
Generating Low-Code Applications from
Enterprise Ontology

Marien R. Krouwel1,2[0000−0003−4115−3858], Martin Op ’t
Land1,3[0000−0003−0024−5908], and Henderik A. Proper4,5[0000−0002−7318−2496]

1 Capgemini Netherlands, PO Box 2575, 3500 GN Utrecht, the Netherlands
Marien.Krouwel@capgemini.com, Martin.OptLand@capgemini.com

2 Maastricht University, Maastricht, the Netherlands
3 Antwerp Management School, Boogkeers 5, 2000 Antwerp, Belgium

4 Luxembourg Institute of Science and Technology, Luxembourg
5 TU Wien, Vienna, Austria e.proper@acm.org

Abstract. Due to factors such as hyper-competition, increasing expec-
tations from customers, regulatory changes, and technological advance-
ments, the conditions in which enterprises need to thrive become increas-
ingly turbulent. As a result, enterprise agility, or flexibility, becomes an
increasingly important determinant for enterprise success.
Since Information System (IS) development often is a limiting factor in
achieving enterprise flexibility, enterprise flexibility and (automated) IS
flexibility cannot be viewed separately and choices that regard flexibility
should not be left to developers. By taking a Model-based Engineer-
ing (MBE) approach, starting from ontological models of the enterprise
and explicit organization design decisions, we bridge the gap from orga-
nizational flexibility to (automated) IS flexibility, in such a way that IT
is no longer the limiting factor for enterprise flexibility.
Low-code technology is a growing market trend that builds on MBE
concepts. In this paper, we report on a mapping for (the automation
of) the creation of a Mendix low-code application from the ontological
model of an enterprise, while also accommodating the required organi-
zational implementation flexibility. Even though the algorithm has been
tested successfully on multiple cases, supporting all possible organiza-
tional flexibility seems to be an NP-hard problem, and more research is
required to check the feasibility and usability of this approach.

Keywords: Enterprise Ontology · DEMO · MBE · Low code · Mendix.

1 Introduction

Due to factors such as hyper-competition [7], increasing expectations from cus-
tomers, regulatory changes, and technological advancements, the conditions in
which enterprises need to thrive become increasingly turbulent. As a result,
the ability to change with an ever decreasing time-to-market, often referred to
as ‘agility’ [32], becomes an important determinant for the success of enter-
prises [34] – with enterprise we mean every goal-oriented cooperative or net-
work of actors [13], including government agencies, commercial companies, etc.



2 M.R. Krouwel et al.

The notion of ‘agile enterprise’ is also referred to as the ‘run-time adaptive
enterprise’ [25] or the ‘flexible enterprise’ [41]. One can, actually, identify dif-
ferent flavors of flexibility that can be considered as cornerstones in creating a
flexible enterprise, including strategic flexibility, organizational flexibility, finan-
cial flexibility, marketing flexibility, manufacturing flexibility and (automated)
Information System (IS) flexibility [41, Fig. 1.4].

Since an IS supports (the implementation of) an organization, the organiza-
tion and its IS are in fact intrinsically intertwined [13, p. 251]. As a consequence,
organizational flexibility and (automated6) IS flexibility can not be viewed sep-
arately. Organization design decisions are often hard-coded into ISs [2] – some-
thing the authors recognize in their current practice quite frequently7. This es-
sentially leaves it up to developers to make the right choices to ensure the IS
supports the required organizational flexibility. Therefore it is necessary to make
the organization design decisions explicit and to make transparent how they are
implemented in Information Systems.

The field of enterprise engineering connects the organizational and IS per-
spective. DEMO (Design and Engineering Methodology for Organizations) is a
leading method within the discipline of enterprise engineering [12], with strong
methodological and theoretical roots [13, 35]. At the same time, there is an
increasing uptake of DEMO in practice, illustrated by the active community
and certification institute8 as well as the reported cases concerning the use of
DEMO [2, 13, 29] and integration with other mainstream enterprise modeling
approaches such as ArchiMate [14,21] and BPMN [6,16,28].

DEMO distinguishes between Enterprise Ontology and Enterprise Implemen-
tation. Enterprise Ontology concerns the ‘essence’ of an organization in terms
of products and services delivered. Enterprise Implementation pertains to the
organizational structure(s) and (socio-technical) means, including the division
of work between human actors and IT solutions, as well as their assignment(s)
to the organizational structures. Enterprise Implementation can be expressed
in a set of values (choices) in relation to a set of Organization Implementation
Variables (OIVs) [22], such as functionary type and organizational unit. Though
changes to an Enterprise’s ontology do occur, most of the time changes pertain
to its Enterprise Implementation [11]. As mentioned above, the authors have
observed in practice how organization design decisions – values for some OIVs –
are often hard-coded into ISs, essentially leaving it up to developers to determine
the involved OIVs and associated design decisions.

According to Brambilla e.a. [3], Model-based Engineering (MBE)9 is a model-
based approach for the creation of (automated) ISs that promises to bridge the

6 In the remainder of this paper, whenever we refer to IS, we do so in the sense of
being an automated Information System using Information Technology (IT).

7 Two of the authors are practitioners, with an average of 25 years of experience in
the field of enterprise (architecture) modeling and (model-based) IS development.

8 https://ee-institute.org
9 For this article we consider Model-driven Software Engineering (MDSE), Model-
driven Development (MDD), Model-based Development (MBD) and Model-Driven
Enterprise Systems Engineering (MDESE) as being specializations of MBE.

https://ee-institute.org


Generating Low-Code Applications from Enterprise Ontology 3

gap between requirements of an organization and technical implementation of
the IS. Claimed advantages over traditional software development approaches in-
clude a) common and better understanding of the IS, b) increased productivity of
the development team due to (partial) automation of the development process,
and c) reducing the number of defects. In order to be able to execute/transform
a model, the model must be comprehensive – describing all business require-
ments – and consistent – free from contradictions – and must have its semantics
fully specified. MBE can involve combinations of code generation from and in-
terpretation of models.

As ontological enterprise models claim to be coherent, comprehensive, con-
sistent and concise [13, p. 14], it seems a good starting point for an MBE ap-
proach. Practice already showed that DEMO’s ontological models have proven
to be a solid starting point for model-based IS design [15, 19, 29] and code gen-
eration [20, 23, 24] in particular. However, to the best of our knowledge, there
is no complete mapping from the full DEMO metamodel to any software im-
plementation model. Also, existing research seems to neglect the organization
implementation aspects (i.e. the OIVs), still resulting in the need for developers
to deal with these aspects themselves, thereby not making the mapping from
implementation decision to software transparent. For instance, Van Kervel [20]
reports on a software engine able to generate working operational software, tak-
ing the ontological enterprise model of a domain as input. However, in that
approach all choices in terms of organizational implementation remain implicit
and end up being hard-coded by choices in the software engine.

A potential explanation for the latter issue is the fact that creating code
to support a mapping of the complete metamodel of a modeling method such
as DEMO is a highly complex and time consuming task. This is also why we,
in principle, suggest using a model-based code generation strategy, as real-time
interpreters can become even more complex. At the same time, such an approach
makes it harder to make (controlled) customizations and extensions that are
often needed in practice. This is where we suggest to turn to low-code technology.

The idea of low-code technology is to add an(other) abstraction layer on top
of (high) code such as Java and .Net. Low-code technology applies techniques
from MBE, while still allowing for (controlled) customizations and extensions [5].
While low-code technology improves enterprise flexibility, compared to tradi-
tional code [39], practical experience shows that these platforms mainly offer IS
technical implementation flexibility – for instance changing the database man-
agement platform from e.g. MySQL to Postgres, or moving from one front-end
framework to another – and some flexibility on the IS (functional) requirements
level – for instance changing a specific process flow or screen lay-out. At the
same time, however, changes in the organization, such as the organizational
structures or its portfolio products and services, still can take quite some time
to implement.



4 M.R. Krouwel et al.

Goal and approach. In the research reported on in this paper, we hypothesize
that by taking an MBE approach towards low-code, starting from enterprise
ontology, one can improve enterprise flexibility even more, at least to the point
that IT is not the limiting factor anymore. More specifically, this paper reports
on the design of an (automated) mapping to create a Mendix application model
from Enterprise Ontology and OIVs. We choose Mendix as low-code platform
because it provides good documentation about its metamodel and offers an SDK
(model API) to create Mendix applications using TypeScript. Next to that, the
authors are experienced in using the Mendix platform in real-world situations.

In line with this, the overall goal of the research reported on in this paper is
to create an automatic translation (‘mapping’) from the ontological enterprise
model (cf. DEMO Specification Language (DEMO-SL) [9]) to a Mendix appli-
cation (cf. the Mendix metamodel10) in order to be able to generate low-code
applications from ontological (enterprise) models. As this mapping is a designed
artifact, we follow the Design Science methodology [40]. In terms of design sci-
ence, the main focus of this paper is on the design cycle; i.e. the construction of
the mapping. The mapping has been evaluated multiple times involving different
DEMO models, ranging from academic cases such as EU-Rent [31, 33] to real-
world cases including Social Housing [24, 25]. While the mapping has evolved
and improved over time, this paper presents the final version of the mapping.

The remainder of this paper is structured as follows. In section 2 we outline
the theoretical background on Enterprise Ontology, Enterprise Implementation,
MBE and low-code technology. In section 3 we discuss the mapping, while sec-
tion 4 provides a summary of the evaluations conducted so-far. We finish with
conclusions and a discussion of the limitations in section 5.

2 Theoretical Background

The discipline of Enterprise Engineering encompasses Enterprise Ontology, En-
terprise Architecture, Enterprise Design and Enterprise Governance [13]. Build-
ing upon the Language/Action Perspective [43], based on Speech Act The-
ory [1, 38] and Theory of Communicative Action [18], it sets communication
as the primal notion for the design of enterprises and its Information Systems.

As mentioned in the introduction, DEMO is a leading method within the
discipline of Enterprise Engineering, that has been applied at several enterprises.
Reported benefits of DEMO include: a) ensuring completeness and helping to
find omissions and ambiguous situations [13,29], b) providing a solid, consistent
and integrated set of (aspect) models (see below) [13], c) creating a shared
understanding [29], d) providing a stable base to discuss required flexibility [2],
e) offering a good Return On Modeling Effort [13], and f) offering a good basis
to define IS requirements and design or generate such systems [13].

This section will briefly introduce the most important aspects of Enterprise
Ontology and Enterprise Implementation, as well as the concepts of MBE and
low-code technology for the IT implementation of Enterprises.

10 https://docs.mendix.com/apidocs-mxsdk/mxsdk/understanding-the-metamodel/

https://docs.mendix.com/apidocs-mxsdk/mxsdk/understanding-the-metamodel/


Generating Low-Code Applications from Enterprise Ontology 5

2.1 Enterprise Ontology

An ontology is defined as a conceptual specification describing knowledge about
some domain [17]. More specifically, Enterprise Ontology describes both the
dynamics and statics of an enterprise, seen as a network of actors that enter into
and comply with commitments [13]. Such commitments are raised by actors in
acts, the atomic units of action, and follow the Complete Transaction Pattern
(CTP). The CTP consists of 19 general step kinds and deals with the basic flow
– request, promise, execute, declare and accept – as well as discussion states
– decline, reject – and cancellations (or revocations). The idea is that actors
constantly check whether there are acts they have to deal with or respond to.
The total set of acts for an actor to deal with is called the actor’s agenda.

By abstracting actors to actor roles the model becomes independent of the
people involved in the operation. Commitments regarding a specific product kind
are abstracted to transaction kinds, all having one actor role as executor and
one or more actor roles as initiator. An Enterprise Ontology is expressed in a set
of aspect models that is comprehensive, coherent, consistent, and concise [13].
The reader is referred to [9] for the complete DEMO metamodel.

Ontological Aspect Models. The ontological model of an organization con-
sists of an integrated whole of four aspect models [13]. The Cooperation Model
(CM) models the construction of the enterprise; it consists of transaction kinds,
associated (initiating and executing) actor roles, fact banks, access links between
actor roles and fact banks, and wait links between transaction kinds and actor
roles. The Process Model (PM) models the processes (dynamics) that take place
as the effect of acts by actors, by detailing the coordination between actor roles;
it makes explicit the causal and wait links between acts from the CTP. The
Fact Model (FM) is the semantic model of products (statics) of the enterprise; it
defines (elementary or derived) fact types (entity types with their related prod-
uct kinds, property types, attribute types and value types), existence laws and
occurrence laws. The Action Model (AM) is the model of the operation of the
enterprise, guiding actors in performing their acts; guidelines consist of an event
part detailing the act to respond to, an assess part detailing the conditions to
check and a response part stating how to respond. Note that these guidelines
look like rules, but offer the actors the possibility to – responsibly – deviate.

2.2 Enterprise Implementation

In order for an organization to be operational, it has to be implemented with
appropriate technology [13]. When a product or service is decided upon, and the
collaboration network needed for its delivery has been revealed in the ontological
(enterprise) model, still many degrees of freedom exist before an organization
can become operational [13, p. 349]. Implementation design starts from the (en-
terprise) ontology of a system and ends with a fully detailed specification of the
implementation, within the design space constrained by Enterprise Architec-
ture [10]. The lowest level and most detailed model of an organization describes



6 M.R. Krouwel et al.

all implementation design decisions, including organizational structure(s), the
decision to automate certain tasks, as well as the assignment of parties, people
as well as IT and other means to the organizational structures [22].

The notion of OIV expresses a category of design choice(s) for organizational
implementation [22]. It is a variable in the sense that its value can be different
for different implementation alternatives. Some examples of the ∼25 of such
OIVs [22] include:

– deciding upon functionary types and which actor roles or acts they should
fulfill – e.g., the functionary type ‘cook’ that fulfills both the actor roles
‘baker’ and ‘stock controller’; or the functionary type ‘deliverer’ who is au-
thorized for the acts promise and declare of the (transaction kind) transport
and also for the act of accept for the customer payment;

– deciding on order of working – e.g., should delivery only be done after receiv-
ing payment (as common in retail) or is it (also) possible to pay afterwards
(more common in B2B); and

– deciding on work locations & organizational units, e.g., which branches exist,
and what functionary types do exist there.

Implementations of organization, and therefore the value of OIVs, will change
far more often than the products / services they help deliver. E.g., actor roles
as ‘sales’ and ‘baker’ are stable notions in a pizzeria, just as the act ‘accept
payment’; what might change often is the authority of a functionary type – an-
swering questions such as ‘shall we combine the actor roles of sales and baker in
one functionary type in the first months of opening our new pizzeria branch?’
or ‘shall we take the responsibility for accepting payments away from our func-
tionary type deliverer, now payment accepting is executed automatically by a
web agent under the (outsourced) responsibility of a payment service provider?’.

For a flexible enterprise it is a priority that frequently occurring changes,
typically implementation choices, are not on its critical path; therefore ideally
it should be possible to make such changes with no or only little impact in IS.
However, organizationally variability is so large that conscious choices have to
be made what organizational changes should be supported by the IS to what
extent. Even the simplistic assumption of each of the 25 OIVs being able to
independently change with 3 values each already creates 325 ≈ 8.5 ∗ 1011 dif-
ferent organizational implementations for each transaction kind – a problem for
automation, but even more so for human overview. OIVs make it possible to
make explicit the organization design decisions that need to get a place in IS.
It also provides the possibility to make an explicit requirement that the values
should be (easily) changeable in the IS.

2.3 Model-based Engineering and Low-code Technology

Model-based Engineering is an approach to application development where mod-
els are transformed to (high) code by means of code generation or model inter-
pretation [3]. While there are differences between code generation and model



Generating Low-Code Applications from Enterprise Ontology 7

interpretation in terms of easiness to understand, debugging possibilities, per-
formance of the execution environment, and compile and deploy time, from a
usage perspective these difference do not really matter; both need a mapping
from higher order (business domain) model to lower order software model, and
they can even be combined [4].

The term low code was introduced by Forrester in 2014 [36]. Low-code de-
velopment platforms enable quick creation of software with minimum efforts
compared to traditional procedural computer programming [42] – also known as
‘high code’, such as Java and .Net. It builds upon existing concepts including
MBE, code generation and visual programming [8]. Claimed benefits of low code
include [26,37,39] a) less hand-coding, faster development, and, as a result, cost
reduction in both development and maintenance and a shorter time-to-market,
b) complexity reduction by using prebuilt components, c) the ability for non-
technical people to create applications, thus opening up the possible population
for application development as well as improving business and IT collaboration
while increasing IT productivity, and d) enabling digital transformation and
increasing IT and business agility.

Low-code platforms, including Mendix, rely on 3 basic concepts: data (in
Mendix: Entity, Enumerations, Attribute and Association), logic (also called
action or (micro)service; in Mendix: Microflow) and interface (Application Pro-
gramming Interface (API) and screen; in Mendix: Page, containing data views
and/or Buttons), as well as their interrelations and (Access) Rules for User Roles
enabling users with certain roles to use these parts of the application. Due to
page limitations, the reader is referred to footnote 10 for the complete Mendix
metamodel.

3 Mapping

The mapping is based on DEMO-SL [9] and we included all concepts relevant
for IT implementation. As the current version of DEMO-SL only describes the
metamodel of Enterprise Ontology, we added the concept of Organization Im-
plementation Variable. The resulting mapping can be found in Table 1. Some of
the design decisions regarding the mapping include:

D.1 Transaction kinds are not mapped. Instead, Product kinds or Event types are
mapped to an Entity in order to be able to capture the state of a transaction.

D.2 For aggregate transaction kinds (ATKs) it is usually not needed to capture
the coordination acts around these facts, so no mapping is needed. The
production facts in the ATK are present in the FM and thus mapped to a
Mendix unit, see also D.4.

D.3 As the page for showing the agenda for an actor is very generic functionality,
we choose not to generate it but built it in Mendix as a reusable component.
The logic to support the state machine representing the Complete Transac-
tion Pattern is also built as a generic module. Note that the details of this
module are not part of this paper.



8 M.R. Krouwel et al.

DEMO concept (aspect model) example Mendix unit

Elementary transaction kind
(CM)

TK01 n/a, see D.1

Aggregate transaction kind (CM) MTK01 n/a, see D.2
Actor role (both elementary and
aggregate) (CM)

AR01 User Role, see D.3

Executor link (CM) AR01-TK01 Action Button and (Microflow)
Access Rule

Initiator link (CM) CAR01-TK01 Action Button and (Microflow)
Access Rule

Access link (CM) CA01-MTK01 Entity Access Rule
Product kind (CM) [registration] is

started
n/a, see Event type

Transaction general step kind
(PM)

TK01/rq Page

non-derived Entity type (FM) Registration Entity and Pages, see D.4
aggregation Entity type (FM) {Registration X

Year}
Entity with Associations to its
aggregates

specialization Entity type (FM) Started
Registration

n/a, see D.5

generalization Entity type (FM) n/a, see D.5
Property type (FM) member Association
Attribute type (FM) start date Attribute or Association, see D.6
Value type (FM) day, money Enumeration or Entity, see D.6
Event type (FM) [registration] is

started
Entity having Transaction.
Proposition as generalization,
with Association(s) to its
variable(s), see D.7

Derived fact kind (FM) age Microflow, see D.8
Action rule-event part (AM) Action Button and (Microflow)

Access Rule, see D.9
Action rule-assess part (AM) Microflow and Page, see D.9
Action rule-response part (AM) Action Button, Microflow and

(Microflow) Access Rule, see D.9
Organization Implementation
Variable

functionary type Entity, see D.10

Table 1. Mapping from DEMO metamodel (concept) to Mendix metamodel (unit)



Generating Low-Code Applications from Enterprise Ontology 9

D.4 For external entity types in the FM, the decision has to be made whether the
data is stored within the generated application, or used from another source,
typically through an API. For the latter, in Mendix an external entity can
be created, but it requires the API to be available in Mendix Data Hub. For
now we decided to not use that possibility, especially as this does not seem
possible (yet) through the Mendix SDK. Instead, we will create some basic
CRUD (Create, Read, Update, and Delete) pages to modify and view the
data. It is fairly easy in the generated application to change this later.

D.5 We have not seen enough DEMO models to provide a mapping for the gen-
eralization and specialization concepts.

D.6 Attribute types can have different kinds of Value Types. If the scale sort
of a Value type is categorical, the Value Type can either be mapped to an
Enumeration or to an Entity. The Attribute Type using the Value Type will
then either be an EnumerationTypeAttribute or an Association. If the scale
sort of the Value Type is of some other type (day, money, etc.) the Attribute
Type will be mapped to some AttributeType (DateTime, Decimal, etc.).

D.7 Transaction.Proposition is an Entity that is part of the generic module
handling the CTP. By extending it, we can use the generic state machine,
but also relate it to the specific entity or entities the Event type is about.

D.8 Derived fact kinds need to be calculated. Currently we suggest to create
a microflow in order to do that. Its (mathematical) definition needs to be
implemented in the microflow, preferably this mapping is also provided but
we consider this too detailed for the scope of this paper. A decision that
goes along with this is that from a performance perspective one would like
to decide whether this calculation is performed on read or on save. The low-
code approach we take makes it easy to make such a decision in the platform,
as it currently seems to difficult to insert that aspect into the mapping.

D.9 For the handling of Action rules, we decided to implement this as an Action
Button for the user role that has to deal with the agendum (type), a Page
to see all the relevant information to decide on a response, as well as one
or more Action Buttons for the different choices. In this way we respect the
autonomy of the actor(s) involved, and only automate the parts for retrieving
all the information. The detailing of the assess-part is similar to that of a
derived fact kind and a similar reasoning as D.8 holds.

D.10 OIVs are considered to be adaptable at run-time, and are therefore mapped
to an Entity. The different values of such an OIV can have impact on au-
thorization, redirecting and handling of an act, and much more. This is
considered to be part of the logic and state machine and supports our choice
for low code as target platform because we consider it is easier to build it
into the state machine than into the translator. A more elaborate mapping
can therefore not be provided, this mapping at makes it possible to change
the (values of the) OIVs in the running application. In subsection 2.2 we
already showed that the possible number of configurations grows exponen-
tially with the number of OIVs and we therefore think incorporating OIVs
into the logic might turn out to be a NP-hard problem.



10 M.R. Krouwel et al.

4 Implementation and evaluation

As part of the design cycle of Design Science, we have evaluated the mapping on
several cases, ranging from academic cases such as EU-Rent [31,33] to real-world
cases including Social Housing [24,25]. At first, this mapping was performed man-
ually, while later we created a TypeScript11 implementation of the mapping12,
that has been evaluated, improved and extended to deal with additional con-
cepts and cases by executing it with different DEMO models as input. Newer
cases did not result in major redesigns of the mapping.

While there is an XML-based exchange model for DEMO available [30], we
decided to use a more compact JSON format to represent the DEMO metamodel
including the concept of OIV, while leaving out parts that are for representation
only, such as diagrams and tables. As an illustration, building upon the Social
Housing case described in [25], Figure 1 shows the input (JSON) files for the
automated translator, while Figure 2 shows the project folder and domain (data)
model of the generated Mendix application13.

Fig. 1. Descriptor file and DEMO model in JSON format for Social Housing

11 TypeScript is the language to access the Mendix SDK, see https://docs.mendix.
com/apidocs-mxsdk/mxsdk/

12 Source code is available at https://github.com/mkrouwel/demo2mendix
13 More details on the case as well as screen shots can be found in [25]

https://docs.mendix.com/apidocs-mxsdk/mxsdk/
https://docs.mendix.com/apidocs-mxsdk/mxsdk/
https://github.com/mkrouwel/demo2mendix


Generating Low-Code Applications from Enterprise Ontology 11

Fig. 2. Project outline and domain model of the generated Mendix application for
Social Housing

By introducing the concept of Organization Implementation Variable into the
MBE process or code generation, we were able to make transparent the map-
ping from organizational design decision to software implementation, thereby
not leaving it up to developers to make the right choice. As the Enterprise Im-
plementation is implemented as a configurable unit in terms of OIVs, it is easy to
change the Enterprise Implementation for a given Enterprise Ontology, thereby
improving the enterprise flexibility, as was shown in earlier research [25].

5 Conclusions and Discussion

Given the choice for Mendix as low-code target platform, we defined a complete
mapping from the DEMO metamodel, including organization implementation,
to the Mendix metamodel. We implemented this mapping in TypeScript, using
the Mendix SDK, in order to generate a readily deployable low code application
from the ontological model of an enterprise, including the support for OIVs. In
doing so, we created a reusable component in Mendix to support the CTP as
well as for showing relevant agenda to the actors that have to deal with them.

One advantage of the proposed approach follows from the use of an onto-
logical enterprise model as the starting point. Since these models are coherent,
comprehensive, consistent and concise, the generated software is of high quality
and only contains the necessary constructs to support the enterprise end users.

It also adds flexibility as parts of the IS are simply (re)generated when new
transaction kinds arise. By adding OIVs to the MBE approach, it becomes pos-



12 M.R. Krouwel et al.

sible to change (some) design decisions at run-time, therefore allowing for even
more flexibility and agility for the enterprise.

Another advantage of this approach seems to be that the generated code can
easily be adapted through the low-code visual paradigm. This allows for changes
in the UI, to make use of APIs, or to implement the execution of the action rules
or calculations in a more efficient way. A warning should be given that changes
in the generated code can become a source of hidden design decisions.

Reflecting on our MBE approach, by making explicit the required organi-
zational flexibility and giving it a specific place in the generated code, we have
successfully connected organizational flexibility and IS flexibility, thereby at least
improving enterprise flexibility. As the code can easily be regenerated, changing
the IS is not the limiting factor anymore in changing the enterprises service or
product portfolio or its implementation.

Limitations and Future Research Recommendations

As the details of the generic component supporting the CTP do not fit into this
paper, it has to be described and published separately.

In creating the mapping, we noticed the DEMO metamodel in DEMO-SL is
not specified from an operational point of view but from a diagramming per-
spective. In the (manual) conversion to JSON, we also had to add aspects that
were relevant for generating software, such as the application and module name.
It seems necessary to better detail the generic metamodel, containing only the
true DEMO concepts and separating the core of DEMO from the purpose-specific
information such as visualization or code generation.

For the implementation of an external entity type, such as person, in the FM,
one typically chooses to use an existing source (through an API) or to create an
own database table to store the relevant data (incl. Create, Read, Update, and
Delete (CRUD) pages). The current version of the mapping does not yet allow
for this differentiation, partly as a result of lack of support through the SDK. A
future version of the translator should incorporate this. Note that by the nature
of low-code, it is always possible to change the output model to incorporate the
usage of existing APIs.

Mendix has launched native workflow capability in the platform. As the ma-
jority of the mapping and its implementation was set up before that time, it
doesn’t use this feature. It could be interesting to look into these possibilities
and see how it can support the CTP. As this component is created as a generic
component, it is easy to rebuild without impacting the code generator.

The implementation of OIVs in Mendix, or maybe even software in general,
is not straightforward. The impact of certain choices on the state machine and
logic is not completely detailed yet. This will differ per OIV and can only be
detailed per individual OIV. It can even be that when combining different OIVs,
the problem becomes to complex to solve. It is not clear whether all OIVs can be
implemented completely independent of others, as suggested by Normalized Sys-
tems theory [27]. We will need more evaluations with more cases involving more



Generating Low-Code Applications from Enterprise Ontology 13

OIVs to fully understand the complexity of this problem. Supporting all possi-
ble organization design decisions could even be an NP-hard problem. Further
research is required to check the feasibility and limitations of this approach.

The mapping we made is specific towards the Mendix platform. Although
other low-code platforms rely on similar concepts, the question arises whether
the mapping can be abstracted to facilitate other low-code platforms, or even
high code. Further research is needed to get a perspective on the feasibility and
usability of such an abstraction.

It’s hard to compare our MBE approach to ones that use a different kind
of input, such as BPMN or UML. It could be interesting to research ways to
compare the advantages and disadvantages of different approaches towards MBE.

References

1. Austin, J.L.: How to do things with words. William James Lectures, Oxford Uni-
versity Press (1962)

2. Bockhooven, S.v., Op ’t Land, M.: Organization Implementation Fundamentals:
a Case Study Validation in the Youthcare Sector. In: Complementary Proceed-
ings of the Workshops TEE, CoBI, and XOC-BPM at IEEE-COBI 2015. CEUR
Workshop Proceedings, vol. 1408. Lisbon, Portugal (July 2015), http://ceur-ws.
org/Vol-1408/paper3-tee.pdf

3. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software En-
gineering in Practice. Morgan & Claypool Publishers (09 2012).
https://doi.org/10.2200/S00441ED1V01Y201208SWE001

4. Cabot, J.: Executable models vs code-generation vs model in-
terpretation. Online (Aug 2010), https://modeling-languages.com/
executable-models-vs-code-generation-vs-model-interpretation-2/, accessed
2022-May-17

5. Cabot, J.: Positioning of the Low-Code Movement within the Field of Model-Driven
Engineering. In: Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion Proceedings.
Association for Computing Machinery, New York, NY, USA (2020), https://doi.
org/10.1145/3417990.3420210

6. Caetano, A., Assis, A., Tribolet, J.: Using DEMO to analyse the consistency of
business process models. In: Advances in Enterprise Information Systems II, pp.
133–146. CRC Press (Jun 2012). https://doi.org/10.1201/b12295-17

7. D’aveni, R.A., Gunther, R.: Hypercompetition. Free Press (Mar 1994)
8. Di Ruscio, D., Kolovos, D., Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.: Low-

code development and model-driven engineering: Two sides of the same coin?
Software and Systems Modeling 21 (01 2022). https://doi.org/10.1007/s10270-
021-00970-2

9. Dietz, J.: The DEMO Specification Language v4.7. Tech. rep., Enter-
prise Engineering Institute (Apr 2022), https://ee-institute.org/download/
demo-specification-language-4-7-1/

10. Dietz, J.L.G.: Architecture – Building strategy into design. Netherlands Architec-
ture Forum, Academic Service – SDU, The Hague, The Netherlands (2008)

11. Dietz, J.L.G., Hoogervorst, J.A.P.: Enterprise Ontology and Enterprise Architec-
ture – how to let them evolve into effective complementary notions. GEAO Journal
of Enterprise Architecture, 2007 1 (2007)

http://ceur-ws.org/Vol-1408/paper3-tee.pdf
http://ceur-ws.org/Vol-1408/paper3-tee.pdf
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://modeling-languages.com/executable-models-vs-code-generation-vs-model-interpretation-2/
https://modeling-languages.com/executable-models-vs-code-generation-vs-model-interpretation-2/
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1145/3417990.3420210
https://doi.org/10.1201/b12295-17
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/s10270-021-00970-2
https://ee-institute.org/download/demo-specification-language-4-7-1/
https://ee-institute.org/download/demo-specification-language-4-7-1/


14 M.R. Krouwel et al.

12. Dietz, J.L.G., Hoogervorst, J.A.P., Albani, A., Aveiro, D., Babkin, E., Barjis, J.,
Caetano, A., Huysmans, P., Iijima, J., van Kervel, S., Mulder, H., Op ‘t Land,
M., Proper, H.A., Sanz, J., Terlouw, L., Tribolet, J., Verelst, J., Winter, R.: The
discipline of enterprise engineering. International Journal of Organisational Design
and Engineering 3(1), 86–114 (2013). https://doi.org/10.1504/IJODE.2013.053669

13. Dietz, J.L.G., Mulder, J.B.F.: Enterprise Ontology — A Human-Centric Approach
to Understanding the Essence of Organisation. The Enterprise Engineering Series,
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38854-6

14. Ettema, R., Dietz, J.L.G.: ArchiMate and DEMO – Mates to Date? In: Albani,
A., Barjis, J., Dietz, J.L.G., Aalst, W., Mylopoulos, J., Rosemann, M., Shaw,
M.J., Szyperski, C. (eds.) Advances in Enterprise Engineering III, Lecture Notes in
Business Information Processing, vol. 34, pp. 172–186. Springer Berlin Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01915-9 13

15. Falbo, R., Guizzardi, G., Duarte, K., Natali, A.: Developing software for and with
reuse: an ontological approach. In: ACIS International Conference on Computer
Science, Software Engineering, Information Technology, e-Business, and Applica-
tions. pp. 311–316. International Association for Computer and Information Sci-
ence (ACIS) (Jun 2002)

16. Gray, T., Bork, D., De Vries, M.: A new DEMO modelling tool that fa-
cilitates model transformations. In: Enterprise, Business-Process and Informa-
tion Systems Modeling, pp. 359–374. Springer, Heidelberg, Germany (2020).
https://doi.org/10.1007/978-3-030-49418-6 25

17. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D.
thesis, University of Twente (Oct 2005)

18. Habermas, J.: The theory of communicative action. Cambridge: Polity Press (1986)
19. de Jong, J.: A Method for Enterprise Ontology based Design of for Enterprise

Information Systems. Ph.D. thesis, TU Delft (2013)
20. van Kervel, S.: Ontology driven Enterprise Information Systems Engineering. Ph.D.

thesis, TU Delft (2012)
21. Kinderen, S.d., Gaaloul, K., Proper, H.A.: On transforming DEMO models

to ArchiMate. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E.,
Schmidt, R., Soffer, P., Wrycza, S. (eds.) Enterprise, Business-Process and In-
formation Systems Modeling. pp. 270–284. Springer Berlin Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31072-0 19

22. Krouwel, M.R., Op ’t Land, M., Offerman, T.: Formalizing Organization Implemen-
tation. In: Advances in Enterprise Engineering X. pp. 3–18. EEWC 2016, Funchal,
Madeira Island, Portugal (2016). https://doi.org/10.1007/978-3-319-39567-8 1

23. Krouwel, M., Op ’t Land, M.: Combining DEMO and Normalized Systems for
Developing Agile Enterprise Information Systems. In: Albani, A., Dietz, J.L.G.,
Verelst, J. (eds.) Advances in Enterprise Engineering V (EEWC-2011). Lecture
Notes in Business Information Processing, vol. 79, pp. 31–45. Springer Berlin Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-21058-7 3

24. Krouwel, M.R. and Op ’t Land, M: Business Driven Micro Service Design - An
Enterprise Ontology based approach to API Specifications. In: Aveiro, D., Proper,
H., Guerreiro, S., de Vries, M. (eds.) Advances in Enterprise Engineering XV.
vol. 441. Springer (2021). https://doi.org/10.1007/978-3-031-11520-2 7

25. Op ’t Land, M., Krouwel, M., Gort, S.: Testing the Concept of the RUN-
Time Adaptive Enterprise - Combining Organization and IT Agnostic Enterprise
Models with Organization Implementation Variables and Low Code Technology.
In: Aveiro, D., Guizzardi, G., Pergl, R., Proper, H.A. (eds.) EEWC 2020. pp.

https://doi.org/10.1504/IJODE.2013.053669
https://doi.org/10.1007/978-3-030-38854-6
https://doi.org/10.1007/978-3-642-01915-9_13
https://doi.org/10.1007/978-3-030-49418-6_25
https://doi.org/10.1007/978-3-642-31072-0_19
https://doi.org/10.1007/978-3-319-39567-8_1
https://doi.org/10.1007/978-3-642-21058-7_3
https://doi.org/10.1007/978-3-031-11520-2_7


Generating Low-Code Applications from Enterprise Ontology 15

228–242. No. XIV in Advances in Enterprise Engineering, Springer (Apr 2021).
https://doi.org/10.1007/978-3-030-74196-9 13

26. Luo, Y., Liang, P., Wang, C., Shahin, M., Zhan, J.: Characteristics and challenges
of low-code development: The practitioners’ perspective. CoRR (2021), https://
arxiv.org/abs/2107.07482

27. Mannaert, H., Verelst, J.: Normalized systems: re-creating information technology
based on laws for software evolvability. Koppa, Kermt, Belgium (2009)

28. Mráz, O., Náplava, P., Pergl, R., Skotnica, M.: Converting demo psi transaction
pattern into bpmn: A complete method. In: Aveiro, D., Pergl, R., Guizzardi, G.,
Almeida, J.P., Magalhães, R., Lekkerkerk, H. (eds.) Advances in Enterprise Engi-
neering XI. pp. 85–98. Springer International Publishing, Cham (2017)

29. Mulder, J.B.F.: Rapid Enterprise Design. Ph.D. thesis, Delft University of Tech-
nology (2006)

30. Mulder, M.: Enabling the automatic verification and exchange of DEMO models.
Ph.D. thesis, Radboud University Nijmegen (2022), https://repository.ubn.ru.nl/
handle/2066/247698

31. Object Management Group: Business Motivation Model. Tech. Rep. Version 1.3,
Object Management Group (May 2015), http://www.omg.org/spec/BMM/1.3/
PDF/

32. Oosterhout, M.P.A.v.: Business Agility and Information Technology in Service Or-
ganizations. Ph.D. thesis, Erasmus University Rotterdam (June 2010)

33. Op ’t Land, M., Krouwel, M.R.: Exploring Organizational Implementation Fun-
damentals. In: H.A. Proper, D.A., Gaaloul, K. (eds.) Advances in Enterprise En-
gineering VII. Lecture Notes in Business Information Processing, vol. 146, pp.
28–42. Springer-Verlag Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38117-1 3

34. Overby, E., Bharadwaj, A., Sambamurthy, V.: Enterprise agility and the en-
abling role of information technology. Eur. J. Inf. Syst. 15, 120–131 (April 2006).
https://doi.org/10.1057/palgrave.ejis.3000600

35. Reijswoud, V.E.v., Mulder, J.B.F., Dietz, J.L.G.: Communicative Action Based
Business Process and Information Modelling with DEMO. The Information Sys-
tems Journal 9(2), 117–138 (1999)

36. Richardson, C., Rymer, J.: New Development Platforms Emerge For Customer-
Facing Applications. Tech. rep., Forrester (2014)

37. Sanchis, R., Garćıa-Perales, Fraile, F., Poler: Low-Code as Enabler of Digital
Transformation in Manufacturing Industry. Applied Sciences 10, 12 (12 2019).
https://doi.org/10.3390/app10010012

38. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge, London (1969)

39. Sijtstra, J.: Quantifying low-code development platforms effectiveness in the Dutch
public sector. mathesis, Leiden University (Jun 2022), https://theses.liacs.nl/2221

40. Simon, H.A.: The Sciences of the Artificial (3rd Ed.). MIT Press, Cambridge, MA,
USA (1996)

41. Sushil, Stohr, E.A. (eds.): The Flexible Enterprise. Flexible Systems Management,
Springer India (01 2014). https://doi.org/10.1007/978-81-322-1560-8

42. Waszkowski, R.: Low-code platform for automating business pro-
cesses in manufacturing. IFAC-PapersOnLine 52(10), 376–381 (2019).
https://doi.org/10.1016/j.ifacol.2019.10.060, 13th IFAC Workshop on Intelli-
gent Manufacturing Systems IMS 2019

43. Weigand, H.: Two decades of language/action perspective. Natural Language En-
gineering 49, 45–46 (01 2006)

https://doi.org/10.1007/978-3-030-74196-9_13
https://arxiv.org/abs/2107.07482
https://arxiv.org/abs/2107.07482
https://repository.ubn.ru.nl/handle/2066/247698
https://repository.ubn.ru.nl/handle/2066/247698
http://www.omg.org/spec/BMM/1.3/PDF/
http://www.omg.org/spec/BMM/1.3/PDF/
https://doi.org/10.1007/978-3-642-38117-1_3
https://doi.org/10.1007/978-3-642-38117-1_3
https://doi.org/10.1057/palgrave.ejis.3000600
https://doi.org/10.3390/app10010012
https://theses.liacs.nl/2221
https://doi.org/10.1007/978-81-322-1560-8
https://doi.org/10.1016/j.ifacol.2019.10.060

	Generating Low-Code Applications from Enterprise Ontology

