

1 Introducing Agile Service Development

M.M. Lankhorst, W.P.M. Janssen, H.A. Proper, M.W.A. Steen

This chapter introduces the topic of our book: Agile service development. It de-
scribes the economic importance of services, defines the service concept and
shows how it may provide a handle on several management issues. Furthermore, it
introduces the notion of agility, applied at organizations, at their service develop-
ment processes, and at the services themselves. Finally, this chapter positions our
work in the context of enterprise engineering and explains what its core contribu-
tions are.

1.1 Introduction

Economies around the globe have evolved to become service economies. This is in
particular the case for Europe and the USA, but emerging markets are expanding
in this direction as well. Service sectors are responsible for about 73% of the GDP
in Europe (CIA 2011), 55% in India and 43% in China. As the Europe 2020 Strat-
egy (European Commission 2010) makes clear, Europe’s future wealth and well-
being of its citizens depend on how effectively its businesses can innovate and re-
spond to changing markets, technologies and consumer preferences. We therefore
need a better understanding of how innovation is changing and how the traditional
divide between manufacturing and services is blurring.

Organizations (including companies, government agencies, et cetera) that were
traditionally production-oriented are now also adopting new service-focused busi-
ness models. Consumers no longer just want a printer or a car. They rather ask for
a printing service or a mobility service. Many types of services are provided (initi-
ated and/or delivered) through the Internet. As a result, services-oriented organiza-
tions increasingly exploit new devices, technologies and infrastructures, such as
smartphones, tablets or interactive televisions, to improve their customers' experi-
ences. Innovation is no longer the preserve of research and development laborato-
ries but has become more of a distributed, cultural phenomenon, where the pro-
cesses for developing new goods and services, channels to market and revenue
models are evolving in response to new technical opportunities, increased custom-
er engagement in innovation, and changing organizational structures.

2

Despite its importance, the level of professionalism in developing services can-
not match the level of expertise in product development. Business cases, user stud-
ies, design alternatives and actual development are not really linked, and infor-
mation and knowledge is lost en route. Especially in the case of IT-based services,
initial requirements are underspecified, leading to change requests in the process,
with higher cost, longer time to market, and increased risk of disappointing cus-
tomers. While this shift towards a service economy happened, organizations have
also seen their pace of change accelerate steadily. This correlates with the increas-
ing speed of development in IT, exemplified by Moore's law and the rapid rise of
the Internet and mobile Internet, which in turn have driven customer demands and
expectations. Organizations need to deal with this and adapt their way of working
to increase their capabilities in anticipating and responding to such developments.
Agility is the ability to deal easily with such changing requirements and environ-
ments. Agile ways of working embrace change as a positive force and harnesses it
for the organization's competitive advantage.

At the same time, many organizations find themselves bogged down by a lega-
cy of large, inert, complex systems and business processes. Often, traditional
'waterfall' development processes have been used to create these systems. These
systems, and their development processes, cannot cope with the speed of change
required by the modern day environment of the organization. Moreover, tradition-
al software development projects have a dismally low success rate, due to both
poor project planning and poor execution. The often quoted Chaos reports
(Standish Group 2010) are a well-known source of this observation, but there are
many more indicators. For example, there is a strong correlation between project
size and failure rate (Verhoef 2002). In general, we struggle to successfully man-
age large IT projects and ensure they finish on time and within budget.

So-called agile methods for software development, such as Scrum and Extreme
Programming, have become very popular in the software engineering community;
according to a recent study by Forrester, 35% of the organizations surveyed al-
ready have mature agile methods in place and 33% were implementing agile (For-
rester 2009). This popularity is not only because these methods feel less of a strait-
jacket to engineers but also because they are of help in realizing software systems
that are better aligned with business and user needs, with a smaller risk of cost and
time overruns.

Another way of managing large scale IT-related projects and programmes is
through the use of architecture (Zachman 1987, The Open Group 2011). This used
to be the domain of IT experts only, but nowadays includes the design of an enter-
prise as a whole. This is for example reflected by a definition of enterprise archi-
tecture as submitted to a survey of The Open Group by the Enterprise Architecture
Research Forum (2010): ‘The continuous practice of describing the essential ele-
ments of a socio-technical organization, their relationships to each other and to
the environment, in order to understand complexity and manage change.’ Empiri-
cal support for the business value of architecture has also been shown, for example
in the work of Slot (2010).

3

Given the observation that agile methods and enterprise architecture both can
contribute to effective agility, it seems logical that agile methods and architecture
should be combined. Until now, however, this has been a somewhat awkward
marriage. Many agile practitioners tend to see architecture as ‘Big Design Up
Front’, a big no-no in agile development. However, as we will describe later, agile
and architectural approaches can be combined in a fruitful manner.

1.2 Services and Service Thinking

As we have outlined in the introduction of this chapter, service sectors have be-
come a mainstay of the economy. But the service concept also serves an important
purpose in business and IT management. This encompasses different aspects,
ranging from determining the strategic orientation of the organization and its IT,
to management and control of delivery and operations. Furthermore, the infor-
mation systems landscape itself, especially of large, information-intensive organi-
zations, has become a complex field that combines all kinds of concepts, para-
digms, building blocks, and instruments. How can we get a grip on this
multifaceted landscape?

It is impossible to manage all these different elements individually. Some of
these are too fine-grained, such as business rules or events; some are too IT-
centric, such as business objects or components; some are too large and serve too
many purposes to manage them as a single functional element, such as complete
business applications like ERP systems; and some of these, such as business pro-
cesses, are too business-specific to provide a management handle on more generic
IT functionality. We need a concept that is in between these other notions and cap-
tures the essence of what an organization does or means for its surroundings: ser-
vice.

In short, a service is a piece of functionality that offers value to its environ-
ment. By concentrating on service development, we focus on the value that organ-
izations provide to their environment (customers, citizens, society). Of course,
these services are realized by all kinds of business processes, software applications
and technical infrastructure. However, these are subordinate to the services they
deliver. Traditionally, agile methods are strongly focused on software develop-
ment; here, we take a much broader scope, applying agile principles and practices
to more than just software.

Using the notion of service as core concept in guiding the development of or-
ganizations, both for business and for IT design, has several advantages. First, ser-
vices provide a clean separation of the ‘what’ and ‘how’. A service provides a
clear interface to its functionality, without disclosing how this functionality is real-
ized internally. As such, a service is self-contained and has a clear purpose and
function from the perspective of its environment. Its internal behaviour, on the
other hand, represents what is required to realize this functionality. For the ‘con-

4

sumers’ or users of a service, the internal behaviour of a system or organization is
usually irrelevant: they are only interested in the functionality and quality that will
be provided.

In this way, services also facilitate interoperability, minimizing the necessary
shared understanding: a service description and a protocol of collaboration and
negotiation are the primary requirements for shared understanding between a pro-
vider and user of some service. Therefore, services may be used by parties differ-
ent from the ones originally conceived, or used by invoking processes at various
aggregation levels.

This also points to the second advantage of the service notion: a service is in-
dependently useful and therefore has a manageable level of granularity. Since it
delivers a concrete business contribution, it is the subject of service-level agree-
ments, its performance can be monitored separately, it can be combined with other
services to provide new functionality, while its delivery can be bought from and
sold to other organizations.

Finally, the service concept provides a potential bridge between business and
IT vocabulary. In business terms, ‘service’ signifies what the organization does for
its customers; more recently, IT has started to use the word ‘service’ for concrete,
independent units of business functionality delivered via a software interface.
Both uses of the word are based on the concrete contribution to the environment
and the relatively self-contained character of a service.

This is of course not really new. Organizations have long been thinking in
terms of the services provided to customers, and internal business processes are
designed to provide these services. Software engineers think in terms of functional
interfaces, information hiding and encapsulation. Service thinking, however, can
also be applied to, for example, internal business processes and software applica-
tions, rendering them into ‘service networks’: services become the core building
block of the entire information ecosystem.

Service orientation also stimulates new ways of thinking. Traditionally, appli-
cations are considered to support a specific business process, which in turn realiz-
es a specific business service. Service orientation also allows us to adopt a bottom-
up strategy, where the business processes are just a mechanism of instantiating
and commercially exploiting the lower-level services in a collective offering to the
outside world. In this view, the most valuable assets are the capabilities to execute
the lower-level services, and the business processes are merely a means of exploi-
tation.

Hence, by concentrating on agile development of business and software ser-
vices, we focus on the value that organizations provide to their environment. Of
course, these services are realized by all kinds of business processes, software ap-
plications and technical infrastructure. However, these are subordinate to the ser-
vices they deliver. Traditionally, agile methods are strongly focused on software
development; here, we take a much broader scope, applying agile principles and
practices to more than just software.

5

1.2.1 Service Definitions and Properties

Let us be more clear about what we mean by the elusive notion of ‘service’. The
service concept is widely used in economics, business science, innovation, busi-
ness process engineering, and IT. However, the concept is used in several ways
across these fields. An extensive number of interpretations from the literature has
been reviewed by Quartel et al. (2007). They list the following types of definition
for the term ‘service’:

• Value creation. In economics and business science, a service is seen as the non-
material equivalent of a good, creating value for the service consumer, for ex-
ample by (Quinn et al. 1987).

• Exchange. Many definitions focus on the exchange between the provider and
consumer of a service, such as the definitions of Spohrer et al. (2007) and
Papazoglou and Heuvel (2007).

• Capability. Often the service concept is defined as an abstract resource that rep-
resents some capability, for example by the W3C (2004) and the OASIS SOA
Reference Architecture (OASIS 2006, OASIS 2011).

• Application. Web services, but also services in general, are commonly seen as
applications (pieces of software) that can be accessed over the Web, for exam-
ple in (W3C 2004).

• Observable behaviour. In data communication, a service is traditionally defined
as the observable, or external, behaviour of a system, for example by Vissers et
al. (1986).

• Operation. In object-oriented and component-based software design, each op-
eration or method defined on an object or component is usually seen as a ser-
vice of that object or component.

• Feature. In the telecommunications domain the term service is used to refer to
a feature that can be provided on top of the basic telephony service, such as call
forwarding, call back when busy and calling line identification.

Generalizing the definitions listed above, Quartel et al. (2007) identify four defin-
ing characteristics of services:

• Services involve interaction. A service involves one or more interactions be-
tween a service user and some system that provides the service, also called ser-
vice provider or service system.

• Services provide value. The execution of a service provides some value to the
user and the provider. In case of IT services, this value may only involve ‘in-
tangible benefits’, such as the change in possession of goods and money. For
services in general, the value may also involve ‘tangible things’, such as the ac-
tual exchange of parcels using a parcel delivery service.

• Services define units of composition. Services are units of composition. Busi-
ness processes and supporting applications are composed from services, which

6

define smaller business process or application pieces that may be reused when
chosen properly.

• Services are a broad spectrum concept. The service concept is meant to be
applied at successive abstraction levels along a broad spectrum of the design
process, i.e., from specification to implementation.

1.2.2 Our Definition of Service

The definitions and characteristics above lead us to our own definition of service,
which aims to be both concise and generally applicable to different kinds of ser-
vices.

A service is a unit of functionality that a system exposes to its environment,
while hiding internal operations, which provides a certain value (monetary
or otherwise).

This definition, reused from the ArchiMate 2.0 standard (The Open Group 2012),
is generic enough to encompass most of the business-oriented definitions above. It
focuses on the functionality and value inherent in a service and stresses that a ser-
vice should hide its internal operations, i.e., its users should perceive it as an inte-
grated whole that can be used on its own. The definition does not specifically
speak about a ‘consumer’ or ‘provider’ of a service, unlike some of the definitions
reviewed above. Although a service must of course be provided and consumed, we
do not wish to limit ourselves a priori to an implied one-on-one relation between a
provider and a consumer, since services may be used and produced by more com-
plex groups, networks or other structures of actors. Furthermore, the same service
may be offered by different parties, and we do not want to suggest that the service
is tied to a specific provider. Hence, our definition simply speaks of a service es-
tablishing value to its environment.

A service represents only the ‘externally visible’ behaviour of a ‘service sys-
tem’ (see below), as it is experienced by the users of the service. A service should
not be confused with the interface or channel at which clients can obtain that ser-
vice; for example, an organization may offer the same information service via its
website, call centre, or front desk. Also, a service offer need not be targeted at a
pre-existing, specific demand; it may also be used to create such a demand: ‘if
you build it, they will come’, as the famous movie quote from Field of Dreams put
it. Hence, the value established by a service may only become clear after it has
been created and used.

We can distinguish different types of services:

• A business service is a service that is provided by an organization to its envi-
ronment, or by an organizational unit to the organization.

7

• An application service is a service that is provided by a software component to
its environment (both users and other software components).

• An infrastructure service is a service that is provided by some infrastructure el-
ement (e.g. a hardware device) to its environment.

These services may be viewed as ordered in layers that support each other: busi-
ness services may be delivered in part or completely by way of software and infra-
structure services. All these services are realized by service systems, which in turn
may rely upon other services.

A service system is a value-coproduction configuration of people, technolo-
gy, other internal and external service systems, and shared information (such
as language, processes, metrics, prices, policies, and laws).

This recursive definition, taken from (Spohrer et al. 2007), highlights the fact that
service systems have an internal structure and may be part of an external service
network. A single application may be a service system, realizing a specific soft-
ware service; individuals and organizations are service systems, and at the extreme
end of the spectrum, so are entire nations and economies.

Even though we define the general concept of service as a self-contained unit
of functionality that establishes a meaningful value to its environment, it some-
times is necessary to be more specific about the fact whether we refer to a service
consumer or producer, or to a service request or offering, or to a service delivery
as a whole. In particular the following concepts are useful:

Service delivery: The combination of a service offering, execution and com-
pletion as conducted by the service producer.

Service consumption: The combination of a service request to a service pro-
ducer, and the associated acceptance of its completion.

These concepts also resonate well with the generic transaction pattern as for in-
stance described by Dietz (2006) and with the definition of service as suggested
by Albani, et al. (2009) and elaborated by Terlouw (2011).

1.2.3 Service Development as a Wicked Problem

The development of new services is likely to take place in situations where tech-
nology platforms evolve rapidly, introducing several technological uncertainties,
while at the same time several stakeholders with conflicting stakes are involved.
This confronts service designers with major challenges. To add more spice to the
challenges, it may not even be clear what the business model will be for a new

8

service. Competitors struggle with the same challenges and potential benefits,
hence doing nothing is not an option.

As Hevner et al. pointed out, this type of design problems is ‘wicked’, i.e., no
optimal solution can be found in reasonable time (Hevner et al. 2004, p. 89):

Given the wicked nature of many information system design problems, however, it may
not be possible to determine, let alone explicitly describe, the relevant means, ends, or
laws. Even when it is possible to do so, the sheer size and complexity of the solution
space will often render the problem computationally infeasible [...] In such situations, the
search is for satisfactory solutions, i.e., satisficing (Simon 1996), without explicitly
specifying all possible solutions. The design task involves the creation, utilization, and
assessment of heuristic search strategies. That is, constructing an artifact that ‘works’ well
for the specified class of problems.

The concept of ‘wicked problem’ was first coined by Rittel and Webber (1973).
They characterize this wickedness as follows:

1. You don’t understand the problem until you have developed a solution.
2. Solutions to wicked problems are not right or wrong.
3. Every wicked problem is essentially unique and novel.
4. Wicked problems have no stopping rule.
5. Every solution to a wicked problem is a one-shot operation.
6. Wicked problems have no given alternative solutions.

Jeff Conklin (2005) complements the notion of wickedness with the concept of
social complexity, stating that:

Social complexity means that a project team works in a social network, a network of
controllers and influencers including individual stakeholders, other project teams, and
other organizations. These relationships, whether they are with direct stakeholders or
those more peripherally involved, must be included in the project. For it is not whether the
project team comes up with the right answer, but whose buy-in they have that really
matters. To put it more starkly, without being included in the thinking and decision-
making process, members of the social network may seek to undermine or even sabotage
the project if their needs are not considered. Social complexity can be can be understood
and used effectively, but it can be ignored only at great peril.

Social complexity exacerbates a problem’s wickedness. In terms of Conklin:
‘Fragmentation = wickedness × social complexity’. For such wicked and socially
complex problems, top-down, waterfall-style design approaches fail. This requires
us to look for different ways of thinking and working.

Moreover, as Ciborra (1992) argued, ‘bricolage’, emergence and local improvi-
sation, instead of central control and top-down design, may lead to strategic ad-
vantages: the bottom-up evolution of socio-technical systems will lead to some-
thing that is deeply rooted in an enterprise’s organizational culture, and hence
much more difficult to imitate by others. Such bottom-up tinkering may also lead
to much quicker responses to a changing environment than a highly structured and
formalized design process; this speed itself may be a strategic advantage over
competitors, and as we have argued before, the increasing speed of change in the
environment requires organizations to be ever more responsive.

9

A similar line of reasoning is followed in the design thinking approach, as in-
troduced by Rowe (1987) and made popular by Brown and Kelley at the design
company IDEO (Brown, 2009). Design thinking emphasizes the role of iterative
design and strong user involvement to tackle the social complexity of many design
problems. Iterative design here involves early prototyping and user feedback, not
only for objects to be designed, but also for services. Design thinking is not so
much process oriented. But distinguishes three overlapping design spaces: inspira-
tion, ideation and implementation. In these spaces desirability, viability and feasi-
bility of a service or product are balanced.

1.2.4 The Need for Agility

Wickedness and social complexity are not only a challenge to service develop-
ment. They are, for example, a challenge to software development as well. In the
context of software development processes this has, over the last decade, given
rise to the notion of ‘agility’, with popular software development methods such as
Extreme Programming and Scrum, and with the well-known Agile Manifesto
(Beck et al. 2001) as a kickstarter. Agile methods, with short iterations, close cus-
tomer contact, continuous adaptation, self-organization and cross-functional
teams, have been adopted by an increasing number of organizations.

In battling wickedness and social complexity in the context of service devel-
opment, we look at agility as a means to deal with the complexity and dynamicity.
However, the traditional agile approaches only concern the agility within the de-
velopment process. The object of that development, a service system, comprising
both IT and business elements, should itself also be flexible and adaptable, to ac-
commodate future changes. This is where we see an important role for architec-
ture: designing service systems in such a way that they are flexible in the areas
that may undergo rapid changes, and on the other hand offer a stable infrastructure
for these services. This may seem paradoxical: agility and flexibility often arise
from the use of a set of standardized ‘building blocks’ and interfaces. Lego is a
good example: you can build almost anything from these standardized blocks with
their fixed studs. Agile architectures also consist of stable elements that are easily
configured and combined. We therefore address different kinds of agility:

Business agility: using change as an essential part of your enterprise strate-
gy, outmaneuvering competitors with shorter time-to-market, smarter part-
nering strategies, lower development costs and higher customer satisfaction.

Process agility: using agile practices for design and development, focused
on people, rapid value delivery and responsiveness to change.

System agility: having organizational and technical systems that are easy to
reconfigure, adapt and extend when the need arises.

10

These different types of agility reinforce each other: if an enterprise’s infrastruc-
ture, applications or business processes are more flexible, an iterative and incre-
mental development process can more quickly and easily add value, and strategy
execution is facilitated. Thus, these three kinds of agility are the foundation for the
agile enterprise.

The core of all three kinds is that uncertainty is given an explicit and prominent
place. Whereas traditional management, design processes and architectures plan
for fixed goals and situations, agile methods and systems are aware of the uncer-
tainties of their environment and know that they are aiming at a moving and often
ill-defined target. Later on in this book, we will see how we give this uncertainty
an explicit place in our way of working and in the artefacts we design.

The notion of agile systems also leads us to define agile services, based on our
previous definition of the service notion:

An agile service is a service (i.e., a self-contained unit of functionality that
establishes a meaningful value to its environment) that has the ability to ac-
commodate expected or unexpected changes rapidly.

The definitions of business, application, and infrastructure services can be aug-
mented likewise.

An integrated approach for agile methods, architectures and services, based on
sound engineering principles, is not yet available. Some organizations have practi-
cal experiences with elements of such a new way of working; others have only just
embarked on such a trajectory or first want to gain more insight in its potential
benefits and pitfalls. This book aims to fulfill that need.

1.3 Agile Enterprise Engineering

Management science and organizational science have long aimed to take a sci-
ence-based approach to the design and evolution of enterprises. However, the
complexities of modern day society where organizations, business, and IT ‘fuse’
to a complex whole, require a powerful instrument that enables effective and evi-
dence-based decision making. In our view, now more than ever there is an evident
need to complement the existing social sciences based views on the development
of organizations with a model-oriented perspective on the design of enterprises,
inherited from the engineering sciences. This will allow the creation of an evi-
dence-based approach to the design, and associated decision making, of the com-
plex, and open, socio-technical systems modern day enterprises are. Such a model-
oriented and evidence-based approach will enable senior management to make
better founded decisions, based on actual insight.

The core idea is to provide a model-based stream as part of change efforts, en-
abling evidence-based decision making on the future direction of the enterprise.

11

Models provide a good way of understanding where an enterprise is ‘at’, where it
is currently moving ‘towards’, analyse the desirability of these, and articulate
where it should ideally be moving ‘towards’.

Complementing the development of organizations with a model-based engi-
neering perspective, is comparable to the evolution of other engineering disci-
plines in the past, such as mechanical engineering, electrical engineering, or civil
engineering. Initially, the intuition and experience of a craftsman was leading, but
increasingly, this expertise was objectified and founded on scientific knowledge.
Nowadays, all mature engineering disciplines are firmly rooted in the use of for-
mal, mathematical models for predicting the various properties of their design arti-
facts in order to make the right decisions. The increased use of formalized busi-
ness models, architecture models, risk assessment models, or valuation models
also clearly points towards the increased use of a model-based approach to the de-
sign of enterprises.

Another development indicates the same process of maturation: the increased
use of standards, not just on a technological level, but also in methods and tech-
niques. IT management uses well-established frameworks such as COBIT (ITGI
2009), ITIL (ITIL 2011), and ASL (Pols & Backer 2007). Similarly, the increased
popularity of architecture standards such as The Open Group Architecture Frame-
work (TOGAF) (The Open Group 2011) and ArchiMate (The Open Group 2012)
also demonstrates this maturation in the realm of enterprise architecture.

The Oxford English Dictionary (OED 2009) defines engineering as ‘the branch
of science and technology concerned with the design, building, and use of engines,
machines, and structures.’ This definition, especially the ‘structures’ part, also ap-
plies to (the structural parts of) enterprises and enterprise networks. Designing and
operating business models, organizational hierarchies, work processes, infor-
mation systems, and other parts of the various structures of enterprises, can be
done with an engineering approach.

1.3.1 Limits to an Engineering Approach

While adding an engineering approach to the development of organizations makes
sense, we should at the same time also recognize its limits. As already suggested
above, we see an engineering approach as being complementary to existing ap-
proaches originating from management science and organizational science.

It would be a mistake to think that the use of formalized models and methods
means that the design of organizations and their information systems becomes a
deterministic exercise: drawing up plans and then faithfully executing them. The
traditional engineering mindset presumes that there is a predefined problem wor-
thy of a solution; however, in social and socio-technical systems such as the ser-
vice systems we consider here, problems and solutions co-evolve in a closely con-
nected way. The social stream in change is crucial in ensuring that the models of

12

the enterprise’s design are indeed aligned what is actually established in the real
social-technical system that makes up the enterprise. We should avoid using a
‘blueprinting-only’ (in terms of the change management ‘colours’ of De Caluwé
and Vermaak (2008)) style of change management, i.e., not approaching organiza-
tional problems with a top-down blueprinting approach, while ignoring the softer,
social and political aspects of organizations. A classical engineering approach to
social systems may invite such a way of working, but social issues, for example
cultural differences between partners in a merger, cannot be ‘engineered’ in a top-
down, command-and-control like fashion. Furthermore, the rapidly changing envi-
ronment of enterprises necessitates a flexible response, which cannot be provided
by classical engineering methods only, as .An enterprise is first and foremost a so-
cial construct.

1.3.2 The Enterprise Engineering Manifesto

Taking an engineering approach to the design of enterprises is also one of the key
points made by the Enterprise Engineering (EE) Manifesto (Dietz 2011). We re-
gard this Manifesto as a laudable attempt to formulate the goal of evolving the de-
velopment of enterprises into a proper engineering discipline. While we support
the goals of the Manifesto, our discussions above on the agile and socio-technical
aspects of the development enterprises do suggest several improvements.

While the manifesto justifiably focuses on enterprises as being essentially so-
cial-technical systems, its current wording suggests a rather traditional and linear
view on the development of enterprises. Its first postulate states: ‘In order to per-
form optimally and to implement changes successfully, enterprises must operate
as a unified and integrated whole. Unity and integration can only be achieved
through deliberate enterprise development (comprising design, engineering, and
implementation) and governance.’ This postulate presupposes that there is one op-
timum to strive for. However, different stakeholders are more than likely to differ
in what they consider to be optimal; just take the different perspectives of a cus-
tomer, shareholder or employee, for example. Agile methods explicitly take this
multi-stakeholder view. They are aware of the wickedness and social complexity
of the design problem at hand and try to find solutions that are sufficiently good
from these different perspectives, instead of striving for an optimum, thus apply-
ing a satisficing approach (Simon 1996).

Nevertheless, in this context service development, with many different stake-
holders and an uncertain and changeable environment, some level of guidance and
control may be needed to keep local optimization and variation within bounds and
to balance the needs of the various stakeholders. The Manifesto rightly emphasiz-
es the role of architecture as an important instrument to provide such guidance.
Architecture can serve a prominent role in explicitly designing for uncertainty: not

13

by rigidly planning for a predetermined future, but by providing mechanisms for
adaptation in those places where future changes may be expected.

In conclusion, we think that the Enterprise Engineering paradigm provides an
important step forward in the design and operation of organizations. Once again,
however, it would be a mistake to think that the use of formalized models and
methods means that the design of organizations and their information systems be-
comes a deterministic exercise: drawing up plans and then faithfully executing
them. The traditional engineering mindset presumes that there is a predefined
problem worthy of a solution; however, in social and socio-technical systems such
as the service systems we consider here, problems and solutions co-evolve in a
closely connected way. To address this complex and evolving web of relations and
perspectives, we think that important lessons can be learned from the iterative and
interactive ways of working of the agile movement. An Agile Enterprise Engineer-
ing Manifesto may therefore be in order.

1.4 Towards an Engineering Approach to Agile Service
Development

A new perspective on service design processes is needed, providing development
teams with the means to tailor their way of working to specific circumstances and
deal with multiple stakeholder perspectives, bottom-up innovation and co-
evolution of different service aspects. This book aims to provide steps in this di-
rection. We advocate that agile development processes are much better suited to
accommodate these needs than classical linear, top-down design processes, in
which individual aspects are often developed separately and sequentially. The it-
erative character of agile processes, with a focus on people and interactions, close
contact with customers and cross-functional teams that tackle different aspects of
development at the same time, is a much better fit with the complex and multidi-
mensional nature of service development.

Development processes should also be explicitly focused on observing changes
in their environment and acting upon these. As we have argued before, the speed
of change that organizations have to deal with keeps increasing, and processes
must be responsive and even predictive in character to accommodate these chang-
es. These properties should be designed into the development processes, which
should be treated as systems in their own right. Such a systemic approach also re-
quires the use of development processes that are self-aware, i.e., that use mecha-
nisms and practices to observe their own performance and if necessary, change
their own operation accordingly. This use of reflection is a common characteristic
of agile methods. Scrum, for example, uses the ‘sprint retrospective’ meeting in
which after each iteration, the way of working of the team is evaluated and
adapted. In fact, this closed-loop, adaptive character is perhaps the most important

14

factor in the success of agile processes compared to the traditional open-loop, lin-
ear type of development.

This adaptive character of development processes does not mean that change
knows no bounds. The complex nature of service design necessitates the use of
sound engineering principles and techniques. External dependencies, technologi-
cal complexity, regulatory compliance, risk management and other factors all re-
quire an approach of bounded or controlled variation. Architecture is a core disci-
pline to provide such managed variation. It specifies the high-level, strategic or
otherwise important principles and decisions that together span the design space,
like a vector space in algebra.

Another important use of architecture is to explicitly design mechanisms in the
operational processes and systems that support change. Not only should develop-
ment processes be agile and adaptive, but the results they create should also be
flexible and amenable to change. Various kinds of architecture and design models,
ranging from domain, requirements and architecture models to detailed artefacts
describing the inner workings of business processes and IT systems, play an im-
portant role in both controlling complexity and fostering change. Such models
make business knowledge visible across the enterprise, which promotes coherence
and consistency across the enterprise.

Moreover, a flexible infrastructure that can be configured with such models, in-
stead of laboriously writing software code, may greatly enhance the agility of the
organization and its systems for those specific aspects of agility that are captured
by these models. Models can be changed more easily than code, and the effects of
changes may be evaluated at the model level before processes and systems are
changed, thus avoiding costly errors and re-implementations.

In agile development, the role of these models is not the same as in traditional
design processes, however, where specialists each work on their own aspect mod-
els and then hand them over to the next person in the design chain. Rather, differ-
ent models need to be evolved iteratively and in parallel, while guarding their mu-
tual coherence and consistency. This is illustrated in Fig. 1.

This way of working with models has at least three important advantages:

1. Developing these models and other artefacts concurrently within a cross-
functional team and in close cooperation with business stakeholders helps
aligning the results with each other;

2. Using models and model-based views to discuss aspects of the service helps in
aligning the result with stakeholder expectations in a very early stage, avoiding
costly rework later;

3. Similarly, errors and misinterpretations can be detected early, by verification
and testing at the model level, thus improving the quality and lowering the
costs of the resulting services.

15

Waterfall Agile
Fig. 1. Waterfall vs. agile process.

Next to this, the obvious advantages of iterative processes apply, such as early de-
livery of value and the possibility of changing course when circumstances change.

Our approach is different in another aspect as well: Whereas traditional devel-
opment processes try to reduce uncertainty as early as possible, for example by
having an extensive requirements engineering phase before starting the design,
then writing complete functional specifications, technical designs, et cetera. we
only reduce uncertainty when it is needed, but no sooner. And at that time we use
information from sources that may offer certainty from all directions, not just the
'flow of the waterfall'. This information may for example come from decisions al-
ready taken on the business network of the service, models that have been worked
out further, available building blocks, interface standards, available infrastructure
elements, processes that are fixed because of regulatory compliance, and more. In
this way, the collection of artefacts that jointly constitute the entire service, from
abstract models of the value network to specific infrastructural components and
detailed work instructions for employees, evolves as a whole, gradually and itera-
tively converging on the final result.

This approach requires that various models of service aspects can inform each
other. To this end, we have defined a framework and set of basic concepts to
which these models are mapped to capture their relationships. This will be dis-
cussed in Chap. 4 of this book.

