example model

25

Technology layer
The technology (or infrastructure) layer also involves some renamings of existing
concepts. In addition, some further refinements of existing concepts were needed as
well, as depicted in Figure 16. The newly introduced concepts deal with the different
kinds of elements that may be part of a technology infrastructure: System software,
Device and Network, which are all specialisations of the Node concept, itself an
Infrastructure role.

Figure 16. Level 8 – Technology layer

Table 3 summarises the technology layer concepts, including their default graphical
notations.

Table 3: Technology layer concepts

Concept Definition Notation

Node A computational resource upon which
artifacts may be deployed for execution. Node

Device A physical computational resource upon

which artifacts may be deployed for
execution. Device

Network A physical communication medium between

two or more devices. Network

Communication
path

A link between two or more nodes, through
which these nodes can exchange information. Communication

path

26

Concept Definition Notation

Infrastructure
interface

A point of access where the functionality
offered by a node can be accessed by other
nodes and application components.

Infrastructure
interface

System software A software environment for specific types of

components and objects that are deployed on
it in the form of artifacts.

System
software

Infrastructure
service

An externally visible unit of functionality,
provided by one or more nodes, exposed
through well-defined interfaces, and
meaningful to the environment.

Infrastructure
service

Artifact A physical piece of information that is used or
produced in a software development process,
or by deployment and operation of a system.

Artifact

Figure 16 illustrates the use of the main technology layer concepts with a small
example.

Figure 17. Technology layer example model

Relations
As outlined in the previous sections, ArchiMate defines a limited set of relation types,
which are summarised in Table 4Error! Reference source not found. (including their
default graphical notation as used in the previous example models).

27

Table 4. Relation types

Structural Relations Notation

Association Models a relation between concepts that is not covered
by another, more specific relationship.

Access Models the access of behaviour concepts to business or
data objects.

Used by Models the use of services by behaviour concepts and
the access to interfaces by structure concepts.

Specialisation Indicates that an object is a specialisation of another
object.

Realisation Links a logical entity with a more concrete entity that
realises it.

Assignment Links behaviour concepts with active structure concepts
(e.g., roles, components) that perform them, or roles
with actors that fulfil them.

Aggregation Indicates that a concept groups a number of other
concepts.

Composition Indicates that a concept consists of a number of other
concepts.

Behavioural Relations Notation

Flow Describes the exchange or transfer of, for example,
information or value between behaviour concepts.

Triggering Describes a temporal or causal ordering of behaviour
concepts.

In addition to the ‘direct’ relations in the metamodel described in the previous sections,
we have defined a property on the structural relations that allows us to compose them
and define the indirect relations between concepts ‘at a distance’. The structural
relations are listed in Table 4 in ascending order by binding strength: association is the
weakest structural relations; composition is the strongest. Part of the language definition
is an abstraction rule that states that two relations that join at an intermediate element
can be combined and replaced by the weaker of the two. If two structural relationships
r : R and s : S are permitted between elements a, b, and c such that a r b and b s c, then a
structural relationship t : T is also permitted, with a t c and type T being the weakest of
R and S.

Transitively applying this property allows us to replace a chain of structural relations
(with intermediate concepts) by the weakest structural relation in the chain. A more
extensive description and derivation of this property is given by (Buuren et al., 2004).
With this rule, it is possible to determine the ‘indirect’ relationships that exist between
model elements without a direct relationship, which may be useful for, among other
things, impact analysis. By deriving these indirect relations, one can obtain an overview
of the impact of e.g. changes to a business process or failure of a hardware device on the
entire architecture.

This property was specifically designed into the language because ArchiMate
focusses strongly on the relationships and coherence within enterprise architectures. It

28

has been defined as an integral part of the ArchiMate language. Thus, all these derived
relations are also valid in ArchiMate (i.e., part of the language metamodel), although
they were not shown in the successive metamodels explained in the previous sections.
To our knowledge, this transitivity of relations is unique to ArchiMate no other
modelling languages exhibit such a property.

Conclusions and Future Work
In this paper we have discussed the key structures and principles underlying the design
of the ArchiMate language. We have reviewed the challenges confronting an
architecture description language for enterprise architecture, as well as the design
principles aiming to meet these challenges. We then discussed the modelling concepts
needed in the ArchiMate language, where we made a distinction between concepts
needed to model domains in general, the modelling of dynamic systems, and the
modelling of enterprise architectures.

Recently, the ArchiMate language has been adopted by the Open Group. It is
expected that the language will evolve further to better accompany future versions of
the Open Group’s architecture framework (TOGAF). This can easily be accommodated
by taking the metamodel at level 6 as a common denominator. At level 7 a choice has to
be made for a specific architecture framework; in the case of TOGAF this corresponds
to a business architecture, an information systems architecture (comprising a data
architecture and an application architecture) and a technology architecture. These
largely correspond to the existing three ArchiMate layers, but some adjustments might
be in order. TOGAF version 9 (The Open Group, 2009a) now also includes a content
metamodel that defines a formal structure for the products and artefacts produced by its
Architecture Development Method (ADM). Many of the core concepts of this
metamodel can easily be mapped to ArchiMate and vice versa, which makes ArchiMate
well-suited for usage in combination with TOGAF 9. More research is needed
especially in determining a suitable way of modelling TOGAF’s requirements,
principles and constraints in ArchiMate.

Related to this is the issue of modelling business rules, which can be viewed as a
declarative way of operationalising principles and constraints. Linking ArchiMate to
emerging business rules standards such as SBVR (SBVR Team, 2006) may also require
adding one or more concepts to the metamodel at level 6 or 7.

Furthermore, we also envisage the support of other architecture frameworks. As also
advocated by TOGAF’s ADM, TOGAF can be used with other architecture (content)
frameworks as well, such as GERAM (IFIP-IFAC Task Force, 1999), Zachman
(Zachman, 1987) and IAF (Capgemini, 2007, Goedvolk et al., 1999). It is only natural
for ArchiMate to mirror this ability.

Finally, we expect that concepts such as goal modelling (Yu & Mylopoulos, 1996),
value modelling (Gordijn et al., 2006) and transaction modelling (Dietz, 2006) will also
lead to further refinements of the language, primarily requiring further extensions at
level 7 that relate to our intentional concepts. This would enhance ArchiMate’s
suitability as a language for early-stage and business-oriented modelling.

29

Acknowledgments
This research reported in this paper resulted from the ArchiMate project. The project
consortium consisted of ABN AMRO, Stichting Pensioenfonds ABP, the Dutch Tax
and Customs Administration, Ordina, Novay (formerly Telematica Instituut), Centrum
Wiskunde & Informatica, Radboud Universiteit Nijmegen, and the Leiden Institute of
Advanced Computer Science.

TOGAF™ is a trademark and ArchiMate® and The Open Group® are registered
trademarks of The Open Group. OMG®, and UML® are registered trademarks and
BPMN™, Business Process Modeling Notation™, and Unified Modeling Language™ are
trademarks of the Object Management Group.

References
Arbab, F., Boer, F.S. de, Bonsangue, M., Lankhorst, M.M., Proper, H.A., & Torre, L.

van der (2007). Integrating Architectural Models. Enterprise Modelling and
Information Systems Architectures, 2(1), 40–57.

Beer, S. (1985). Diagnosing the System for Organizations. New York, New York, USA:
Wiley.

Biemans, F.P.M., Lankhorst, M.M., Teeuw, W.B., & Wetering, R.G. van de (2001).
Dealing with the Complexity of Business Systems Architecting. Systems
Engineering, 4(2), 118—133.

Bosma, H., Doest, H. ter, & Vos, M. (2002). Requirements. ArchiMate Deliverabe
D4.1, TI/RS/2002/112. Enschede: Telematica Instituut.

Brooks Jr., F.P. (1987). No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer, 20(4), 10–19.

Buuren, R.van, Jonkers, H., Iacob, M.-E., Strating, P. (2004). Composition of Relations
in Enterprise Architecture. In Ehrig, H. et al., Proceedings of the Second
International Conference on Graph Transformation, pp. 39–53, Rome, Italy.

Capgemini. (2007). Enterprise, Business and IT Architecture and the Integrated
Architecture Framework. White paper. Utrecht, The Netherlands: Capgemini.

Dietz, J.L.G. (2006). Enterprise Ontology – Theory and Methodology. Berlin: Springer.
Dijkstra, E.W. (1968). Structure of the ‘THE’-Multiprogramming System.

Communications of the acm, 11(5), 341–346.
Falkenberg, E.D., & Oei, J.L.H. (1994). Meta Model Hierarchies from an Object–Role

Modelling Perspective. In: Halpin, T.A., & Meersman, R. (eds), Proceedings of the
First International Conference on Object–Role Modelling (ORM–1), pp. 218–227.
Magnetic Island, Queensland, Australia: Key Centre for Software Technology,
University of Queensland, Brisbane, Australia.

Goedvolk, J.G., Bruin, H. de, & Rijsenbrij, D.B.B. (1999). Integrated Architectural
Design of Business and Information Systems. In: Bosch, J. (ed), Proceedings Of
The Second Nordic Workshop on Software Architecture (NOSA’99). Research
Report, vol. 1999, no. 13. Ronneby, Sweden: University of Karlskrona/Ronneby.

Gordijn, J., Petit, M., & Wieringa, R. (2006). Understanding Business Strategies of
Networked Value Constellations Using Goal and Value Modeling. Pages 126–135
of: Proceedings of the 14th IEEE International Requirements Engineering
Conference (RE’06). Washington DC, USA: IEEE Computer Society.

30

Halpin, T.A., & Morgan, T. (2008). Information Modeling and Relational Databases.
2nd edn. Data Management Systems. Morgan Kaufman.

Hofstede, A.H.M. ter, & Weide, Th.P. van der (1993). Expressiveness in Conceptual
Data Modelling. Data & Knowledge Engineering, 10(1), 65–100.

Hofstede, A.H.M. ter, Proper, H.A., & Weide, Th.P. van der (1993). Formal Definition
of a Conceptual Language for the Description and Manipulation of Information
Models. Information Systems, 18(7), 489–523.

IEEE (2000). Recommended Practice for Architectural Description of Software
Intensive Systems. IEEE Std 1471–2000. The Architecture Working Group of the
Software Engineering Committee, Standards Department, IEEE. Piscataway, New
Jersey, USA: IEEE Computer Society.

IFIP-IFAC Task Force (1999). GERAM: Generalised Enterprise Reference Architecture
and Methodology. Version 1.6.3, Published as Annex to ISO WD15704.

Jonkers, H., Veldhuijzen van Zanten, G.E., Buuren, R. van, Arbab, F., Boer, F. de,
Bonsangue, M., Bosma, H., Doest, H. ter, Groenewegen, L., Guillen Scholten, J.,
Hoppenbrouwers, S.J.B.A., Iacob, M.-E., Janssen, W., Lankhorst, M.M., Leeuwen,
D. van, Proper, H.A., Stam, A., & Torre, L. van der (2003). Towards a Language
for Coherent Enterprise Architecture Descriptions. In: Steen, M., & Bryant, B.R.
(Eds.), 7th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2003), pp. 28–39, Brisbane, Queensland, Australia. Los
Alamitos, California, USA: IEEE.

Jonkers, H., Lankhorst, M.M., Buuren, R. van, Hoppenbrouwers, S.J.B.A., Bonsangue,
M., & Torre, L. van der (2004). Concepts for Modeling Enterprise Architectures.
International Journal of Cooperative Information Systems, 13(3), 257–288.

Krogstie, J., Lindland, O.I., & Sindre, G. (1995). Defining Quality Aspects for
Conceptual Models. Pages 216–231 of: Falkenberg, E.D., Hesse, W., & Olivé, A.
(eds), Information System Concepts: Towards a consolidation of views –
Proceedings of the third IFIP WG8.1 conference (ISCO–3). Marburg, Germany,
EU: Chapman & Hall/IFIP WG8.1, London, United Kingdom, EU.

Lankhorst, M.M., et al. (2005). Enterprise Architecture at Work: Modelling,
Communication and Analysis. Berlin, Germany, EU: Springer.

Lindland, O.I., Sindre, G., & Sølvberg, A. (1994). Understanding Quality in Conceptual
Modeling. IEEE Software, 11(2), 42–49.

Nadler, D., Gerstein, M., Shaw, R., (1992). Organisational Architecture: Designs for
Changing Organisations. San Francisco: Jossey-Bass.

OMG (2006). Meta Object Facility (MOF) Core Specification, Version 2.0. OMG
Available Specification formal/06-01-01. Needham, Massachusetts: Object
Management Group.

OMG (2008). Business Process Modelling Notation, V1.1. OMG Available
Specification formal/2008-01-17. Needham, Massachusetts: Object Management
Group.

OMG (2009). UML 2.2 Superstructure Specification. OMG Available Specification
formal/2009-02-02. Needham, Massachusetts: Object Management Group.

Op ’t Land, M., Proper, H.A., Waage, M., Cloo, J., & Steghuis, C. (2008). Enterprise
Architecture – Creating Value by Informed Governance. Berlin: Springer.

31

Proper, H.A., Verrijn-Stuart, A.A., & Hoppenbrouwers, S.J.B.A. (2005). Towards
Utility-based Selection of Architecture Modelling Concepts. Pages 25–36 of:
Hartmann, S., & Stumptner, M. (eds), Proceedings of the Second Asia–Pacific
Conference on Conceptual Modelling (APCCM2005), Newcastle, New South
Wales, Australia. Conferences in Research and Practice in Information Technology
Series, vol. 42. Sydney, New South Wales, Australia: Australian Computer
Society.

SBVR Team (2006). Semantics of Business Vocabulary and Rules (SBVR). Tech. rept.
dtc/06–03–02. Needham, Massachusetts: Object Management Group.

Steen, M.W.A., Doest, H.W.L. ter, Lankhorst, M.M., & Akehurst, D.H. (2004).
Supporting Viewpoint–Oriented Enterprise Architecture. Pages 20–24 of:
Proceedings of the 8th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2004).

Teeuw, W.B., & Berg, H. van den (1997). On the Quality of Conceptual Models. In:
Liddle, S.W. (Ed.), Proceedings Of The ER’97 Workshop on Behavioural Models
And Design Transformations: Issues And Opportunities in Conceptual Modeling,
Los Angeles, California: UCLA.

The Open Group (2009a). The Open Group Architecture Framework (TOGAF) Version
9. Reading, UK: The Open Group.

The Open Group (2009b). ArchiMate 1.0 Specification, Technical Standard. Reading,
UK: The Open Group.

Wagter, R., Berg, M. van den, Luijpers, J., Steenbergen, M. van (2005). Dynamic
Enterprise Architecture: How to Make It Work. Hoboken, New Jersey: Wiley.

Yu, E., & Mylopoulos, J. (1996). Using Goals, Rules, and Methods to Support
Reasoning In Business Process Reengineering. International Journal of Intelligent
Systems in Accounting, Finance and Management, 5(1), 1–13. Special issue on
Artificial Intelligence in Business Process Reengineering.

Zachman, J.A. (1987). A Framework for Information Systems Architecture. IBM
Systems Journal, 26(3).

