
The Architecture of the ArchiMate Language

M.M. Lankhorst1, H.A. Proper2,3 and H. Jonkers4

1Telematica Instituut, Enschede, The Netherlands
2Radboud University Nijmegen, Nijmegen, The Netherlands

3Capgemini, Utrecht, The Netherlands
4BiZZdesign, Enschede, The Netherlands

Abstract. In current business practice, an integrated approach to busi-
ness and IT is indispensable. In many enterprises, however, such an in-
tegrated view of the entire enterprise is still far from reality. To deal
with these challenges, an integrated view of the enterprise is needed,
enabling impact and change analysis covering all relevant aspects. This
need sparked the development of the ArchiMate language. This paper is
concerned with documenting some of the key design decisions and design
principles underlying the ArchiMate language.

1 Introduction

In current business practice, an integrated approach to business and IT is in-
dispensable. In many enterprises, however, such an integrated view of the entire
enterprise is still far from reality. This is a major problem, since changes in an en-
terprise’s strategy and business goals have significant consequences within all do-
mains of the enterprise, including organisational structures, business processes,
software systems and technical infrastructure [1, 2]. To manage the complexity
of any large system, be it an enterprise, an information system or a software
system, an architectural approach is needed. To be able to represent the archi-
tecture of an enterprise, an architecture description language is needed allowing
for the represetation of different core aspects of an enterprise, such as business
processes, products, applications and infrastructures, as well as the coherence
between these aspects.

As discussed in [2], enterprise architecture is a steering instrument enabling
informed governance. Important applications of enterprise architecture are there-
fore the analysis of problems in the current state of an enterprise, determining
the desired future state(s), and ensuring that the development projects within
transformation programs are indeed on-track with regards to the desired fu-
ture states. This implies that in enterprise architecture models, coherence and
overview are more important than specificity and detail. This also implies the
need for more coarse grained modelling concepts than the finer grained concepts
which can typically be found in modelling languages used at the level of specific
development projects, such as e.g. UML [3] and BPMN [4]. Therefore a new
language was needed, leading to the development of the ArchiMate language [1].

The ArchiMate language was developed as part of a collaborative research
project, funded partly by the Dutch government and involving several Dutch
research institutes, as well as governmental and financial institutions. The re-
sults of the project in general are described in detail in [1] as well as several
papers [5, 6, 7, 8]. An illustrative example of an ArchiMate model is provided in
Figure 1. Meanwhile, the ArchiMate language has been transferred to the Open
Group, where it is slated to become the standard for architectural description
accompanying the Open Group’s architecture framework TOGAF [9].

Fig. 1. An example ArchiMate model

The ArchiMate standard consists of six primary components:
A framework – A conceptual framework consisting which allows classification
of architectural phenomena.
An abstract syntax – This component contains the formal definition of the
language in terms of a meta-model, providing the characteristics of each language
construct, and its relationships to other language constructs.
Modelling concepts – A set of modelling concepts allowing for the description
of relevant aspects of enterprises at the enterprise level. This set underlies the
abstract syntax, focussing on the concepts and their meaning, seperate from the
language constructs in which they are used.

The language semantics – This component defines the meaning of each lan-
guage construct and relation type.
A concrete syntax in terms of a visual notation – This syntax defines how
the language constructs defined in the meta-model are represented graphically.
A viewpoint mechanism – These mechanisms correspond to the idea of di-
agram types in UML, though it is much more flexible as there is not a strict
partitioning of constructs into views.

The focus of this paper is on documenting some the key design decisions and
design principles underlying the language. This also provides a novel perspective
on the design, and in particular the evolution, of a modelling language. The
ability to evolve the language is of prime importance for languages which are
designed as open standards. Languages used as a standard run the risk of becom-
ing a hotchpotch of sorts. Using a clear architecture enables language evolution
while still maintaining conceptual integrity of the language.

In the remainder of this paper, we start by discussing in more detail the
challenges facing the design of an architecture description language, while con-
sequently discussing the way in which the design of the ArchiMate aims to tackle
these. We then continue with a discussion of the modelling concepts needed to
domain models in general, which we then first refine to the modelling of dynamic
systems, and finally to the modelling of enterprise architectures.

2 Challenges on an architecture modelling language

The design of the ArchiMate language was based on an extensive requirements
study. In this study, both practical requirements from the client organisations1
involved in the ArchiMate project, as well as general requirements on the sound-
ness and other qualities [10] were taken into account [11].

From a modelling perspective, the essential requirements were the following:
Concept coverage – Several domains for grouping concepts have been identi-
fied, such as product, process, organisation, information, application and tech-
nology. The concepts in the language must at least cover the concepts in these
domains.
Enterprise level concepts – At an enterprise level, it is important to be able to
represent the core elements from the different domains such as product, process,
et cetera, as well as the coherence between these aspects.
Concept mapping – Organisations and/or individual architects must be able
to keep using their own concepts and descriptions in development projects. This
requires a mapping from the coarse grained concepts in ArchiMate to the fine-
grained concepts used in languages at project level.
Unambiguous definitions of concepts – The meaning and definition of the
modelling concepts offered by the language must be unambiguous. Every con-
cept must be described taking into account: informal description, specialisation,
notation, properties, structuring, rules and restrictions and guidelines for use.

1 ABN AMRO, ABP Pension Fund, and the Dutch Tax and Customs Administration

Structuring mechanisms – Composition/decomposition, generalisation/spe-
cialisation, and aggregation of concepts must be supported.
Abstraction – It must be possible to model relations at different abstraction
levels. For example, relations can be formulated between concepts, groups of
concepts or different architectural domains.

The ability to perform various kinds of analyses was also recognised as an
important benefit of using architecture models. These benefits also contribute
towards the return on modelling effort (RoME) with regards to the creation of
architectural models. The demands following demands were therefore also taken
into account in designing the modelling language:
Analysis of architectural properties – It must be possible to perform qual-
itative and quantitative analysis of properties of architectures.
Impact of change analysis – Impact of change analysis must be supported.
In general, such an analysis describes or identifies effects that a certain change
has on the architecture or on characteristics of the architecture.

3 Meeting the challenges

In this section we start with a discussion of the key design principles used in the
construction of the ArchiMate language, together with their motivations as well
as their actual impact on the design of the language.
Concepts should have a clear contribution – The more concepts are offered
by a modelling language, the more ways in which a specific situation can be
modelled. When it is clear for each of the concepts what its contribution is, the
language becomes easier to use and easier to learn [12].
Underlying set of concepts should be defined incrementally – The lan-
guage should be based on an incrementally defined set of modelling concepts,
level by level refining and specialising the set of underlying concepts. When defin-
ing the language in this way, it becomes easier to position and discuss possible
extensions of the language in relation to higher level core concepts and/or the
specialisations of these at the lower levels.
The language should be as compact as possible – The most important
design restriction on the language was that it was explicitly designed to be as
compact as possible, while still being usable for most enterprise architecture re-
lated modelling tasks. Many other languages, such as UML, try to accommodate
as much as possible all needs of all possible users. In the interest of simplicity
of learning and use, ArchiMate has been limited to the concepts that suffice for
modelling the proverbial 80% of practical cases.
Core concepts shouldn’t dependent on specific frameworks – Many ar-
chitecture frameworks are in existence. Therefore, it is not desirable for a general
purpose architecture description language to be too dependent on a specific ar-
chitecture framework. Doing so will also make the language more extendible in
the sense that it can easily be adopted to other frameworks.
Easy mapping from/to concepts used at project level – To enable traca-
bility from the enterprise level to the project level, a strong relationship should

exist between the modelling concepts used at project level and those used in the
enterprise architecture. Therefore, the ArchiMate language needed to be set up
in such a way that project level modelling concepts be expressed easily in terms
of the more general concepts defined in the language (e.g., by specialisation or
composition of general concepts).
Transitivity of relations – Relations between concepts should be transitive.
This will not be further explained in this paper, for more details we refer to [7].

The key challenge in the development of the language meta-model was ac-
tually to strike a balance between the specific concepts used by project-level
modelling languages on one extreme, and the very general modelling concepts
suggested by general systems theory. The triangle in Figure 2 illustrates how
concepts can be described at different levels of specialisation. The design of the
ArchiMate language started from a set of relatively generic concepts (higher up
in the triangle) focussing on domain modelling in general. These were then spe-
cialised towards the modelling of dynamic systems (at a course grained level),
and consequently to enterprise architecture concepts. At the base of the triangle,
we find the meta-models of the modelling concepts used by project-level mod-
elling languages such as UML, BPMN, et cetera. The ArchiMate meta-model
defines the concepts somewhere between these two extremes.

Concepts

Relations

Passive structure concept

Behaviour concept

Active structure concept

Domain model

Dynamic system

Enterprise architecture

Service

Interface

Object

Role
Actor

Contract

Project level concepts

M
o

re
 s

p
e
c
ifi

c

M
o

re
 g

e
n

e
ri

c

Fig. 2. Concept hierarchy

In the remainder of the paper, we discuss the stack of meta-models taking
us from the top of the triangle to the level of the ArchiMate meta-model. At
each level, we will present a meta-model of the additional modelling concepts
provided by this level. Each level also inherits the concepts from the previous
level, while also providing specialisations of the existing concepts. As an example
meta-model stack, involving two levels, consider Figure 3. In this paper we have
chosen to use Object-Role Modelling [13] (ORM) as a meta-modelling language,
since it allows for precise modelling and elaborate verbalisations, making it well
suited for the representation of meta-models. The mappings between modelling
concepts at different levels are represented as: a :: b. What is also illustrated in
Figure 3 is the fact that if a, b are both object types b is subtype of a, while if

both are fact-types b is a subset of a. More specifically, in Figure 3 A and B are
a sub-type of X, while fact-type h is a sub-set of fact-type f.

–– Level 1 ––

Y

g

f
X

–– Level 2 ––

YX :: A

:: gf :: h

X :: B

–– Integrated model ––

A

gh

B

Y

g

f
X

Fig. 3. Example meta-model stack

Sometimes we will want to repeat fact-types which already exist between two
super-types for sub-types of these super-types. In this case we will write ::a as a
shorthand for a :: a. In the example shown in Figure 3 we see how g is repeated at
level 2, while the the mandatory role (the filled circle on object-type B) requires
the instances of sub-type B to all play a role in fact-type g.

4 Domain modelling

In this section we are concerned with the establishment of a meta-model covering
a set of modelling concepts that would allow us to model domains in general.
We do so by defining three levels as depicted in Figure 4.

–– Level 1 ––

Element

–– Level 2 ––

is related to

Element ::

Relation

is source of / has as source

is destination of / has as destination

A Concept is related to another Concept if and only if

 the first Concept is source of some Relation which

 has as destination the second Concept

*
Element ::

Concept

–– Level 3 ––

is composed of

is related to ::

 is realisation of

is related to ::

 is aggregation of

Concept

is related to ::

 is specialisation of

Fig. 4. Basic layers

The first level in Figure 4 shows a meta-model comprising a single modelling
concept: Element. This allows us to discern several elements within a modelled

domain (end its environment). On its own, this is of course still highly imprac-
tical. We need the ability to at least identify relations between these elements.
This, therefore, leads to the refinement suggested by level two. At this level, we
identify two kinds of elements: Concepts and Relations. Concepts are the source of
Relations as well as the destination of Relations. In other words, Concepts can be re-
lated by way of a Relation. This is abbreviated by the derived (as marked by the
asterisk) fact-type is related to. The definition of this derived fact-type is provided
in the style of SBVR [14].

The domains we are interested in tend to be large and complex. To harness
this complexity we need special relationships between Concepts which provide us
with abstraction, aggregation and specialisation mechanisms. This leads to three
specialisations of the is related to fact-type: is realisation of, is specialisation of, and
is aggregation of. A special class of aggregations are compositions, as signified by
the is composition of fact-type.

is related to ::

 has assigned

is related to ::

 is accessed by

 Behaviour

concept

Concept ::

 Extensional

 Concept

Concept::

 Intentional

 Concept

is related to ::

 has

ReasonMeaning Value

is related to ::

uses

Passive-

structure

concept

Active-

structure

concept

Fig. 5. Level 4

5 Modelling dynamic systems

Based on the foundation established in the previous section, we now describe
general concepts for the modelling of dynamic systems. A dynamic system is any
(discrete-event) system in which one or more subjects (actors or agents) display
certain behaviour, using one or more objects. Examples of dynamic systems
are business systems, information systems, application systems, and technical
systems. In this section, we gradually extend the set of concepts, using three
more or less orthogonal aspects or ‘dimensions’. We distinguish: the aspects
active structure, behaviour and passive structure, an internal and an external
view, and an individual and a collective view.

5.1 Active structure, behaviour and passive structure

First, we distinguish active structure concepts, behavioural concepts and passive
structure concepts. These three classes have been inspired by structures from
natural language. When formulating sentences concerning the behaviour of a

dynamic system, concepts will play different roles in the sentences produced. In
addition to the role of a proposition dealing with some activity in the dynamic
system (selling, reporting, weighing, et cetera), two other important roles are the
role of agens and the role of patiens. The agens role (the active structure) refers
to the concept which is regarded as executing the activity, while the patiens role
(the passive structure) refers to the concept regarded as undergoing/experiencing
the activity.

:: has assigned

 B concept ::

 Service

 A-S concept ::

 Interface

 B concept ::

 Internal

 B concept

 A-S concept ::

 Internal

 A-S Concept

 P-S concept ::

 Object

:: is accessed by

:: is accessed by

:: has assigned
:: is aggregation of

:: is realised by

:: uses :: is composed of

:: uses

Fig. 6. Level 5

Active structure concepts are concepts concerned with the execution of be-
haviour; e.g., (human) actors, software applications or devices that display actual
behaviour. The behavioural concepts represent the actual behaviour, i.e., the pro-
cesses and activities that are performed. The active structure concepts can be
assigned to behavioural concepts, to show who (or what) performs the behaviour.
The passive structure concepts are the concepts upon which behaviour is per-
formed. In the domain that we consider, these are usually information or data
objects, but they may also be used to represent physical objects. This extension
leads to the refined meta-model as shown in Figure 5.

The active structure, behaviour and passive structure concepts provide an
extensional perspective on behaviour. In addition, one can discern an intentional
perspective in relation to stakeholders observing the behaviour. Mirroring the
passive structure, we identify the meaning concept to express the meaning at-
tached to the passive structures. For the behaviour aspect, the value concept
expresses the value exchange/addition that may be associated to the perfor-
mance of the behaviour. The active structure is mirrored by the reason concept,
expressing the rationale underlying the role of the active structure concepts.

5.2 Internal versus external

A further distinction is made between an external view and an internal view
on a system. When looking at the behavioural aspect, these views reflect the
principles of service orientation. The service concept represents a unit of essen-
tial functionality that a system exposes to its environment. This leads to the
extension as depicted in Figure 6.

A service is accessible through an interface, which constitutes the external
view on the active structural concept. An interface is a (physical or logical)

Collaboration

Internal

 A-S Concept ::

 Actor

:: is realised by

:: uses :: is composed of

:: uses

:: is aggregation of

triggers flows to

:: has assigned

:: Service :: Interface

Int B concept ::

 Exhibited

 behaviour

Internal

 A-S Concept ::

 Role

:: Object

:: is accessed by

:: is accessed by

:: has assigned
:: is aggregation of

is related to ::

 precedes

:: has assigned

Interaction

Fig. 7. Level 6

location where the functionality of a service is exposed to the environment.
When a service has assigned an interface, then this assignment must be mirrored
by the assignment of relevant internal active structure concepts to the internal
behaviour concepts involved in the realisation of the service (the dotted arrow
between the two has assigned fact-types).

5.3 Individual versus collective behaviour

Going one level deeper in the structure of the language, we distinguish between
the individual behaviour, performed by a single active structure concept, and
the collective behaviour performed by multiple active structure concepts in a
collaboration. This leads to the refinements shown in Figure 7.

In describing individual and/or collective behaviour in more detail, the in-
ternal behaviour concept needs refinement in terms of temporal ordering of the
exhibited behaviour. This leads to the precedes fact-type and its sub-sets: triggers
(for activities) and flows to (for information processing). A further refinement
needed is the distinction between roles and actors as active structure concepts.
Actors represent the essential identities that can ultimately be regarded as ex-
ecuting the behaviour, e.g. an insurance company, a mainframe, a person, et
cetera. The actual execution is taken to occur in the context of a role played by
an actor.

A collective of co-operating roles is modelled by the collaboration concept:
a (possibly temporary) aggregation of two or more active structure concepts,
working together to perform some collective behaviour. A collaboration is de-
fined as a specialisation of a role. The collective behaviour itself is modelled by
the interaction concept, where interaction is defined as a specialisation of the
exhibited behaviour concept.

:: triggers :: flows to

Collaboration ::

X Collab.

Actor ::

 X Actor

:: is realised by

:: uses :: is composed of

:: uses

:: is aggregation of

:: has assigned

Interface ::

 X Interface

Exh. beh. ::

 X Exhibited

 behaviour

Role ::

 X Role

Object ::

 X Object

:: is accessed by

:: is accessed by

:: has assigned
:: is aggregation of

:: has assigned

Service ::

 X Service

:: precedes

Interaction::

 X Interaction

Exh. beh.::

 X Exhibited

 behaviour

Role ::

 X Role

 :: uses

Service ::

 Y Service

:: uses

Interface ::

 Y Interface

:: is realised by

Object ::

 Y Object

Actor ::

 X Actor
Object ::

 X Object

:: is realised by

Fig. 8. Level 7 – Fragments

6 Modelling enterprise architectures

In this section we further extend the meta-model stack to arrive at the actual
ArchiMate language. Two steps remain. The first step involves the introduction
of an architecture framework allowing us to consider enterprises as a layered set
of systems. The final step is to refine the meta-models to the specific needs of
each of these layers.

As a common denominator of the architecture frameworks in use by partici-
pating client organisations, as well as a number of standard frameworks used in
the industry, a framework was created involving three layers:
Business layer – Products and services offered to external customers, as well
as the realisation of these within the organisation by means of business processes
performed by business actors and roles.
Application layer – This layer supports the business layer with application
services which are realized by (software) application components.
Technology layer – This layer offers infrastructural services (e.g., processing,
storage and communication services) needed to run applications, realised by
computer and communication hardware and system software.

Since each of these layers involves a dynamic system, the meta-model at
level 7 comprises three copies of the fragment depicted at the top of Figure 8 for
Business, Application and Technology respectively. These fragments, however, need

:: is governed by

ProductContract

:: is aggregation of

:: triggers :: flows to

:: Business

 Collaboration

:: Business

 Actor

:: is realised by

:: uses :: is composed of

:: uses

:: is aggregation of

:: has assigned

:: Business

 Interface

:: Business

 Exhibited

 behaviour

:: Business

 Role

:: Business

 Object

:: is accessed by

:: is accessed by

:: has assigned
:: is aggregation of

:: has assigned

:: Business

 Service

:: precedes

:: Business

 Interaction

:: Value

:: Meaning

:: has

:: has

:: Reason

:: has

Fig. 9. Level 8 – Business layer

to be connected as well, therefore for each of the two combinations: Business,
Application and Application, Technology the fragment shown at the bottom of Fig-
ure 8 should be added.

Given the focus of each of the layers, further refinements were needed to
better cater for the specific needs of the respective layers. For the business layer,
as shown in Figure 9, the concepts of contract and product have been intro-
duced. At the business level, services may be grouped to form products, which
are treated as (complex) services. A business service offers a certain value (eco-
nomic or otherwise) to its (prospective) users, which provides the motivation for
the service’s existence. For the external users, only this external functionality
and value, together with non-functional aspects such as the quality of service,
costs, et cetera, are of relevance. These can be specified in a contract. This leads
to the situation as depicted in Figure 9. The concepts of meaning and value have
been repeated to stress the fact that they specifically play a role in the business
layer.

The application layer, shown in Figure 10, does not lead to the introduction
of additional concepts, and only involves the re-naming of some of the existing
concepts. The renamings resulted in new names for existing concepts, which
corresponded better to the names already used by the partners participating in
the ArchiMate project, as well as existing standards such as the UML.

The technology layer also involves some renaming of existing concepts. In
addition, some further refinements of existing concepts were needed as well,
as depicted in Figure 11. The newly introduced concepts deal with the different
kinds of elements that may be part of a technology infrastructure: nodes, software
systems, devices and networks.

:: triggers :: flows to

:: is realised by

:: uses :: is composed of

:: uses

:: has assigned

:: Application

 Interface

App. Ex. Bh.::

 Application

 Function

App. Role::

 Application

 Component

Appl. Object::

 Data Object

:: is accessed by

:: is accessed by

:: has assigned
:: is aggregation of

:: Application

 Service

:: precedes

:: is realised by

:: Application

Collaboration

:: is aggregation of

:: Application

 Interaction

Fig. 10. Level 8 – Application layer

7 Conclusion

In this paper we discussed some of the key design decisions and design principles
underlying the ArchiMate language. We have reviewed the challenges confronting
an architecture description language for enterprise architecture, as well as the
design principles aiming to meet these challenges. This also offered a new per-
spective on the design and evolution of modelling languages, which is of prime
importance for languages designed as open standards. We then discussed the
modelling concepts needed in the ArchiMate language, where we made a dis-
tinction between concepts needed to model domains in general, the modelling of
dynamic systems, and the modelling of enterprise architectures.

Recently, the ArchiMate language has been transferred to the Open Group.
It is expected that the language will evolve further to better accompany future
versions of the Open Group’s architecture framework (TOGAF). This can easily
be accommodated by taking the meta-model at level 6 as a common denomina-
tor. At level 7 a choice has to be made for a specific architecture framework; in
the case of TOGAF this corresponds to a business architecture, an information
systems architecture and a technology architecture.

References

1. Lankhorst, M., et al.: Enterprise Architecture at Work: Modelling, Communication
and Analysis. Springer, Berlin, Germany (2005).

2. Op ’t Land, M., Proper, H., Waage, M., Cloo, J., Steghuis, C.: Enterprise Ar-
chitecture – Creating Value by Informed Governance. Springer, Berlin, Germany
(2008).

3. OMG: UML 2.0 Superstructure Specification – Final Adopted Specification. Tech-
nical Report ptc/03–08–02, OMG (2003).

4. Object Management Group: Business process modeling notation, v1.1. OMG
Available Specification OMG Document Number: formal/2008-01-17, Object Man-
agement Group (2008).

:: is realised by

:: uses :: is composed of

:: uses

:: has assigned

:: Infrastructure

 Interface

Infra. Ex. Bh.::

 Infrastructure

 Function

:: Infrastructure

 Role

Infra. Object::

 Artifact

:: is accessed by

:: is accessed by

:: has assigned
:: is aggregation of

:: Infrastructure

 Service

:: is realised by

:: Infra. Collab.

 Communic.

 Path

:: is aggregation of

Device

:: has assigned
System

software

:: is associated to

Network

Node

:: is composed of:: is composed of

Fig. 11. Level 8 – Technology layer

5. Steen, M., Doest, H.t., Lankhorst, M., Akehurst, D.: Supporting Viewpoint–
Oriented Enterprise Architecture. In: Proceedings of the 8th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2004). (2004) 20–24.

6. Jonkers, H., Lankhorst, M., Buuren, R.v., Hoppenbrouwers, S., Bonsangue, M.,
Torre, L.v.d.: Concepts for Modeling Enterprise Architectures. International Jour-
nal of Cooperative Information Systems 13 (2004) 257–288.

7. Buuren, R. van Jonkers, H., Iacob, M., Strating, P.: Composition of relations in
enterprise architecture. In Ehrig, H., et al., eds.: Proceedings Second International
Conference on Graph Transformation, Rome, Italy (2004) 39–53.

8. Arbab, F., Boer, F.d., Bonsangue, M., Lankhorst, M., Proper, H., Torre, L.v.d.:
Integrating Architectural Models. Enterprise Modelling and Information Systems
Architectures 2 (2007) 40–57.

9. The Open Group: The Open Group Architecture Framework (TOGAF) Version
8.1.1, Enterprise Edition. (2007).

10. Lindland, O., Sindre, G., Sølvberg, A.: Understanding quality in conceptual mod-
eling. IEEE Software 11 (1994) 42–49.

11. Bosma, H., Doest, H.t., Vos, M.: Requirements. Technical Report ArchiMate
Deliverabe D4.1, TI/RS/2002/112, Telematica Instituut (2002).

12. Proper, H., Verrijn–Stuart, A., Hoppenbrouwers, S.: Towards Utility–based Se-
lection of Architecture–Modelling Concepts. In Hartmann, S., Stumptner, M.,
eds.: Proceedings of the Second Asia–Pacific Conference on Conceptual Modelling
(APCCM2005). Volume 42 of Conferences in Research and Practice in Information
Technology Series., Sydney, New South Wales, Australia, Australian Computer So-
ciety (2005) 25–36.

13. Halpin, T., Morgan, T.: Information Modeling and Relational Databases. 2nd edn.
Data Management Systems. Morgan Kaufman (2008).

14. SBVR Team: Semantics of Business Vocabulary and Rules (SBVR). Technical Re-
port dtc/06–03–02, Object Management Group, Needham, Massachusetts (2006).

