
Evolving the DEMO Specification Language

Mark A. T. Mulder1,2[0000−0002−1846−0238] and
Henderik A. Proper3,4[0000−0002−7318−2496]

1 TEEC2, Hoevelaken, the Netherlands
2 Radboud University, Nijmegen, the Netherlands

3 Luxembourg Institute of Science and Technology (LIST), Belval, Luxembourg
4 University of Luxembourg, Luxembourg
markmulder@teec2.nl, e.proper@acm.org

Abstract. This paper reports on the current state of the DEMO Specifi-
cation Language (DEMOSL). The Design and Engineering Methodology
for Organisations (DEMO) is a principal methodology in Enterprise En-
gineering (EE), while the DEMOSL defines the accompanying integrated
modelling landscape.
DEMO provides a method to produce so-called essential models of or-
ganisations, which are highly abstracted ontological models. For the
DEMOSL this implies that it should enable the integration of the dif-
ferent models used in organisations when they apply DEMO, while also
enabling tool support, visualisation, as well as the exchange of models.
This paper describes the state of the meta-models, as referenced in the
MU-theory, for the modelling and visualisation of DEMO models. The
purpose and examples of six of these models and meta-models are dis-
cussed, along with extensions of the visualisation of the DEMO models.
Moreover, modelling rules are presented that guide the modeller and tool
developer in creating diagrams and tables with their respective elements
and connections.

1 Introduction

The aim of this paper is to report on the current state of the DEMOSL. The
DEMO [3] is a principal methodology in EE [4], while the DEMOSL defines the
accompanying integrated modelling landscape.

DEMO provides a method to produce so-called essential models of organisa-
tions, which are highly abstracted ontological models. The first step in applying
DEMO is producing the so-called essential model of an organisation. An essential
model comprises the integrated whole of four aspect models: the Construction
Model (CM), the Action Model (AM), the Process Model (PM) and the Fact
Model (FM). Each of these models is expressed in terms of one or more diagrams
and accompanied by one or more cross-model tables.

The DEMOSL defines the accompanying integrated modelling landscape. As
such, it should allow for the integration of the different DEMO models used in
organisations when applying DEMO, while also enabling tool support, visuali-
sation, as well as the exchange of models.



The DEMOSL, as discussed in this paper, involves a further elaboration and
refinement of the earlier version reported in [9]. The elaboration and refine-
ments are, amongst others, based on experiences with the establishment of an
integrated tool environment which supports the creation and management of
DEMO related models [10].

The remainder of this paper is structured as follows. Section 2 will briefly visit
the research methodological background of the research project. Since DEMO’s
modelling landscape is largely founded on the underlying Model Universe (MU)
theory [3], Section 3 will summarise the relevant elements of this theory. Using
this as a background, Section 4 provides an overview of the different models
that play a role in the DEMO modelling landscape. Section 5 is dedicated to
the discussion of the meta-models and how they have been used in the current
tool environment. This is followed (in Section 6) by a reflection n the experiences
with the implementation of the meta-models in an operational tool environment.
This discussion will also highlight some of the refinements and improvements that
had to be made in DEMO’s meta-model and earlier versions of the DEMOSL to
make them operationalisable in a tool environment. Finally, before concluding,
Section 7 provides an outlook for future research.

2 Research background

The research effort as reported on in this paper, aims to improve the DEMOSL
specification. The DEMOSL is available in a number of versions and at the
moment the reported research project commenced, the latest version was 3.7.
Moverover, this version had already undergone an initial validation [9].

Originally, the DEMOSL was designed to better understand the concepts
that need to be included in DEMO models. However, for the development of au-
tomated tool support for DEMO, more details and specificity are needed than is
included in the original DEMOSL. This includes e.g. details about the graphical
layout of diagrams, exchange of models between tool environments, as well as
the specificity of the actual models. As such, the goal is the creation of a version
of the DEMOSL that is complete enough to automatically validate the rules and
restrictions involved in DEMO modelling using automated tools.

The resulting specification is divided into four kinds of models, and four
associated meta-models. These four model kinds need to comply with the re-
quirements as stated in [10]. The required meta-models for the tooling have
been iterated to specifically fulfil the following three requirements (see [10]):

1. The tool must support the interchange of models.
2. The tool must support the creation of all four aspect models of DEMO.
3. The tool must allow for model verification against the DEMO meta-model,

DEMOSL.

Next to these requirements, the meta-models need to be “build” on top of the
MU theory, which is a foundational part of DEMO [5] and was known in a
previous iteration of DEMO as Factual Knowledge [3].

2



From a research methodological perspective, the research effort as reported
on in this paper, uses the Design Science Research (DSR) approach [1, 12]. In
design science terminology, the DEMOSL is an artefact. In applying the design
science research approach, the development of the DEMOSL is rooted in the
existing EE and DEMO body of knowledge (enabling rigour), while allowing for
the iterative improvement and refinement of the artefact in terms of experiments
and cases (enabling relevance). The latter involve(d) experiments in terms of the
implementation of DEMOSL in an enterprise-grade tool environment [10], as well
as the application in real-world cases.

3 MU theory

The MU-theory provides the theoretical foundation of the notions of model,
modelling, and modelling language as used in DEMO. The most recent version
of the MU-theory has been presented in [5].

Given the aim of the reported research to further evolve the accompanying
DEMOSL, the MU-theory is considered as a fixed and pre-defined part of the
knowledge base (in design science terms). In this section, we highlight some of
the key elements of the MU-theory that are relevant to the understanding and
positioning of the remainder of the paper.

The MU-theory theory adopts Apostel’s [2] definition of model: “Any subject
using a system A to obtain knowledge of a system B, is using A as a model of
B.” This definition conveys the basic understanding of the notion of model as
being a role [5].

A key part of the MU-theory is the General Conceptual Modelling Framework
(GCMF), as depicted in Fig. 1. The MU-theory uses the term complex to refer
to systems in the general sense, as used in Apostel’s [2] definition of model.
However, since DEMO uses its own (more specific) definition of system, the
term complex is preferred when speaking about modelling in general (as is the
case for the MU-theory).

The basic thinking underlying the GCMF is based on the semiotic triangle
by Ogden and Richards [11]. In line with this, the MU-theory refers to the
phenomena we observe and interact with in reality as concrete complexes, while
the conception of these complexes an actor harbours in their mind is referred to
as the conceptual complexes, and a resulting symbolic representation (such as a
diagram, a narrative description, or an XML document) as symbolic complexes.

When combining this with Apostel’s definition of a model, then one can state
that when such a complex A is used to obtain knowledge of a complex B, then A
is said to be a model of B. As a corollary to this, one can (using the terminology
from the MU-theory) distinguish between concrete models, conceptual models
and symbolic models.

The MU-theory states that the creation of a conceptual complex needs a
prescription, called a conceptual schema. It is furthermore assumed that a con-
ceptual complex can only be created in the mind of some actor observing a
domain, if they already have a conceptual schema in terms of which they can

3



general
(conceptual)

modelling
language

domain
(conceptual)

modelling
language

SYMBOLIC 
FORMALISM

META 
SCHEMA

SYMBOLIC 
FORMALISM

CONCEPTUAL 
SCHEMA

CONCEPTUAL 
COMPLEX

SYMBOLIC 
COMPLEX

meta level
(meta meta model)

schema level
(meta model)

instance level
(model)


is

 a
 s

em
an

ti
c

eq
u

iv
al

en
t 

o
f


is

 a
 s

em
an

ti
c

eq
u

iv
al

en
t 

o
f

is
 a

 s
yn

ta
ct

ic
eq

u
iv

al
en

t 
o

f 
→

is
 a

 s
yn

ta
ct

ic
eq

u
iv

al
en

t 
o

f 
→

is
 a

 r
ep

re
se

n
ta

ti
o

n
 in

 →
is

 a
 r

ep
re

se
n

ta
ti

o
n

 in
 →

is a syntax of →

 is a semantics of

 is a semantics of

is a syntax of →

is an expression of →

 is a interpretation of  is a concretisation of

is an conceptualisation of → CONCRETE 
COMPLEX

is
 a

n
 in

st
an

ti
at

io
n

 o
f 
→

is
 a

n
 in

st
an

ti
at

io
n

 o
f 
→

is an instantiation of →

is
 a

 t
ra

n
sf

o
r-

m
at

io
n

o
f 
→


is

 a
n

 
im

it
at

io
n

 o
f 

Fig. 1: The General Conceptual Modelling Framework, adopted from [5]

observe the world. This is indicated by the red curved arrow in Fig. 1. As such,
a conceptual schema limits the observable world (of an actor). The MU-theory
also states that a modelling language essentially involves a combination of a
conceptual schema and a corresponding symbolic formalism that provides the
symbolic representation of the conceptual schema.

The DEMOSL is targeted at the schema level of Fig. 1. In other words, it
should provide a symbolic formalism corresponding to the conceptual schema(s)
used by the different model (and diagram) kinds within DEMO. As illustrated
in Fig. 1, the MU-theory also identifies a meta level involving a meta schema
and a corresponding symbolic formalism. This is where, in our case, we will find
UML class diagrams and XML Document Type Definitions (DTDs) to define
the DEMOSL.

The MU-theory also provides global guidelines on how to create the vari-
ous levels of complexes and schemas. Finding a lower level from a higher level
can be accomplished by deduction, which also provides a good method for the
verification of models. Induction can be used to derive the meta level from ex-
amples. In doing the latter, it can be helpful to transform graphical languages
into structured textual languages, called verbalisation. We used both deduction
and induction methods to create meta-models and DEMO information models
which we will describe in the next sections.

4



4 Perspectives on DEMO models

Before we proceed to a discussion of the meta-models involved in the DEMOSL,
we need to distinguish between three perspectives on the models used when
applying DEMO. These are illustrated in Fig. 2.

The first perspective is the methodology perspective. Even though it provides a
thorough theoretical basis, the DEMO methodology book [5] was primarily writ-
ten to teach learners (students and practitioners) to create models in accordance
with the DEMO way of thinking, and draw (human to human) communicable
models to reason about the organisation. Since the book puts the priority on
“doing”, when introducing the different model kinds, there was no need for a
strict meta-model. Furthermore, the formalisation(s) provided in the book aim
to support didactic goals rather than the development of automated modelling
tools. As such, it was never meant to provide a detailed formalisation and meta-
models, that would enable the development of, and automated support for, the
methodology. As discussed in [7], different meta-modelling and formalisation
goals will / should also result in formalisations with different level(s) of detail /
specificity.

Model 
exchange 

perspective
Language 

perspective
Methodology 
perspective

MU
theory

Operationalization

Fig. 2: DEMO Model Perspectives

When using DEMOSL as base for tool development, then it should indeed
provide a more complete and detailed formalisation and meta-model; taking us
to the language perspective. This is the perspective where it should be possible
to (automatically) reason about models and meta-models, to e.g. support model
verification. This requires the formalisation of the language definition in a format
that lends itself better for automatic processing [7]. It also requires the comple-
tion and operationalisation of the ontological meta-models as included in the

5



methodology perspective; in particular the rules and constraints to be applied
to the actual models.

The last model exchange perspective concerns the exchange and storage of
model information. Reasoning about models is only possible when everybody
has the same notation of the model and the notation enables the reasoning in
the meta-model.

The notation used must be the same across different modelling tools. There-
fore, the meaning of the elements and attributes must be well defined. Moreover,
the notation must enable the reasoning within the exchange model to be able to
check consistency of this model. In addition, the internal consistency needs to
be correct and needs to be checked before the model can be converted back to
the language perspective.

5 Overview of the meta-models

In this section the new meta-models will be presented. These meta-models add
information, structure and completeness to the existing version of DEMOSL. Our
research concluded that without these improvements the automatic validation
and exchange of DEMO models using tooling is not possible.

Figure 3 shows the landscape of meta-models that together have the capabil-
ity of modelling organisations using DEMO. The landscape is depicted as a three
dimensional framework, projected on top of the framework from the MU-theory.

The two levels that have been projected on top of the framework from the
MU-theory correspond to the distinction as discussed in Section 4.

The language perspective is the part that is implemented in terms of soft-
ware, in order to reason about the (ontological) model itself, the way it may be
exchanged, as well as how these could /should be visualised.

The visualisation perspective is concerned with the way an actual DEMO
model is to be visualised in terms of diagrams. This leads to a visualisation model
conform a visualisation meta-model. A visualisation model involves a set of visu-
alisation attributes (position, size, colours, etc) on top of an (visualised part of)
ontological model. The visualisation meta-model describes these attributes and
contains the scripting and data structure of the diagrams. Restrictions on the
allowed elements, attributes, and connections in a diagram are also formalised
in the visualisation meta-model.

Below, we discuss all mentioned models and meta-models from right to left,
from the top to the bottom of Figure 3

5.1 High Level Ontological meta-model

The high level ontological meta-model of DEMO is depicted in Fig. 4. The dia-
gram shows the existing property types and concepts in black. The new property
types and concepts that result from this research have been added in red. This

6



Actual 
Visualisation / 
Methodology 
perspective

Fig. 3: Meta-model set

high level ontological meta-model is the base for the ontological meta-model of
Section 5.2.

The high level ontological meta-model is the meta-model that is closest to
the meta-model that lists all ontological principles of DEMO models [3]. For
example, ontologically, the Composite Actor Role (CAR) cannot be an initiator
of a transaction kind because an underlying elementary actor role must be the
initiator. Therefore, this property type does not exist in the high level ontological
meta-model.

5.2 Ontological meta-model

In contrast with the high level ontological meta-model, the ontological meta-
model (see Fig. 5) contains all implementation attribute types and property types
for the DEMO meta-model. The ontological meta-model also includes property
types between the concepts.

The example mentioned in Section 5.1 about the CAR not being an initiator
is not valid in this ontological meta-model. Whenever one designs a CAR that
initiates the transaction, this property type instantiation must be present in the
model and needs a representation in the ontological meta-model. Therefore, the
ontological meta-model also has the property type ‘AR is an initiator of TK’ from
the CAR to the Transaction Kind (TK). Furthermore, mathematical rules have
been designed to make sure only the correct property type instantiations can be
present in the final ontological model.

7



Fig. 4: High Level Ontological meta-model

The table shown in Table 1 provides all allowed Property Types between the
objects of this meta-model.

5.3 Data Exchange meta-model

The concept of a data exchange meta-model is intertwined in the concept of the
ontological meta-model. We describe the data exchange meta-model in terms
that a computer can understand.

We choose to represent the data exchange meta-model in XML Schema Def-
inition (XSD), which is a commonly used technique. The alternative structure,
XML Metadata Interchange (XMI), has no broad implementation and, there-
fore, we rejected it as a candidate. The data exchange meta-model represents
all entity types and property types of the ontological meta-model. This data
exchange meta-model is unambiguously readable for a computer. The proposal
of a DEMO exchange format [13, 14], based on DEMO 2, is a good start for
our exchange meta-model. Despite the current version of DEMO, at moment of
writing, is version 4, the modelling itself has not changed and is equivalent to
DEMO 2. No attempt has been done to upgrade the proposed formats to DEMO
3 before. Above all, we have based our research at DEMOSL version 3.7, and,
therefore, this version is an upgrade of the existing format. DEMO 4 introduces

8



Fig. 5: Ontological meta-model

a new element but does not invalidate DEMO 2 or DEMO 3 models and, thus,
the choice for these older models are still valid. In future research this exchange
model has to be adapted to the features of DEMO 4. The existing paper [14]
proposes a data exchange meta-model for the FM and the CM. The XSD for CM
proposes the storage of the id, name, initiator(s), executor, and information link
and result type. This information is based on older DEMO specifications and,
therefore, lacks essential information from the current version. We will build this
XSD structure for every element type in the new DEMOSL proposal structure.

The first structure is the name element. The whole DEMO model has a name.
Every component has an internal id. We will not mention these attributes while
using the data meta-model, but we will model it.

The next structure is a Global Unique IDentfier (GUID) element. A GUID
identifies all types and kinds within the exchange model and is a 128-bit number
used to uniquely identify information in computer systems.

Another structure are rule elements. Rules restrict the naming of the elements
used in e.g. a CM. One of the rules we will mention in this paper is the transaction
kind name. The name is built up of lower case words as specified in DEMOSL

9



To → ETK ATK EAR CAR ET CET TPSK AR
From ↓
ETK – c e ce – – – –
ATK – c – – – – – –
EAR ia a – c – – – –
CAR ia a – c – – – –
ET o – – – xsrg – – –
CET o – – – – – – –
TPSK c – – – – – iy tlwh
AR – – – – W – – –

Property Types
[c] contained in
[o] concerns
[i] initiator
[e] executor
[a] access to bank
[s] specialisation
[r] aggregation
[g] generalisation
[t] then
[l] else
[w] while
[h] when
[W] with
[x] excludes
[y] wait
[f] role of

Table 1: Element Property Types

[6]. The XSD notation enables enforcing this rule. Note that we allow giving no
name for practical use purposes.

Listing 1.1: XSD example: Transaction kind

<xs:complexType name="TransactionKind">

<xs:sequence>

<xs:element name="Identification" type="TransactionKindId"></

xs:element>

<xs:element name="Name" type="TransactionKindName"></xs:element>

<xs:element name="TransactionSort" type="TransactionSort" default="

unknown"></xs:element>

</xs:sequence>

<xs:attribute name="Id" type="TransactionKindGuid" use="required"/>

</xs:complexType>

This exchange rule set described in XSD can sufficiently restrict field content
for each TK. The full set of XSD specification is already available for evaluation
purposes to some research groups. The full specification with examples will be
available to the public at the end of the research program. More information on
the location of this specification will be published on multiple sites 5.

The CAR is the embodiment of multiple actor roles at once. This concept
allows for modelling the unknown actor role or the ‘don’t want to know’ actor
role. In the DEMO methodology the concept of Scope of Interest (SoI) is used
to restrain the modelling effort to a selected portion of the organisation. Absent
from the DEMOSL meta-model [6], is the SoI itself. To be able to model this
concept it could be added, but closer examination of the concept reveals that
CAR represents the same information and is, therefore, used for this concept.

5 http://demo.nl and http://teec2.nl

10



5.4 Visualisation meta-model

Communicating a graphical representation of a DEMO aspect model is not
trivial. We could choose to communicate the image format in BitMaP im-
age file (BMP), Portable Network Graphics (PNG) or Scalable Vector Graph-
ics (SVG) formats. These formats would give the model interpreter a visualised
representation, but would lack the underlying linked model information. We
could also transform the graphical representation into a standard commercial
format like Microsoft PowerPoint XML Presentation (PPTX) or Microsoft Visio
XML Drawing (VSDX), but that could cause vendor lock-in. Instead of these
formats, we chose to create only the essential attributes of the kinds and types
of the diagram. This point of view is new compared to DEMOSL [6], which only
describes visual properties and the exchange format [14] that does not address
any visuals.

When we represent elements in a visualised graphical format, the location of
the element on the diagram is an essential property. The location type attribute
is available for purposes that might differ between software implementation.
Next, the size, on the other hand, is used to visualise elements within a diagram.
Finally, we define a line as a visualised connection between two or more points.
It has a starting point, an endpoint and optionally several midpoints to create
a path.

The table shown in Table 2 provides all allowed Property Types between the
objects of this meta-model, while below we discuss more specific visualisation
details of the various aspect models.
Construction Model – The Organisation Construction Diagram (OCD) is a
diagram that expresses a part of the CM. More specifically, it contains the TK,
Aggregate Transaction Kind (ATK), Elementary Actor Role (EAR) and CAR
concepts. The visualised property types are the initiator, executor and access
property types (see Table 2).

The representation of the OCD is used for the communication of the CM.
The OCD allows TK, ATK, EAR, CAR as valid elements and initiator, executor
and interstriction as valid property types.

The visualisation of the transactions and their products is a table with four
columns called the Transaction Product Table (TPT). The transaction kind
identification, the transaction kind name, the product kind identification and
the product kind formulation. The first two columns can be filled by transaction
kind attributes Identification and Name. The last two columns are the properties
Identification and Name of the Independent Fact Kind. These two elements have
a one-on-one relation and always exist.

We argue that the concept of SoI is equivalent to the concept of CAR within
modelling the CM. When starting to model an organisation, the first actor inside
the SoI is a composite actor role. The methodology describes that this actor role
stays in place until one is able to retrieve the information to redesign the internal
actor roles of this composite actor role into a white-box model. The CAR does
not vanish. The CAR becomes equal to the SoI [9]. Therefore, the only difference

11



Diagram → OCD PSD TPD OFD ARD RHD AFD ..
Entity Types ↓
ETK X X X X – – – –
ATK X – – – – – – –
EAR X X – – – X X –
CAR X X – – – X – –
ET – – – X – – – –
CET – – – X – – – –
TPSK – X X – X – – –
AR – – – – X – – –
Property Types ↓
[c] contained in – – – – – X – –
[o] concerns – – – X – – – –
[i] initiator X X – – – – – –
[e] executor X – – – – – – –
[a] access to bank X – – – – – – –
[s] specialisation – – – X – – – –
[r] aggregation – – – X – – – –
[g] generalisation – – – X – – – –
[t] then – – – – X – – –
[l] else – – – – X – – –
[w] while – – – – X – – –
[h] when – – – – X – – –
[W] with – – – – X – – –
[x] excludes – – – X – – – –
[y] wait – X – – – – – –
[f] role of – – – – – – X –

Table 2: Diagram Entity and Property Types

between an SoI and a CAR is its appearance in the diagram. The boundary
transactions of the SoI are the interacting transactions in the diagram.

One could still argue that an SoI could be smaller than all transactions that
interact with the CAR. This can be illustrated with an extra transaction to CA0
in the construction model. The question that remains is whether the CAR, used
as SoI is the same in the diagram as in the model. In practice the SoI never
exceeds the diagram boundaries and therefore, de-facto, the CAR can be used
for the same purpose. When using the CAR as SoI some nice features for the
hierarchy of actor roles appear.

This being said, combined with the ability to nest CARs it becomes clear that
an EAR within multiple CAR is not modelled as a construction. It is possible
to model this hierarchy as a functional structure, though this is not ontological.
Process Model – In the Process Structure Diagram (PSD) the initiation of the
first request is done using the relation ‘is initiated from’. This would be sufficient
if a step is always initiated from the same step. When, instead of the promise-
step, another step is used for initiation this cannot be modelled. Therefore, the

12



relation has to be remodelled as a self-reference in Transaction Process Step
Kind (TPSK) ‘TPSK is initiated from TPSK’.

The PSD is a diagram that contains elements from the PM. More specifically
it contains the TK, EAR and CAR. The visualised relations are the call-link and
the wait-link relations. The Transaction Pattern Diagram (TPD) is a diagram
that contains elements from the PM. More specifically it contains the TK and
TPSK. The visualised relations are the process order, call link and the wait link
relations (see Table 2).
Fact Model – The DEMOSL ontological model has some concepts that have
made it directly to the ontological model of the fact model. Fact Type and En-
tity Type have been added to the data model in the same form. Other concepts
will be removed or reduced because of the following reasoning. First, the Con-
structed Entity Type is a concept that allows reasoning about the specialised
entities derived from an Entity Type. In a less conceptual model this results
in the Entity Type like the generalisation relation between Constructed Entity
Type and Entity Type already suggests. The same holds for a generalisation and
aggregation of this constructed entity type. Both relations end in the Entity Type
Set which, in turn, is an Entity Type concept on its own. This leaves the three
relations as self-relations on the Entity Type. Next, the Event Type concept is
a data perception of the process events of transaction kinds and TPSK. Events
are related to C-acts and C-facts and only concern a concept in the P-world.
Therefore, the concerns relation is created between the elementary transaction
kind and the Fact Type concept.

The Object Fact Diagram (OFD) is a diagram that contains elements from
the FM. More specifically it contains the Independent P-Fact Kind (IFK), Entity
Type (ET) and Attribute Type (AT). The visualised relations are the reference,
specialisation, aggregation and the concerns relations (see Table 2).
Action Model – The AM is the aspect model with the largest number of de-
tails about the enterprise. These details build on the CM, PM and the FM.
Therefore, references to these aspect models should be used in order to keep
the AM consistent with the other aspect models. Traditionally the Action Rules
Specification (ARS) is specified in a natural language, restricted by a partially
grammar. This allows for freedom of expression while being readable by humans.
Though the advantage of the readability is large, the disadvantage of the not-
strict natural language makes it difficult, and at this moment even impossible,
to do an automated model verification and validation. Where the three other
aspect models always have been described in a graphical way, the AM has been
described within a grammar construction. This complicates communication to-
wards different users of these models. All aspect models should have a textual
and graphical representation of at least the most essential features of the model.

We added a graphical representation to the AM and improved the grammar
of the ARS. All grammar references to other elements of the DEMO model have
been connected in the action model.

13



The AM is the least developed and used aspect model of DEMO. For au-
tomation we need this model to represent all details about business rules and
their relations to facts and processes.

The AM has no graphical representation in DEMO 3.7. One might argue
that the separation of the event part, assess part and result part are actual AM
graphical representations due to the fact that these sections of the grammar are
often visualised with a background colour in educational slides. Nevertheless,
these representation is not more or less that the colouring of a grammar in a
modern integrated developing environment. The existing AM has four essential
features.
1. Linked to a TK, it needs parameters (with-clause) to verify that all essential

information is present to perform the step.
2. Linked to another step, it has to wait for other TKs to finish.
3. Inner conditions have to be checked.
4. Based on the conditions the linked follow-up actions have to be triggered.

Except for the feature three, the features have a connection to other parts of
the model. Connections can be visualised as a line, like it has been done in the
other three aspect models.

Let us define the connections for the AM.
– With – The with-clause connects several attributes of entities (from the FM)

to either the agendum-clause, while clause of action clause. These connec-
tions will be represented with an solid line with a winged arrow head. The
with connection can connect to the when, while and action clauses.

– While – The while clause connects a different transaction step (from the
PM). This connection will be represented with a dotted line with a solid
arrow, just like the wait link in the PSD.

– Action – The action clause connects a transaction step with another step.
This is the same connection as a call link in the PSD.
Figure 6 gives an impression of the visualisation of this Action Rules Diagram

(ARD). While not all arrows have been drawn to the right specifications, this
early representation does give a instantiated view on the meta-model.

When we follow the example of Fig. 6, and start at the TPSK1 placed on
the top of the diagram, we can see the process unfolding. For the TPSK1 the
Action Rules Kind (ARK) ARK1 is the action rule that needs to be evaluated.
In the when clause the required information can be expressed as entity and
attribute types. In the following step, the while clause, the process can wait
on the completion of the TPSK 5. When these steps have been completed the
assess clause is evaluated whether the conditions, that reference the information
in ET2, are true. When these conditions are evaluated the then clause triggers
TPSK2 and the ARKs 2 and 6 are evaluated.
Action Rule Specification – The information in the existing AM is not detailed
enough to validate a model. After analysing the existing, published action spec-
ifications we created a grammar that closely represents the existing examples
and matches the wishes of the expert group that helped to create the exchange
model. The verbalisation used in the DEMOSL grammar of the AM can also be

14



Fig. 6: ARD representation example

specified in relations to the other aspect models. These relations are described
in the ontological model.

5.5 Visualisation Exchange meta-model

All element that have been described in the previous section have a visualisation
element in the exchange meta-model. The structure of the visualisation elements
is similar to the data exchange meta-model structure. All visualisation elements
reference the data elements in the same model. The visualisation elements add
the visualisation attributes for the specific diagram to that information (e.g. size,
location, waypoints)

5.6 Models and exchange models

Due to the origin of the research topics, publishing created models is not possible.
One of the cases was modelling dutch NEN norms that confirmed that this type
of organisation can be modelled using DEMO (Fig. 8).

15



Fig. 7: Visualisation Exchange TransactionKindElement

Exchanging DEMO models with other tools also needs other tools with the
same meta-model implementation. The only tool that has this meta-model in
place is a gamification tool. This information exchange has been tested success-
fully (Fig. 9).

6 Reflection

The research effort as reported on in this paper, took the description of DEMOSL
3.7 as its starting point. In DSR terminology, the meta-model that was created
from this specification was the first iteration of the DEMOSL artefact. Using all
model from the DEMO book [3], and associated course material, we created a
second iteration.

Based on the meta-model of the second iteration artefact, a tool was cre-
ated [10], which has been used in practice to model organisations. In doing so,
all missing modelling elements have been added to the model and to the tool and
used in successive cases. After more than seven real live cases we are convinced
that the CM, PM and FM are fairly complete to hold all elements and property
types needed for modelling DEMO.

The AM was not complete enough, but has improved a lot compared to the
original version. These are not only elements that could be missing in the tool
and the meta-model, but often challenge the theory as well because the obvious
parts of DEMO can be modelled with more ease than before.

A major challenge in DEMO visualisation remains the potential variety of
stakeholders [8]. The more types of stakeholders the larger number of viewpoints
might be needed. To aid in bridging the gap between stakeholders in practice,
we added a functional concept to the construction model. This is the functional
value that the organisation gives to the construction model in its organisation.
This one-on-one functional translation is the first step to connect the functional
business and construction domains of DEMO.

We also did our first steps in developing the eXtended Organisational Essence
and Revealing (XOER) method. Modelling all viewpoints at the same time looks
promising as it helps modelling and thinking.

During practical use of DEMO models, we encountered some diagrams that
were needed to fully represent the model. First, there is the Actor role Function
Diagram (AFD). This diagram can be represented in an Actor role Function

16



Fig. 8: Partial NEN example

Table (AFT), but that representation has limited readability. The AFD is the
graphical equivalent of the AFT.

The AFD is a diagram that contains elements from both the CM and the
implementation world. More specifically it contains the EAR and CAR.

Summarizing these reflections, we made adjustments in the DEMOSL to
reflect practical needs in DEMO modelling and to enable automation of the
modelling and validation of these models. Furthermore, we added steps in the
methodology to cover a wider perspective of the modelling needs that do not
necessary belong to the ontology domain, but surely are adjacent and often
more visible to business stakeholders. We find the extensions to DEMOSL to be
relevant and useful.

17



Fig. 9: Gamification Scene

7 Future Research

The upcoming iteration of XOER, on which the work has been started as we
write this paper, will help us to make this method describable and educable. It
will also be subject to an expert group for validation of the meta-model and the
used representations.

In a parallel track we are also adding the concepts that are needed for the
implementation of the (DEMO-based) VISI6 standard for the Dutch construction
sector; which are now part of the current meta-model.

More research is needed on the visualisation of the created DEMO models. A
current project is used to investigate the influence of projecting well-known con-
cepts on the explanation and visualisation of DEMO concepts. Although these
concepts might not be completely correct, it might improve the acceptability of
DEMO as a methodology.

8 Conclusion

In this paper, we discussed the current state of the DEMOSL. In the context of a
design science based research effort, the DEMOSL is being refined and extended
such that it can serve as a base for automated tool development. We have now
reached a stage where the meta-model is sufficient to automate the modelling
and validation of the model. Furthermore, the extension of the DEMOSL makes
it more comprehensible for people to create information models that support
modelling in or with DEMO.

As a next step the meta-models will be extended even further to completely
support DEMO 3 and the successor DEMO 4. Development on the methodology
needs support in the meta-models, information and automation.

6 https://www.crow.nl/downloads/pdf/contracteren/visi/

visi-systematiek-doelstellingen-grondbeginselen-be.aspx

18



References

1. Aken, J.v., Andriessen, D.: Handboek ontwerpgericht wetenschappelijk onderzoek.
Boom Lemma (2011), In Dutch

2. Apostel, L.: Towards the Formal Study of Models in the Non-Formal Sciences.
Synthese 12, 125–161 (1960)

3. Dietz, J.L.G.: Enterprise Ontology – Theory and Methodology. Springer, Heidel-
berg, Germany (2006)

4. Dietz, J.L.G., Hoogervorst, J.A.P., Albani, A., Aveiro, D., Babkin, E., Barjis, J.,
Caetano, A., Huysmans, P., Iijima, J., Kervel, S.J.H.v., Mulder, H., Op ’t Land, M.,
Proper, H.A., Sanz, J., Terlouw, L., Tribolet, J.M., Verelst, J., Winter, R.: The
discipline of enterprise engineering. International Journal Organisational Design
and Engineering 3(1), 86–114 (2013)

5. Dietz, J.L.G., Mulder, J.B.F.: Enterprise Ontology – A Human-Centric Ap-
proach to Understanding the Essence of Organisation. The Enterprise Engineer-
ing Series, Springer, Heidelberg, Germany (2020). https://doi.org/10.1007/

978-3-030-38854-6

6. Dietz, J.L.G., Mulder, M.A.T.: Demo specification language 3.7 (2017)
7. Hofstede, A.H.M.t., Proper, H.A.: How to formalize it?: Formalization principles for

information system development methods. Information and Software Technology
40(10), 519–540 (October 1998)

8. Lankhorst, M.M., Torre, L.v.d., Proper, H.A., Arbab, F., Steen, M.W.A.: View-
points and visualisation. In: Enterprise Architecture at Work – Modelling, Commu-
nication and Analysis, pp. 171–214. The Enterprise Engineering Series, Springer,
Heidelberg, Germany, 4th edn. (2017)

9. Mulder, M.A.T.: Validating the demo specification language. In: Enterprise Engi-
neering Working Conference. pp. 131–143. Springer, Heidelberg, Germany (2018).
https://doi.org/10.1007/978-3-030-06097-8_8

10. Mulder, M.A.T., Proper, H.: Towards Enterprise-Grade Tool Support for DEMO.
In: Practice of Enterprise Modelling (PoEM) 2020. Springer (2020), Forthcoming

11. Ogden, C.K., Richards, I.A.: The Meaning of Meaning – A Study of the Influence
of Language upon Thought and of the Science of Symbolism. Magdalene College,
University of Cambridge, Oxford, United Kingdom (1923)

12. Recker, J.: Scientific research in information systems: a beginner’s guide. Springer,
Heidelberg, Germany (2012). https://doi.org/10.1007/978-3-642-30048-6

13. Wang, Y.: Transformation of DEMO models into exchangeable format. Master’s
thesis, Delft University of Technology, Delft, The Netherlands (2009)

14. Wang, Y., Albani, A., Barjis, J.: Transformation of DEMO metamodel into XML
schema. In: EEWC 2011: Advances in Enterprise Engineering V. pp. 46–60.
Springer, Heidelberg, Germany (2011)

19


