
© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

Open Group Standard

ArchiMate® 2.0 Specification

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ii Technical Standard (2012)

Copyright © 2012, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the
copyright owner.

It is fair use of this specification for implementers to use the names, labels, etc. contained within the
specification. The intent of publication of the specification is to encourage implementations of the
specification.

Technical Standard

ArchiMate® 2.0 Specification

ISBN: 1-937218-00-3

Document Number: C118

Published by The Open Group, January 2012.

Comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by electronic mail to:

ogspecs@opengroup.org

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification iii

Contents
1 Introduction ... 1

2 Language Structure ... 3
2.1 Design Approach .. 3
2.2 Core Concepts ... 4
2.3 Collaboration and Interaction ... 5
2.4 Relationships ... 6
2.5 Layering .. 6
2.6 The ArchiMate Framework .. 7
2.7 Motivation Extension .. 8
2.8 Implementation and Migration Extension .. 10
2.9 ArchiMate and TOGAF .. 11

3 Business Layer .. 14
3.1 Business Layer Metamodel ... 14
3.2 Structural Concepts ... 15

3.2.1 Business Actor ... 15
3.2.2 Business Role .. 16
3.2.3 Business Collaboration .. 17
3.2.4 Business Interface .. 18
3.2.5 Location ... 19
3.2.6 Business Object ... 20

3.3 Behavioral Concepts ... 21
3.3.1 Business Process .. 22
3.3.2 Business Function .. 23
3.3.3 Business Interaction .. 24
3.3.4 Business Event .. 26
3.3.5 Business Service .. 27

3.4 Informational Concepts ... 28
3.4.1 Representation ... 29
3.4.2 Meaning ... 30
3.4.3 Value ... 31
3.4.4 Product... 32
3.4.5 Contract ... 33

3.5 Summary of Business Layer Concepts ... 34

4 Application Layer ... 37
4.1 Application Layer Metamodel .. 37
4.2 Structural Concepts ... 37

4.2.1 Application Component... 38
4.2.2 Application Collaboration ... 39
4.2.3 Application Interface ... 40
4.2.4 Data Object .. 41

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

iv Technical Standard (2012)

4.3 Behavioral Concepts ... 42
4.3.1 Application Function ... 42
4.3.2 Application Interaction .. 43
4.3.3 Application Service ... 44

4.4 Summary of Application Layer Components 45

5 Technology Layer ... 47
5.1 Technology Layer Metamodel .. 47
5.2 Structural Concepts ... 47

5.2.1 Node .. 48
5.2.2 Device .. 49
5.2.3 System Software .. 50
5.2.4 Infrastructure Interface .. 51
5.2.5 Network ... 52
5.2.6 Communication Path ... 52

5.3 Behavioral Concepts ... 53
5.3.1 Infrastructure Function .. 53
5.3.2 Infrastructure Service .. 54

5.4 Informational Concepts ... 55
5.4.1 Artifact... 55

5.5 Summary of Technology Layer Concepts .. 56

6 Cross-Layer Dependencies .. 57
6.1 Business-Application Alignment .. 57
6.2 Application-Technology Alignment ... 58

7 Relationships ... 60
7.1 Structural Relationships .. 60

7.1.1 Composition Relationship ... 60
7.1.2 Aggregation Relationship .. 61
7.1.3 Assignment Relationship ... 61
7.1.4 Realization Relationship .. 62
7.1.5 Used By Relationship .. 63
7.1.6 Access Relationship .. 64
7.1.7 Association Relationship ... 65

7.2 Dynamic Relationships ... 65
7.2.1 Triggering Relationship ... 65
7.2.2 Flow Relationship .. 66

7.3 Other Relationships ... 67
7.3.1 Grouping .. 67
7.3.2 Junction ... 67
7.3.3 Specialization Relationship ... 68

7.4 Summary of Relationships .. 69
7.5 Derived Relationships ... 70

8 Architecture Viewpoints ... 73
8.1 Introduction ... 73
8.2 Views, Viewpoints, and Stakeholders .. 74
8.3 Viewpoint Classification ... 76

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification v

8.4 Standard Viewpoints in ArchiMate .. 78
8.4.1 Introductory Viewpoint ... 79
8.4.2 Organization Viewpoint .. 81
8.4.3 Actor Co-operation Viewpoint .. 83
8.4.4 Business Function Viewpoint .. 85
8.4.5 Business Process Viewpoint .. 87
8.4.6 Business Process Co-operation Viewpoint 89
8.4.7 Product Viewpoint ... 91
8.4.8 Application Behavior Viewpoint ... 93
8.4.9 Application Co-operation Viewpoint 95
8.4.10 Application Structure Viewpoint ... 97
8.4.11 Application Usage Viewpoint ... 99
8.4.12 Infrastructure Viewpoint ... 101
8.4.13 Infrastructure Usage Viewpoint .. 103
8.4.14 Implementation and Deployment Viewpoint 105
8.4.15 Information Structure Viewpoint 107
8.4.16 Service Realization Viewpoint .. 109
8.4.17 Layered Viewpoint .. 111
8.4.18 Landscape Map Viewpoint .. 113

9 Language Extension Mechanisms ... 115
9.1 Adding Attributes to ArchiMate Concepts and Relationships 115
9.2 Specialization of Concepts .. 116

10 Motivation Extension .. 118
10.1 Motivation Aspect Metamodel ... 118
10.2 Motivational Concepts .. 118

10.2.1 Stakeholder .. 119
10.2.2 Driver... 120
10.2.3 Assessment .. 120
10.2.4 Goal ... 121
10.2.5 Requirement .. 122
10.2.6 Constraint .. 124
10.2.7 Principle... 125
10.2.8 Summary of Motivational Concepts 126

10.3 Relationships ... 127
10.3.1 Aggregation Relationship .. 127
10.3.2 Realization Relationship .. 128
10.3.3 Influence Relationship ... 129
10.3.4 Summary of Relationships .. 130

10.4 Cross-Aspect Dependencies ... 131
10.5 Viewpoints .. 132

10.5.1 Stakeholder Viewpoint .. 133
10.5.2 Goal Realization Viewpoint .. 135
10.5.3 Goal Contribution Viewpoint .. 137
10.5.4 Principles Viewpoint ... 139
10.5.5 Requirements Realization Viewpoint 141
10.5.6 Motivation Viewpoint ... 143

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

vi Technical Standard (2012)

11 Implementation and Migration Extension ... 145
11.1 Implementation and Migration Extension Metamodel 145
11.2 Implementation and Migration Concepts .. 145

11.2.1 Work Package .. 145
11.2.2 Deliverable .. 146
11.2.3 Plateau ... 147
11.2.4 Gap .. 148
11.2.5 Summary of Implementation and Migration Concepts 149

11.3 Relationships ... 149
11.4 Cross-Aspect Dependencies ... 149
11.5 Viewpoints .. 150

11.5.1 Project Viewpoint .. 152
11.5.2 Migration Viewpoint ... 154
11.5.3 Implementation and Migration Viewpoint 155

12 Future Directions (Informative) .. 157
12.1 Extending and Refining the Concepts ... 157

12.1.1 Business Policies and Rules .. 157
12.1.2 Design Process .. 158
12.1.3 Other Improvements .. 158

A Summary of Language Notation ... 159
A.1 Core Concepts and Relationships ... 159
A.2 Extensions ... 160

B Overview of Relationships .. 161
B.1 Core Concepts ... 161
B.2 Extensions ... 165

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification vii

Table of Figures
Figure 1: Metamodels at Different Levels of Specificity .. 3
Figure 2: Generic Metamodel: The Core Concepts of ArchiMate 5
Figure 3: Collaboration and Interaction ... 6
Figure 4: Architectural Framework ... 7
Figure 5: Relationship between Core and Motivational Elements in ArchiMate 9
Figure 6: Relationships between Motivational, Core, and Implementation and Migration

Elements .. 11
Figure 7: Correspondence between ArchiMate and TOGAF .. 12
Figure 8: Correspondence between ArchiMate (including extensions) and TOGAF 13
Figure 9: Business Layer Metamodel .. 14
Figure 10: Business Actor Notation .. 16
Figure 11: Business Role Notation .. 17
Figure 12: Business Collaboration Notation .. 18
Figure 13: Business Interface Notation ... 19
Figure 14: Location Notation ... 19
Figure 15: Business Object Notation ... 20
Figure 16: Business Process Notation ... 22
Figure 17: Business Function Notation ... 24
Figure 18: Business Interaction Notation .. 25
Figure 19: Business Event Notation .. 26
Figure 20: Business Service Notation .. 27
Figure 21: Representation Notation ... 30
Figure 22: Meaning Notation ... 31
Figure 23: Value Notation ... 32
Figure 24: Product Notation .. 33
Figure 25: Contract Notation ... 34
Figure 26: Application Layer Metamodel ... 37
Figure 27: Application Component Notation .. 38
Figure 28: Application Collaboration Notation ... 39
Figure 29: Application Interface Notation ... 40
Figure 30: Data Object Notation .. 41
Figure 31: Application Function Notation ... 42
Figure 32: Application Interaction Notation .. 43
Figure 33: Application Service Notation ... 44
Figure 34: Technology Layer Metamodel ... 47
Figure 35: Node Notation .. 48
Figure 36: Device Notation ... 49
Figure 37: System Software Notation .. 50
Figure 38: Infrastructure Interface Notations .. 51

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

viii Technical Standard (2012)

Figure 39: Network Notation, as Connection and as Box ... 52
Figure 40: Communication Path Notation, as Connection and as Box 52
Figure 41: Infrastructure Function Notation .. 53
Figure 42: Infrastructure Interface Notation .. 54
Figure 43: Artifact Notation .. 55
Figure 44: Relationships between Business Layer and Lower Layer Concepts 58
Figure 45: Relationships between Application Layer and Technology Layer Concepts 59
Figure 46: Composition Notation .. 60
Figure 47: Aggregation Notation ... 61
Figure 48: Assignment Notation .. 62
Figure 49: Realization Notation ... 62
Figure 50: Used By Notation ... 63
Figure 51: Access Notation ... 64
Figure 52: Association Notation .. 65
Figure 53: Triggering Notation .. 65
Figure 54: Flow Notation ... 66
Figure 55: Grouping Notation ... 67
Figure 56: Junction Notation ... 68
Figure 57: Specialization Notation .. 68
Figure 58: Conceptual Model of Architectural Description (from [1]) 75
Figure 59: Classification of Enterprise Architecture Viewpoints 77
Figure 60: More Examples of Specialized Concepts ... 117
Figure 61: Motivation Extension Metamodel .. 118
Figure 62: Stakeholder Notation .. 119
Figure 63: Driver Notation .. 120
Figure 64: Assessment Notation .. 121
Figure 65: Goal Notation ... 122
Figure 66: Requirement Notation .. 123
Figure 67: Constraint Notation .. 124
Figure 68: Principle Notation .. 126
Figure 69: Aggregation Notation ... 127
Figure 70: Realization Notation ... 128
Figure 71: Influence Notation .. 130
Figure 72: Relationships between Motivation Extension and the ArchiMate Core

Concepts .. 131
Figure 73: Implementation and Migration Extension Metamodel 145
Figure 74: Work Package Notation ... 145
Figure 75: Deliverable Notation .. 146
Figure 76: Plateau Notation ... 147
Figure 77: Gap Notation .. 148
Figure 78: Relationships between Implementation & Migration Extension and the

ArchiMate Core Concepts .. 149
Figure 79: Relationships between Plateau, Deliverable, and Motivation Concepts 150

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification ix

Preface

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives
through IT standards. With more than 400 member organizations, The Open Group has a diverse
membership that spans all sectors of the IT community – customers, systems and solutions
suppliers, tool vendors, integrators, and consultants, as well as academics and researchers – to:

• Capture, understand, and address current and emerging requirements, and establish
policies and share best practices

• Facilitate interoperability, develop consensus, and evolve and integrate specifications and
open source technologies

• Offer a comprehensive set of services to enhance the operational efficiency of consortia

• Operate the industry’s premier certification service

Further information on The Open Group is available at www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused
on development of Open Group Standards and Guides, but which also includes white papers,
technical studies, certification and testing documentation, and business titles. Full details and a
catalog are available at www.opengroup.org/bookstore.

Readers should note that updates – in the form of Corrigenda – may apply to any publication.
This information is published at www.opengroup.org/corrigenda.

This Document

This document is The Open Group Standard for the ArchiMate 2.0 Specification.

Issue 2.0 includes a number of corrections, clarifications, and improvements compared to the
previous issue, as well as two optional language extensions: the Motivation extension and the
Implementation and Migration extension.

Intended Audience

The intended audience of this Technical Standard is threefold:

• Enterprise architecture practitioners, such as architects (application, information, process,
infrastructure, products/services, and, obviously, enterprise architects), senior and
operational management, project leaders, and anyone committed to work within the
reference framework defined by the enterprise architecture. It is assumed that the reader
has a certain skill level and is effectively committed to enterprise architecture. Such a

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

x Technical Standard (2012)

person is most likely the architect – that is, someone who has affinity with modeling
techniques, knows his way around the organization, and is familiar with information
technology.

• Those who intend to implement ArchiMate in a software tool. They will find a complete
and detailed description of the language in this document.

• The academic community, on which we rely for amending and improving the language
based on state-of-the-art research results in the architecture field.

Structure

The structure of this Technical Standard is as follows:

• Chapter 1, Introduction, provides a brief introduction to the purpose of this standard.

• Chapter 2, Language Structure, presents some general ideas, principles, and assumptions
underlying the development of the ArchiMate metamodel and introduces the ArchiMate
framework.

• Chapter 3, Business Layer, covers the definition and usage of the business layer concept,
together with examples.

• Chapter 4, Application Layer, covers the definition and usage of the application layer
concept, together with examples.

• Chapter 5, Technology Layer, covers the definition and usage of the technical
infrastructure layer concept, together with examples.

• Chapter 6, Cross-Layer Dependencies, and Chapter 7, Relationships, cover the definition
of relationship concepts in a similar way.

• Chapter 8, Architecture Viewpoints, presents and clarifies a set of architecture viewpoints,
developed in ArchiMate based on practical experience. All ArchiMate viewpoints are
described in detail. For each viewpoint the comprised concepts and relationships, the
guidelines for the viewpoint use, and the goal and target group and of the viewpoint are
specified. Furthermore, each viewpoint description contains example models.

• Chapter 9, Language Extension Mechanisms, handles extending and/or specializing the
ArchiMate language for specialized or domain-specific purposes.

• Chapter 10, Motivation Extension, describes an optional language extension with
concepts, relationships, and viewpoints for expressing the motivation for an architecture
(e.g., stakeholders, concerns, goals, principles, and requirements).

• Chapter 11, Implementation and Migration Extension, describes an optional language
extension with concepts, relationships, and viewpoints for expressing the implementation
and migration aspects of an architecture (e.g., project, programs, plateaus, and gaps).

• Chapter 12, Future Directions, is an informative chapter that identifies extensions and
directions for developments in the next versions of the language.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification xi

Trademarks
Boundaryless Information Flow™ is a trademark and ArchiMate®, Jericho Forum®, Making
Standards Work®, Motif®, OSF/1®, The Open Group®, TOGAF®, UNIX®, and the “X” device
are registered trademarks of The Open Group in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

MDA®, Model Driven Architecture®, OMG®, and UML® are registered trademarks and
BPMN™, Business Process Modeling Notation™, MOF™, and Unified Modeling Language™
are trademarks of the Object Management Group..

All other brands, company, and product names are used for identification purposes only and may
be trademarks that are the sole property of their respective owners.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xii Technical Standard (2012)

Acknowledgements
The Open Group gratefully acknowledges the contribution of the following people in the
development of this Open Group Standard:

• Maria-Eugenia Iacob, University of Twente

• Henk Jonkers, BiZZdesign BV

• Marc M. Lankhorst, Novay

• Erik (H.A.) Proper, Public Research Centre Henri Tudor & Radboud University Nijmegen

• Dick A.C. Quartel, BiZZdesign BV

The Open Group and ArchiMate project team would like to thank in particular the following
individuals for their support and review of this Open Group Standard:

• Iver Band, Standard Insurance Company

• Mary Beijleveld, UWV

• Alexander Bielowski, Software AG

• Adrian Campbell, Ingenia Consulting

• John Coleshaw, QA Ltd.

• Jörgen Dahlberg, Biner Consulting

• Garry Doherty, The Open Group

• Wilco Engelsman, BiZZdesign BV

• Roland Ettema, Logica

• Henry M. Franken, BiZZdesign BV

• Kirk Hansen, Kirk Hansen Consulting

• Jos van Hillegersberg, University of Twente

• Andrew Josey, The Open Group

• Louw Labuschagne, Real IRM

• Veer Muchandi, Hewlett-Packard

• Bill Poole, JourneyOne

• Henk Volbeda, Sogeti

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification xiii

• Egon Willemsz, UWV

The results presented in this Open Group Standard have largely been produced during the
ArchiMate project, and The Open Group gratefully acknowledges the contribution of the many
people – former members of the project team – who have contributed to them.

The ArchiMate project comprised the following organizations:

• ABN AMRO

• Centrum voor Wiskunde en Informatica

• Dutch Tax and Customs Administration

• Leiden Institute of Advanced Computer Science

• Ordina

• Radboud Universiteit Nijmegen

• Stichting Pensioenfonds ABP

• Novay

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xiv Technical Standard (2012)

Referenced Documents
The following documents are referenced in this Open Group Standard:

[1] ISO/IEC 42010:2007, Systems and Software Engineering – Recommended Practice
for Architectural Description of Software-Intensive Systems, Edition 1.

[2] Enterprise Architecture at Work: Modeling, Communication, and Analysis,
M.M. Lankhorst et al, Springer, 2005.

[3] Architecture Principles: The Cornerstones of Enterprise Architecture,
D. Greefhorst, E. Proper, Springer, 2011.

[4] The Open Group Architecture Framework TOGAF, Version 9, 2009.

[5] A Framework for Information Systems Architecture, J.A. Zachman, IBM Systems
Journal, Volume 26, No. 3, pp. 276–292, 1987.

[6] ITU Recommendation X.901 | ISO/IEC 10746-1:1998, Information Technology –
Open Distributed Processing – Reference Model – Part 1: Overview, International
Telecommunication Union, 1996.

[7] Unified Modeling Language: Infrastructure, Version 2.0 (formal/05-05-05), Object
Management Group, March 2006.

[8] Extending and Formalizing the Framework for Information Systems Architecture,
J.F. Sowa, J.A. Zachman,, IBM Systems Journal, Volume 31, No. 3, pp. 590-616,
1992.

[9] Enterprise Ontology: Theory and Methodology, J.L.G. Dietz, Springer, 2006.

[10] Unified Modeling Language: Superstructure, Version 2.0 (formal/05-07-04), Object
Management Group, August 2005.

[11] A Business Process Design Language, H. Eertink, W. Janssen, P. Oude Luttighuis,
W. Teeuw, C. Vissers, in Proceedings of the First World Congress on Formal
Methods, Toulouse, France, September 1999.

[12] Enterprise Business Architecture: The Formal Link between Strategy and Results,
R. Whittle, C.B. Myrick, CRC Press, 2004.

[13] Composition of Relations in Enterprise Architecture, R.v. Buuren, H. Jonkers,
M.E. Iacob, P. Strating, in Proceedings of the Second International Conference on
Graph Transformation, pp. 39–53, Edited by H. Ehrig et al, Rome, Italy, 2004.

[14] Viewpoints: A Framework for Integrating Multiple Perspectives in System
Development, A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M. Goedicke,

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification xv

in International Journal on Software Engineering and Knowledge Engineering,
Volume 2, No. 1, pp. 31–58, 1992.

[15] Viewpoints for Requirements Definition, G. Kotonya, I. Sommerville, IEE/BCS
Software Engineering Journal, Volume 7, No. 6, pp. 375–387, November 1992.

[16] Paradigm Shift – The New Promise of Information Technology, D. Tapscott,
A. Caston, New York: McGraw-Hill, 1993.

[17] The 4+1 View Model of Architecture, P.B. Kruchten, IEEE Software, Volume 12,
No. 6, pp. 42–50, 1995.

[18] Model-Driven Architecture: Applying MDA to Enterprise Computing, D. Frankel,
Wiley, 2003.

[19] Performance and Cost Analysis of Service-Oriented Enterprise Architectures,
H. Jonkers, M. E. Iacob, in Global Implications of Modern Enterprise Information
Systems: Technologies and Applications, Edited by A. Gunasekaran, IGI Global,
2009.

[20] Business Process Modeling Notation Specification (dtc/06-02-01), Object
Management Group, February 2006.

[21] The Chaos Report, The Standish Group, 1994.

[22] No Silver Bullet: Essence and Accidents of Software Engineering, F.P. Brooks,
IEEE Computer, 20(4):10–19, 1987.

[23] Managing Successful Programs, Office of Government Commerce (OGC),
Stationery Office Books, 2007.

[24] Managing Successful Projects with PRINCE2 – 2009 Edition, Office of
Government Commerce (OGC), Stationery Office Books, 2009.

[25] A Guide to the Project Management Body of Knowledge (PMBoK Guide), Fourth
Edition, Project Management Institute, 2009.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 1

1 Introduction

An architecture is typically developed because key people have concerns that need to be
addressed by the business and IT systems within the organization. Such people are commonly
referred to as the “stakeholders” in the system. The role of the architect is to address these
concerns, by identifying and refining the requirements that the stakeholders have, developing
views of the architecture that show how the concerns and the requirements are going to be
addressed, and by showing the trade-offs that are going to be made in reconciling the potentially
conflicting concerns of different stakeholders. Without the architecture, it is unlikely that all the
concerns and requirements will be considered and met.

Architecture descriptions are formal descriptions of an information system, organized in a way
that supports reasoning about the structural and behavioral properties of the system and its
evolution. They define the components or building blocks that make up the overall information
system, and provide a plan from which products can be procured, and subsystems developed,
that will work together to implement the overall system. It thus enables you to manage your
overall IT investment in a way that meets the needs of your business.

To provide a uniform representation for diagrams that describe enterprise architectures, the
ArchiMate enterprise architecture modeling language has been developed. It offers an integrated
architectural approach that describes and visualizes the different architecture domains and their
underlying relations and dependencies.

ArchiMate is a lightweight and scalable language in several respects:

• Its architecture framework is simple but comprehensive enough to provide a good
structuring mechanism for architecture domains, layers, and aspects.

• The language incorporates the concepts of the “service orientation” paradigm that
promotes a new organizing principle in terms of (business, application, and infrastructure)
services for organizations, with far-reaching consequences for their enterprise
architecture.

The role of the ArchiMate standard is to provide a graphical language for the representation of
enterprise architectures over time (i.e., including transformation and migration planning), as well
as their motivation and rationale. The evolution of the standard is closely linked to the
developments of the TOGAF standard and the emerging results from The Open Group forums
and work groups active in this area. As a consequence, the ArchiMate standard does not provide
its own set of defined terms, but rather follows those provided by the TOGAF standard.

This is Issue 2.0 of the Technical Standard, which contains a number of corrections,
improvements, and clarifications in the description of the core language as described in Issue
1.0, as well as two optional extensions of the language: the Motivation extension and the
Implementation and Migration extension.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

2 Technical Standard (2012)

This specification contains the formal definition of ArchiMate as a visual design language with
adequate concepts for specifying inter-related architectures, and specific viewpoints for selected
stakeholders. This is complemented by some considerations regarding language extension
mechanisms, analysis, and methodological support. Furthermore, this document is accompanied
by a separate document, in which certification and governance procedures surrounding the
specification are specified.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 3

2 Language Structure

The unambiguous specification and description of enterprise architecture’s components and
especially of their relationships requires an architecture modeling language that addresses the
issue of consistent alignment and facilitates a coherent modeling of enterprise architectures.

This chapter presents the construction of the ArchiMate architecture modeling language. The
precise definition and illustration of its generic set of core concepts and relationships follow in
Chapters 4, 5, 6, 7, and 8. The concepts and relationships of the two language extensions are
described in more detail in Chapters 10 and 11. They provide a proper basis for visualization,
analysis, tooling, and use of these concepts and relationships.

Sections 2.1 through 2.5 discuss some general ideas, principles, and assumptions underlying the
development of the ArchiMate metamodel. Section 2.6 presents the ArchiMate framework,
which is used in the remainder of this document as a reference taxonomy scheme for architecture
concepts, models, viewpoints, and views. Sections 2.7 and 2.8 describe the basic structure of the
two language extensions. Section 2.9 briefly describes the relationship between ArchiMate and
TOGAF.

2.1 Design Approach

A key challenge in the development of a general metamodel for enterprise architecture is to
strike a balance between the specificity of languages for individual architecture domains, and a
very general set of architecture concepts, which reflects a view of systems as a mere set of inter-
related entities. Figure 1 illustrates that concepts can be described at different levels of
specialization.

ProcessApplication

Domain- and company-
specific concepts

Enterprise architecture
concepts

Generic concepts

m
or

e
ge

ne
ric

m
or

e
sp

ec
ifi

c

Entity

Relation

Figure 1: Metamodels at Different Levels of Specificity

At the base of the triangle we find the metamodels of the architecture modeling concepts used by
specific organizations, as well as a variety of existing modeling languages and standards; UML

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

4 Technical Standard (2012)

is an example of a language in this category. At the top of the triangle we find the “most
general” metamodel for system architectures, essentially a metamodel that merely comprises
notions such as “entity” and “relation”.

The design of the ArchiMate language started from a set of relatively generic concepts (higher
up in the pyramid). These have been specialized towards application at different architectural
layers, as explained below in the following sections.

The most important design restriction on the language is that it has been explicitly designed to be
as small as possible, but still usable for most enterprise architecture modeling tasks. Many other
languages, such as UML 2.0, try to accommodate all needs of all possible users. In the interest of
simplicity of learning and use, ArchiMate has been limited to the concepts that suffice for
modeling the proverbial 80% of practical cases.

2.2 Core Concepts

The core language consists of three main types of elements (note, however, that the model
elements often represent classes of entities in the real world): active structure elements, behavior
elements, and passive structure elements (objects). The active structure elements are the
business actors, application components, and devices that display actual behavior; i.e., the
‘subjects’ of activity (right side of the Figure 2).

An active structure element is defined as an entity that is capable of performing behavior.

Then there is the behavioral or dynamic aspect (center of Figure 2). The active structure
concepts are assigned to behavioral concepts, to show who or what performs the behavior.

A behavior element is defined as a unit of activity performed by one or more active structure
elements.

The passive structure elements are the objects on which behavior is performed.

A passive structure element is defined as an object on which behavior is performed.

In the domain of information-intensive organizations, which is the main focus of the language,
passive structure elements are usually information or data objects, but they may also be used to
represent physical objects. These three aspects – active structure, behavior, and passive structure
– have been inspired by natural language, where a sentence has a subject (active structure), a
verb (behavior), and an object (passive structure).

Second, we make a distinction between an external view and an internal view on systems. When
looking at the behavioral aspect, these views reflect the principles of service orientation.

A service is defined as a unit of functionality that a system exposes to its environment, while
hiding internal operations, which provides a certain value (monetary or otherwise).

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 5

Figure 2: Generic Metamodel: The Core Concepts of ArchiMate1

Thus, the service is the externally visible behavior of the providing system, from the perspective
of systems that use that service; the environment consists of everything outside this providing
system. The value provides the motivation for the service’s existence. For the external users,
only this exposed functionality and value, together with non-functional aspects such as the
quality of service, costs, etc., are relevant. These can be specified in a contract or Service Level
Agreement (SLA). Services are accessible through interfaces, which constitute the external view
on the active structural aspect.

An interface is defined as a point of access where one or more services are made available to the
environment.

An interface provides an external view on the service provider and hides its internal structure.

2.3 Collaboration and Interaction

Going one level deeper in the structure of the language, we distinguish between behavior that is
performed by a single structure element (e.g., actor, role component, etc.), or collective behavior
(interaction) that is performed by a collaboration of multiple structure elements.

A collaboration is defined as a (temporary) grouping (or aggregation) of two or more structure
elements, working together to perform some collective behavior.

This collective behavior can be modeled as an interaction.

1 In this figure, and all the other metamodel pictures in this document, a convention for role names of relationships is used that is
similar to UML (but using verbs instead of nouns). For example, a Behavior Element realizes a Service, and a Service is realized by a
Behavior Element. If no cardinality is shown for a relationship end, a default of 0..* (zero or more) is assumed; if the default does not
apply, the cardinality is shown explicitly in the metamodel.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6 Technical Standard (2012)

An interaction is defined as a unit of behavior performed by a collaboration of two or more
structure elements.

Figure 3: Collaboration and Interaction

2.4 Relationships

Next to the core concepts outlined above, ArchiMate contains a core set of relationships. Several
of these relationships have been adopted from corresponding relationship concepts that occur in
existing standards; e.g., relationships such as composition, aggregation, association, and
specialization are taken from UML 2.0, while triggering is used in many business process
modeling languages.

Note: For the sake of readability, the metamodel figures in the next sections do not show all
possible relationships in the language. Refer to Section 7.5 on additional derived
relationships. Furthermore, aggregation, composition, and specialization relationships
are always permitted between two elements that have the same type.

2.5 Layering

The ArchiMate language defines three main layers (depicted with different colors in the
examples in the next chapters), based on specializations of the core concepts described in
Sections 2.2 and 2.3:

1. The Business Layer offers products and services to external customers, which are realized
in the organization by business processes performed by business actors.

2. The Application Layer supports the business layer with application services which are
realized by (software) applications.

3. The Technology Layer offers infrastructure services (e.g., processing, storage, and
communication services) needed to run applications, realized by computer and
communication hardware and system software.

The general structure of models within the different layers is similar. The same types of concepts
and relationships are used, although their exact nature and granularity differ. In Chapters 3, 4,
and 5, we further develop these concepts to obtain concepts specific to a particular layer. Figure
2 shows the central structure that is found in each layer.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 7

In line with service orientation, the most important relationship between layers is formed by
“used by” relationships, which show how the higher layers make use of the services of lower
layers. (Note, however, that services need not only be used by elements in a higher layer, but
also can be used by elements in the same layer.) A second type of link is formed by realization
relationships: elements in lower layers may realize comparable elements in higher layers; e.g., a
“data object” (Application layer) may realize a “business object” (Business layer); or an
“artifact” (Technology layer) may realize either a “data object” or an “application component”
(Application layer).

2.6 The ArchiMate Framework

The aspects and layers identified in the previous sections can be organized as a framework of
nine “cells”, as illustrated in Figure 4.

It is important to realize that the classification of concepts based on aspects and layers is only a
global one. It is impossible to define a strict boundary between the aspects and layers, because
concepts that link the different aspects and layers play a central role in a coherent architectural
description. For example, running somewhat ahead of the later conceptual discussions,
(business) functions and (business) roles serve as intermediary concepts between “purely
behavioral” concepts and “purely structural” concepts.

Technology

Application

Business

Environment

Passive
structure

Behavior Active
structure

Figure 4: Architectural Framework

Besides the core aspects shown in Figure 4 (passive structure, behavior, and active structure),
which are mainly operational in nature, the work of an enterprise architect touches upon
numerous other aspects, not explicitly covered by the ArchiMate framework, some of which
may cross several (or all) conceptual domains; for example:

• Goals, principles, and requirements

• Risk and security

• Governance

• Policies and business rules

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

8 Technical Standard (2012)

• Costs

• Performance

• Timing

• Planning and evolution

Not all of these aspects can be completely covered using the standard language extension
mechanisms as described in Chapter 9. In order to facilitate tool vendors and methodology
experts in providing support for these aspects within the overall ArchiMate language, specific
extensions can be added. These modular extension add new concepts, relationships, or attributes,
while complying to the design restriction that ArchiMate is explicitly designed to be as small as
possible.

Also, it may be useful to add concepts or attributes related to the design process rather than to
the system or organization that is to be described or designed. Examples of such concepts or
attributes are requirements and design decisions.

This new issue of the specification addresses two such extensions: the Motivation extension and
the Implementation and Migration extension. The Motivation extension is introduced in the next
section and elaborated in more detail in Chapter 10. The Implementation and Migration
extension is introduced in Section 2.8 and elaborated in more detail in Chapter 11. Other aspects
may be addressed in future extensions of the language (see Chapter 12 for a more thorough
discussion of this).

2.7 Motivation Extension

The core concepts of ArchiMate focus on describing the architecture of systems that support the
enterprise. Not covered are the elements which, in different ways, motivate the design and
operation of the enterprise. These motivational aspects correspond to the “Why” column of the
Zachman framework [8], which was intentionally left out of scope in the design of ArchiMate
1.0.

The Motivation extension of ArchiMate adds the motivational concepts such as goal, principle,
and requirement. It addresses the way the enterprise architecture is aligned to its context, as
described by motivational elements.

A motivational element is defined as an element that provides the context or reason lying behind
the architecture of an enterprise.

In addition, the Motivation extension recognizes the concepts of stakeholders, drivers, and
assessments. Stakeholders represent (groups of) persons or organizations that influence, guide,
or constrain the enterprise. Drivers represent internal or external factors which influence the
plans and aims of an enterprise. An understanding of strengths, weaknesses, opportunities, and
threats in relation to these drivers will help the formation of plans and aims to appropriately
address these issues.

Figure 5 depicts that the core elements of an architectural description are related to motivational
elements via requirements. Goals and principles have to be translated into requirements before

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 9

core elements, such as services, processes, and applications, can be assigned that realize them.
The possible relationships among motivational elements are explained in Chapter 10.

Another relationship between the core metamodel and the Motivation extension is that a
business actor may be assigned to a stakeholder, which can be seen as a motivational role (as
opposed to an operational business role) that an actor may fulfill.

The main reason to introduce motivational concepts in ArchiMate is to support requirements
management and to support the Preliminary Phase and Phase A (Architecture Vision) of the
TOGAF ADM, which establish the high-level business goals, architecture principles, and initial
business requirements.

Requirements management is an important activity in the process of designing and managing
enterprise architectures. Goals from various stakeholders form the basis for any change to an
organization. These goals need to be translated into requirements on the organization’s
architecture. This architecture should reflect how the requirements are realized by services,
processes, and software applications in the day-to-day operations. Therefore, the quality of the
architecture is largely determined by the ability to capture and analyze the relevant goals and
requirements, the extent to which they can be realized by the architecture, and the ease with
which goal and requirements can be changed.

Figure 5: Relationship between Core and Motivational Elements in ArchiMate

Principles and requirements are strongly related [3]. Principles are general rules and guidelines
that help inform and support the way in which an organization sets about fulfilling its mission. In
contrast, requirements constrain and shape a specific design of some enterprise architecture. This
corresponds to the distinction between two commonly used interpretations of enterprise
architecture: (i) as the structure of some organization in terms of its components and their

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

10 Technical Standard (2012)

relationships, and (ii) as a set of principles that should be applied to any such structure.2 The
scope of the first interpretation concerns a single design of the organization, whereas the second
concerns any possible design. Requirements are associated with the first interpretation. Instead,
principles are independent of a specific design and have to be specialized into requirements in
the process of designing the organization’s architecture. This makes the application of principles
an important part of requirements management.

Inadequate requirements management is one of the main causes of impaired or failed IT projects
[21], due to exceeding budgets or deadlines, or not delivering the expected results. This is well
phrased by the following quote of Brooks [22]: “No other part of the work so cripples the
resulting system if done wrong”. Therefore, the requirements management process and the
architecture development process need to be well-aligned, and traceability should be maintained
between requirements and the architectural elements that realize these requirements.

In the TOGAF Architecture Development Method (ADM) [4], requirements management is a
central process that applies to all phases of the ADM cycle. While TOGAF presents
“requirements” on requirements management, it refrains from mandating or recommending
existing languages, methods, and tools from the area of requirements engineering. ArchiMate
supports the requirements management process by means of the motivational concepts.

2.8 Implementation and Migration Extension

The Implementation and Migration extension of ArchiMate adds concepts to support the late
ADM phases, related to the implementation and migration of architectures: Phase E
(Opportunities and Solutions), Phase F (Migration Planning), and Phase G (Implementation
Governance).

This extension includes concepts for modeling implementation programs and projects to support
program, portfolio, and project management, and a plateau concept to support migration
planning. The proposed extension aims at covering the main concepts of program and project
management standards and best practices, such as MSP [23], PRINCE2 [24], and PMBoK [25].
Concepts that are specific to one of these methods are not part of the extension, but may be
defined as specialization of the generic concepts. In this way, the set of concepts and
relationships that are defined in the extension is kept at a minimum.

Furthermore, concepts or relationships from the ArchiMate core or the Motivation extension are
re-used where possible. Figure 6 depicts the relationship between concepts from the
Implementation and Migration extension and concepts from the ArchiMate core and Motivation
extension. A deliverable may realize core elements within an architecture. A gap may be
associated with any number of core elements. A location may be assigned to work packages and
deliverables. A work package realizes requirements indirectly through the realization of core
elements (e.g., an application component, business process, or service). Also, core elements are
linked to the other concepts of the Motivation extension by means of derived relationships. The
possible relationships among implementation and migration, core, and motivational elements are
explained in more detail in Chapters 10 and 11.

2 Both interpretations are combined in the second meaning of architecture as described in Section 2.2.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 11

Figure 6: Relationships between Motivational, Core, and Implementation and Migration Elements

2.9 ArchiMate and TOGAF

The ArchiMate language, as described in this Technical Standard, complements TOGAF [4] in
that it provides a vendor-independent set of concepts, including a graphical representation, that
helps to create a consistent, integrated model “below the waterline”, which can be depicted in
the form of TOGAF views.

The structure of the core ArchiMate language closely corresponds with the three main
architectures as addressed in the TOGAF ADM. This is illustrated in Figure 7. This
correspondence would suggest a fairly easy mapping between TOGAF views and the ArchiMate
viewpoints.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

12 Technical Standard (2012)

TOGAF ADM ArchiMate

Technology

Application

Business

Passive
structure

Behavior Active
structure

Figure 7: Correspondence between ArchiMate and TOGAF

Some TOGAF views are not matched in the ArchiMate core, however. Partially, this is because
the scope of TOGAF is broader and in particular addresses more of the high-level strategic
issues and the lower-level engineering aspects of system development, whereas the ArchiMate
core is limited to the enterprise architecture level of abstraction. However, the two language
extensions, described in Chapters 10 and 11, address these additional issues. They define
concepts such as goal, principle, and requirement, as well as the planning and migration-oriented
concepts. Figure 8 illustrates this.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 13

Implementation & Migration

Business layer

Application layer

Technology layer

Information Behavior Structure Motivation
Phase A:

Architecture
Vision

Preliminary

Requirements
Management

Phase H:
Architecture

Change
Management

Phase E:
Opportunities
& Solutions

Phase F:
Migration
Planning

Phase G:
Implementation

Governance

Phase B:
Business

Architecture

Phase C:
Information

Systems
Architectures

Phase D:
Technology
Architecture

Figure 8: Correspondence between ArchiMate (including extensions) and TOGAF

Although some of the viewpoints that are defined in TOGAF cannot easily be mapped onto
ArchiMate viewpoints, the ArchiMate language and its analysis techniques do support the
concepts addressed in these viewpoints. While there is no one-to-one mapping between them,
there is still a fair amount of correspondence between the ArchiMate viewpoints and the
viewpoints that are defined in TOGAF. Although corresponding viewpoints from ArchiMate and
TOGAF do not necessarily have identical coverage, we can see that many viewpoints from both
methods address largely the same issues.

TOGAF and ArchiMate can easily be used in conjunction and they appear to cover much of the
same ground, although with some differences in scope and approach.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

14 Technical Standard (2012)

3 Business Layer

3.1 Business Layer Metamodel

Figure 9 shows the metamodel of business layer concepts. The metamodel follows the structure
of the generic metamodel introduced in the previous chapter. However, this layer also includes a
number of additional informational concepts which are relevant in the business domain: a
product and associated contract, the meaning of business objects, and the value of products and
business services.

Figure 9: Business Layer Metamodel3

Note: This figure does not show all permitted relationships: every concept in the language
can have composition, aggregation, and specialization relationships with concepts of

3 In the metamodel pictures, we use colors to distinguish concepts belonging to the different aspects of the ArchiMate framework:
green for passive structure, yellow for behavior, and blue for active structure. In ArchiMate models, there are no formal semantics
assigned to colors. However, they can be used freely to stress certain aspects in models. For instance, in the example models
presented in this standard, we often use colors to distinguish between the layers of the ArchiMate framework: yellow for the business
layer, blue for the application layer, and green for the technology layer.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 15

the same type; furthermore, there are indirect relationships that can be derived, as
explained in Section 7.5.

3.2 Structural Concepts

The structure aspect at the business layer refers to the static structure of an organization, in terms
of the entities that make up the organization and their relationships.

Two types of entities are distinguished:

• The active entities that are the subjects (e.g., business actors or business roles) that
perform behavior such as business processes or functions (capabilities). Business actors
may be individual persons (e.g., customers or employees), but also groups of people
(organization units) and resources that have a permanent (or at least long-term) status
within the organizations. Typical examples of the latter are a department and a business
unit.

• The passive entities (business objects) that are manipulated by behavior such as business
processes or functions. The passive entities represent the important concepts in which the
business thinks about a domain.

Architectural descriptions focus on structure, which means that the inter-relationships of entities
within an organization play an important role. To make this explicit, the concept of business
collaboration has been introduced. Business collaborations have been inspired by collaborations
as defined in the UML 2.0 standard [7], [10], although the UML collaborations apply to
components in the application layer. Also, the ArchiMate business collaboration concept has a
strong resemblance to the “community” concept as defined in the RM-ODP Enterprise Language
[6], as well as to the “interaction point” concept, defined in Amber [11] as the place where
interactions occur.

The concept of business interfaces is introduced to explicitly model the (logical or physical)
locations or channels where the services that a role offers to the environment can be accessed.
The same service may be offered on a number of different interfaces; e.g., by mail, by telephone,
or through the Internet. In contrast to application modeling, it is uncommon in current business
layer modeling approaches to recognize the business interface concept.

3.2.1 Business Actor

A business actor is defined as an organizational entity that is capable of performing behavior.

A business actor performs the behavior assigned to (one or more) business roles. A business
actor is an organizational entity as opposed to a technical entity; i.e., it belongs to the business
layer. Actors may, however, include entities outside the actual enterprise; e.g., customers and
partners. Examples of business actors are humans, departments, and business units. A business
actor may be assigned to one or more business roles. The name of a business actor should
preferably be a noun.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

16 Technical Standard (2012)

Figure 10: Business Actor Notation

Example

The model below illustrates the use of business actors. The company ArchiSurance is modeled
as a business actor that is composed of two departments. The Travel insurance seller role is
assigned to the travel department. In this role, the travel department performs the Take out
insurance process, which offers a service that is accessible via the business interface assigned to
this role.

Example 1: Business Actor

3.2.2 Business Role

A business role is defined as the responsibility for performing specific behavior, to which an
actor can be assigned.

Business processes or business functions are assigned to a single business role with certain
responsibilities or skills. A business actor that is assigned to a business role ultimately performs
the corresponding behavior. In addition to the relation of a business role with behavior, a
business role is also useful in a (structural) organizational sense; for instance, in the division of
labor within an organization.

A business role may be assigned to one or more business processes or business functions, while
a business actor may be assigned to a business role. A business interface or an application
interface may be used by a business role, while a business interface may be part of a business

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 17

role (through a composition relationship, which is not shown explicitly in the interface notation).
The name of a business role should preferably be a noun.

Figure 11: Business Role Notation

Example

In the model below, the business role Insurance Seller is fulfilled by the Insurance Department actor
and has telephone as a provided interface. The business role Insurance Buyer is fulfilled by the
Customer actor, and has telephone as a required interface.

Example 2: Business Role

3.2.3 Business Collaboration

Business collaboration is defined as an aggregate of two or more business roles that work
together to perform collective behavior.

A business process or function may be interpreted as the internal behavior assigned to a single
business role. In some cases behavior is the collective effort of more than one business role; in
fact a collaboration of two or more business roles results in collective behavior which may be
more than simply the sum of the behavior of the separate roles. Business collaborations represent
this collective effort. Business interactions are used to describe the internal behavior that takes
place within business collaboration. A collaboration is a (possibly temporary) collection of roles
within an organization which perform collaborative behavior (interactions). Unlike a department,
which may also group roles, a business collaboration does not have an official (permanent)
status within the organization; it is specifically aimed at a specific interaction or set of
interactions between roles. However, a business collaboration can be regarded as a kind of
“virtual role”, hence its designation as a specialization of role. It is especially useful in modeling
B2B interactions between different organizations.

A business collaboration may be composed of a number of business roles, and may be assigned
to one or more business interactions. A business interface or an application interface may be
used by a business collaboration, while a business collaboration may have business interfaces
(through composition). The name of a business collaboration should preferably be a noun. It is
also rather common to leave a business collaboration unnamed.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

18 Technical Standard (2012)

Figure 12: Business Collaboration Notation

Example

The model below illustrates a possible use of the collaboration concept. In this example, selling
an insurance product involves the Sales department, fulfilling a sales support role, and a
department specialized in that particular type of insurance, fulfilling an insurance seller role. The
example also shows that one role, in this case Sales support, can participate in more than one
collaboration.

Example 3: Business Collaboration

3.2.4 Business Interface

A business interface is defined as a point of access where a business service is made available to
the environment.

A business interface exposes the functionality of a business service to other business roles
(provided interface), or expects functionality from other business services (required interface). It
is often referred to as a channel (telephone, internet, local office, etc.). The same business
service may be exposed through different interfaces.

A business interface may be part of a business role through a composition relationship, which is
not shown in the standard notation, and a business interface may be used by a business role. A
business interface may be assigned to one or more business services, which means that these
services are exposed by the interface. The name of a business interface should preferably be a
noun.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 19

Figure 13: Business Interface Notation

Example

In the model below, the business services provided by the Luggage insurance seller and its
collaboration with the Medical insurance seller are exposed by means of a web form and call center
business interface, respectively.

Example 4: Business Interface

3.2.5 Location

A location is defined as a conceptual point or extent in space.

The location concept is used to model the distribution of structural elements such as business
actors, application components, and devices. This is modeled by means of an assignment
relationship from location to structural element. Indirectly, a location can also be assigned to a
behavior element, to indicate where the behavior is performed.

Figure 14: Location Notation

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

20 Technical Standard (2012)

Example

The model below shows that the departments of an insurance company are distributed over
different locations. The Legal and Finance departments are centralized at the main office, and
there are claims handling departments at various local offices throughout the country.

Example 5: Location

3.2.6 Business Object

A business object is defined as a passive element that has relevance from a business perspective.

Business objects represent the important “informational” or “conceptual” elements in which the
business thinks about a domain. Generally, a business object is used to model an object type (cf.
a UML class), of which several instances may exist within the organization. A wide variety of
types of business objects can be defined. Business objects are passive in the sense that they do
not trigger or perform processes.

Business objects may be accessed (e.g., in the case of information objects, which are most
common in the application domains in which ArchiMate is applied, they may be created, read,
written) by a business process, function, a business interaction, a business event, or a business
service. A business object may have association, specialization, aggregation, or composition
relationships with other business objects. A business object may be realized by a representation
or by a data object (or both). The name of a business object should preferably be a noun.

Figure 15: Business Object Notation

Example

The model below shows a business object Invoice, which aggregates (multiple) business objects
Invoice line. Two possible realizations of this business object exist: an Electronic invoice (data
object) and a Paper invoice (representation). The business process Create invoice creates the
invoice and the invoice lines, while the business process Send invoice accesses the business
object Invoice.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 21

Example 6: Business Object

3.3 Behavioral Concepts

Based on service orientation, a crucial design decision for the behavioral part of our metamodel
is the distinction between “external” and “internal” behavior of an organization.

The externally visible behavior is modeled by the concept business service. A business service
represents a coherent piece of functionality that offers added value to the environment,
independent of the way this functionality is realized internally. A distinction can be made
between “external” business services, offered to external customers, and “internal” business
services, offering supporting functionality to processes or functions within the organization.

Several types of internal behavior elements that can realize a service are distinguished. Although
the distinction between the two is not always sharp, it is often useful to distinguish a process
view and a function view on behavior; two concepts associated with these views, business
process and business function, are defined. Both concepts can be used to group more detailed
business processes/functions, but based on different grouping criteria. A business process
represents a workflow or value stream consisting of smaller processes/functions, with one or
more clear starting points and leading to some result. It is sometimes described as “customer to
customer”, where this customer may also be an internal customer, in the case of sub-processes
within an organization. The goal of such a business process is to “satisfy or delight the
customer” [12]. A business function offers functionality that may be useful for one or more
business processes. It groups behavior based on, for example, required skills, resources,
(application) support, etc. Typically, the business processes of an organization are defined based
on the products and services that the organization offers, while the business functions are the
basis for, for example, the assignment of resources to tasks and the application support.

A business interaction is a unit of behavior similar to a business process or function, but which
is performed in a collaboration of two or more roles within the organization. Unlike the
interaction concept in Amber [11], which is an atomic unit of collaborative behavior, our
business interaction can be decomposed into smaller interactions. Although interactions are
external behavior from the perspective of the roles participating in the collaboration, the

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

22 Technical Standard (2012)

behavior is internal to the collaboration as a whole. Similar to processes or functions, the result
of a business interaction can be made available to the environment through a business service.

A business event is something that happens (externally) and may influence business processes,
functions, or interactions. The “business event” concept is similar to the “trigger” concept in
Amber [11] and the “initial state” and “final state” concepts as used in, for example, UML
activity diagrams. However, our business event is more generally applicable in the sense that it
can also be used to model other types of events, in addition to triggers.

3.3.1 Business Process

A business process is defined as a behavior element that groups behavior based on an ordering of
activities. It is intended to produce a defined set of products or business services.

A business process describes the internal behavior performed by a business role that is required
to produce a set of products and services. For a consumer the products and services are relevant
and the required behavior is merely a black box, hence the designation “internal”.

In comparison to a business interaction, in which a collaboration of two or more business roles
are (interactively) involved, at a given level of granularity only one business role is involved
with a business process. However, a complex business process may be an aggregation of other,
finer-grained processes, each of which may be assigned to finer-grained roles that are aggregated
by roles that are aggregated by the original role.

There is a potential many-to-many relationship between business processes and business
functions. Informally speaking, processes describe some kind of “flow” of activities, whereas
functions group activities according to required skills, knowledge, resources, etc.

A business process may be triggered by, or trigger, any other business behavior element (e.g.,
business event, business process, business function, or business interaction). A business process
may access business objects. A business process may realize one or more business services and
may use (internal) business services or application services. A business role or an application
component may be assigned to a business process to perform this process manually or
automated, respectively. The name of a business process should preferably be a verb in the
simple present tense; e.g., “handle claim”.

In an ArchiMate model, the existence of business processes is depicted. It does not, however, list
the flow of activities in detail. During business process modeling, a business process can be
expanded using a business process design language; e.g., BPMN [20].

Figure 16: Business Process Notation

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 23

Example

The model below illustrates the use of business processes and its relation with other concepts.
The Take out insurance process is composed of three sub-processes. For clarity, the sub-processes
are drawn in the overall process (structuring). Each sub-process triggers the next sub-process.
The event Request for Insurance triggers the first sub-process. A particular role, in this case an
insurance seller, is assigned to perform the required work. The process itself realizes an Insurance
selling service. The Receive request sub-process uses the business object Customer info.

Example 7: Business Process

3.3.2 Business Function

A business function is defined as a behavior element that groups behavior based on a chosen set
of criteria (typically required business resources and/or competences).

Just like a business process, a business function also describes internal behavior performed by a
business role. However, while a business process group’s behavior is based on a sequence or
“flow” of activities that is needed to realize a product or service, a business function typically
groups behavior based on required business resources, skills, competences, knowledge, etc.

There is a potential many-to-many relation between business processes and business functions.
Complex processes in general involve activities that offer various functions. In this sense a
business process forms a string of business functions. In general, a business function delivers
added value from a business point of view. Organizational units or applications may coincide
with business functions due to their specific grouping of business activities.

A business function may be triggered by, or trigger, any other business behavior element
(business event, business process, business function, or business interaction). A business
function may access business objects. A business function may realize one or more business
services and may use (internal) business services or application services. A business role or an
application component may be assigned to a business function. The name of a business function
should preferably be a verb ending with “-ing”; e.g., “claims processing”, or a noun ending in “-
ion” or “-ment”; e.g., “administration”.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

24 Technical Standard (2012)

Figure 17: Business Function Notation

Example

The model below illustrates the use of business functions, as well as the relationship between
business functions and business processes. The three business functions group a number of
business sub-processes. The business process, initiated by a business event, involves sub-
processes from different business functions. The Insurer role is assigned to each of the business
functions. Moreover, business functions may access business objects; in this case, the Customer
handling function uses or manipulates the Customer information object. Also, the Financial handling
function makes use of a Billing application service and realizes a Premium collection business
service.

Example 8: Business Function

3.3.3 Business Interaction

A business interaction is defined as a behavior element that describes the behavior of a business
collaboration.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 25

A business interaction is similar to a business process/function, but while a process/function may
be performed by a single role, an interaction is performed by a collaboration of multiple roles.
The roles in the collaboration share the responsibility for performing the interaction.

A business interaction may be triggered by, or trigger, any other business behavior element
(business event, business process, business function, or business interaction). A business
interaction may access business objects. A business interaction may realize one or more business
services and may use (internal) business services or application services. A business
collaboration or an application collaboration may be assigned to a business interaction. The
name of a business interaction should preferably be a verb in the simple present tense.

Figure 18: Business Interaction Notation

Example

In the model below, a business interaction is triggered by a request. The business interaction
Take out combined insurance is performed as collaboration between the travel and luggage
insurance seller. The business interaction needs the Policy info business object, and realizes the
(external) business service Combined insurance selling. As part of the business interaction, the
Prepare travel policy and Prepare luggage policy are triggered. The Travel insurance seller and Luggage
insurance seller perform these processes separately.

Example 9: Business Interaction

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

26 Technical Standard (2012)

3.3.4 Business Event

A business event is defined as something that happens (internally or externally) and influences
behavior.

Business processes and other business behavior may be triggered or interrupted by a business
event. Also, business processes may raise events that trigger other business processes, functions,
or interactions. A business event is most commonly used to model something that triggers
behavior, but other types of events are also conceivable; e.g., an event that interrupts a process.
Unlike business processes, functions, and interactions, a business event is instantaneous: it does
not have duration. Events may originate from the environment of the organization (e.g., from a
customer), but also internal events may occur generated by, for example, other processes within
the organization.

A business event may trigger or be triggered (raised) by a business process, business function, or
business interaction. A business event may access a business object and may be composed of
other business events. The name of a business event should preferably be a verb in the perfect
tense; e.g., “claim received”.

Figure 19: Business Event Notation

Example

In the model below, the Request insurance event triggers the Take out insurance process. A
business object containing the Customer info accompanies the request. In order to persuade the
customer to purchase more insurance products, a triggering event is raised in the Receive request
process. This triggers the Send product portfolio to customer process.

Example 10: Business Event

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 27

3.3.5 Business Service

A business service is defined as a service that fulfills a business need for a customer (internal or
external to the organization).

A business service exposes the functionality of business roles or collaborations to their
environment. This functionality is accessed through one or more business interfaces. A business
service is realized by one or more business processes, business functions, or business
interactions that are performed by the business roles or business collaborations, respectively. It
may access business objects.

A business service should provide a unit of functionality that is meaningful from the point of
view of the environment. It has a purpose, which states this utility. The environment includes the
(behavior of) users from outside as well as inside the organization. Business services can be
external, customer-facing services (e.g., a travel insurance service) or internal support services
(e.g., a resource management service).

A business service is associated with a value. A business service may be used by a business
process, business function, or business interaction. A business process, business function, or
business interaction may realize a business service. A business interface or application interface
may be assigned to a business service. A business service may access business objects. The
name of a business service should preferably be a verb ending with “-ing”; e.g., “transaction
processing”. Also, a name explicitly containing the word “service” may be used.

Figure 20: Business Service Notation

Example

In the model below, external and internal business services are distinguished. The Basic
administration function acts as a shared service center. The take out business processes
corresponding with the travel and luggage insurance use the (internal) business services that are
provided by the Basic administration function. Both business processes realize an (external)
business service. The insurance selling service is accessible via a business interface (e.g., web
form) of the insurance seller. Each business service should be of value to the user(s) of the
service (in this example, the insurance buyer role). This value may be explicitly modeled, if
appropriate. The value of the Travel insurance selling service to an external customer (the
insurance buyer) is that the customer is insured.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

28 Technical Standard (2012)

Example 11: Business Service

3.4 Informational Concepts

In contrast to the structural and behavioral concepts, which are mainly concerned with the
operational perspective on an enterprise, the informational concepts focus on what we could call
the “intentional” perspective. They provide a way to link the operational side of an organization
to the business goals, and to the products that an organization offers to its customers. We also
classify the product concept itself, together with the related contract concept, as informational
concepts.

Information is fundamentally related to communication. Information always serves a particular
purpose, which is tightly connected to some communicational goal. As communication always
involves a static part (the “message”) and a dynamic part (the communication action itself), the
communicational goals may have a link to both our “meaning” concept and our “value” concept.
Also, in speech act-based approaches to business modeling, such as DEMO [9], the
communicational aspect plays a central role in the context of business transactions.

A representation is the perceptible form of the information carried by a business object, such as
a document. As such, it can be seen as the realization of the associated business object. If
relevant, representations can be classified in various ways; for example, in terms of medium
(e.g., electronic, paper, audio) or format (e.g., HTML, PDF, plain text, bar chart).

A meaning is the contribution of a business object or its representation to the knowledge or
expertise of some actor, given a particular context (e.g., the role that the actor fulfills within that
context). In other words, meaning represents the informative value of a business object for a user

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 29

of such an object. It is through a certain interpretation of a representation of the object that
meaning is being offered to a certain user or to a certain category of users. A meaning can very
well be a reformulation or transformation of parts of the object representation in such a way that
the role of the meaning is immediately clear within the user's world, but essentially lies in
interpretation by individuals, in context.

For the complete description of a meaning, the following two elements are needed, in addition to
the representations (and, indirectly, business objects) with which the meaning is associated:

• Some sort of meaning description: A meaning description is not equal to the
representation causing the meaning: it is a specialized description that aims to clarify or
stipulate a meaning. Natural language may be used for this, but also formal languages or
diagrams. Typical examples of meaning descriptions are definitions, ontologies,
paraphrases, subject descriptions, and tables of content. Meaning descriptions may draw
from or refer to additional meaning description sources; for example, dictionaries.
Importantly, meaning descriptions do not necessarily have to describe meaning in detail.
The level of detail depends on the types of analysis required. It is quite possible that a
very rough meaning description is good enough to capture at architecture level the sort of
interpretations a business object conveys. Detailed meaning description can only in a
limited number of cases be made very precise; in most cases, interpretation depends on the
general language and knowledge of specific actors, which normally remains largely
implicit.

• A description of the context(s) in which the meaning is conveyed: A context description
covers the situation in which the interpretation takes place. The most important elements
of such a context are the actors sending and receiving the business object, the time and
place of communication and the environment in which this happens. Often, a context can
be briefly described in terms of some business domain.

We see a (financial or information) product as of a collection of services, together with a
contract that specifies the characteristics, rights, and requirements associated with the product.
This “package” is offered as a whole to (internal or external) customers.

We define a contract as a formal or informal specification of agreement that specifies the rights
and obligations associated with a product. The value of a product or service is that which makes
some party appreciate it, possibly in relation to providing it, but more typically to acquiring it.

3.4.1 Representation

A representation is defined as a perceptible form of the information carried by a business object.

Representations (for example, messages or documents) are the perceptible carriers of
information that are related to business objects. If relevant, representations can be classified in
various ways; for example, in terms of medium (electronic, paper, audio, etc.) or format (HTML,
ASCII, PDF, RTF, etc.). A single business object can have a number of different representations.
Also, a single representation can realize one or more specific business objects.

A representation may realize one or more business objects. A meaning can be associated with a
representation that carries this meaning. The name of a representation is preferably a noun.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

30 Technical Standard (2012)

Figure 21: Representation Notation

Example

The model below shows the business object Request for insurance, which is realized (represented)
by a (physical) request form. The Invoice business object is realized (represented) by a paper bill.

Example 12: Representation

3.4.2 Meaning

Meaning is defined as the knowledge or expertise present in a business object or its
representation, given a particular context.

A meaning is the information-related counterpart of a value: it represents the intention of a
business object or representation (for example, a document, message; the representations related
to a business object). It is a description that expresses the intent of a representation; i.e., how it
informs the external user.

It is possible that different users view the informative functionality of a business object or
representation differently. For example, what may be a “registration confirmation” for a client
could be a “client mutation” for a CRM department (assuming for the sake of argument that it is
modeled as an external user). Also, various different representations may carry essentially the
same meaning. For example, various different documents (a web document, a filled-in paper
form, a “client contact” report from the call center) may essentially carry the same meaning.

A meaning can be associated with a representation that carries this meaning. The name of a
meaning should preferably be a noun or noun phrase.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 31

Figure 22: Meaning Notation

Example

The model below shows an Insurance policy document that is the representation of an Insurance
policy, which is a business object. The meaning related to this document is the Insurance policy
notification, which consists of a Policy explanation, an Insurance registration, and a Coverage
description.

Example 13: Meaning

3.4.3 Value

Value is defined as the relative worth, utility, or importance of a business service or product.

Value may apply to what a party gets by selling or making available some product or service, or
it may apply to what a party gets by buying or obtaining access to it. Value is often expressed in
terms of money, but it has long since been recognized that non-monetary value is also essential
to business; for example, practical/functional value (including the right to use a service), and the
value of information or knowledge. Though value can hold internally for some system or
organizational unit, it is most typically applied to external appreciation of goods, services,
information, knowledge, or money, normally as part of some sort of customer-provider
relationship.

A value can be associated with business services and, indirectly, with the products they are part
of, and the roles or actors that use them. Although the name of a value can be expressed in many
different ways (including amounts, objects), where the “functional” value of a service is

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

32 Technical Standard (2012)

concerned it is recommended to try and express it as an action or state that can be performed or
reached as a result of the corresponding service being available.

Figure 23: Value Notation

Example

In the model below, the value Be Insured is the highest-level expression of what the service
Provide Insurance enables the client to do; three “sub-values” are distinguished that are part of
what Be Insured amounts to.

Example 14: Value

3.4.4 Product

A product is defined as a coherent collection of services, accompanied by a contract/set of
agreements, which is offered as a whole to (internal or external) customers.

This definition describes financial, services-based, or information products that are common in
information-intensive organizations, rather than physical products. A financial or information
product consists of a collection of services, and a contract that specifies the characteristics,
rights, and requirements associated with the product. “Buying” a product gives the customer the
right to use the associated services. Generally, the product concept is used to specify a product
type. The number of product types in an organization is typically relatively stable compared to,
for example, the processes that realize or support the products. “Buying” is usually one of the
services associated with a product, which results in a new instance of that product (belonging to
a specific customer). Similarly, there may be services to modify or destroy a product.

A product may aggregate business services or application services,4 as well as a contract. A
value may be associated with a product. The name of a product is usually the name which is

4 The latter relation is defined in Chapter 6 on cross-layer dependencies.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 33

used in the communication with customers, or possibly a more generic noun (e.g., “travel
insurance”).

Figure 24: Product Notation

Example

In the model below, a bank offers the product Telebanking account to its customers. Opening an
account as well as application support (i.e., helpdesk and the like), are modeled as business
services realized by the Customer relations department. As part of the product, the customer can
make use of a banking service which offers application services realized by the Telebanking
application, such as electronic Money transfer and requesting Account status.

Example 15: Product

3.4.5 Contract

A contract is defined as a formal or informal specification of an agreement that specifies the
rights and obligations associated with a product.

The contract concept may be used to model a contract in the legal sense, but also a more
informal agreement associated with a product. It may also be or include a Service Level
Agreement (SLA), describing an agreement about the functionality and quality of the services
that are part of a product. A contract is a specialization of a business object.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

34 Technical Standard (2012)

The relationships that apply to a business object also apply to a contract. In addition, a contract
may have an aggregation relationship with a product. The name of a contract is preferably a
noun.

Figure 25: Contract Notation

Example

The model below shows a Telebanking contract associated with the product Telebanking account.
The contract consists of two parts (subcontracts): the Service Conditions and a Service Level
Agreement.

Example 16: Contract

3.5 Summary of Business Layer Concepts

Table 1 gives an overview of the concepts at the business layer, with their definitions.

Table 1: Business Layer Concepts

Concept Description Notation
Business actor An organizational entity that is capable of

performing behavior.

Business role The responsibility for performing specific
behavior, to which an actor can be
assigned.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 35

Concept Description Notation
Business
collaboration

An aggregate of two or more business
roles that work together to perform
collective behavior.

Business interface A point of access where a business service
is made available to the environment.

Location A conceptual point or extent in space.

Business object A passive element that has relevance from
a business perspective.

Business process A behavior element that groups behavior

based on an ordering of activities. It is
intended to produce a defined set of
products or business services.

Business function A behavior element that groups behavior
based on a chosen set of criteria (typically
required business resources and/or
competences).

Business interaction A behavior element that describes the
behavior of a business collaboration.

Business event Something that happens (internally or
externally) and influences behavior.

Business service A service that fulfills a business need for a
customer (internal or external to the
organization).

Representation A perceptible form of the information
carried by a business object.

Meaning The knowledge or expertise present in a

business object or its representation, given
a particular context.

Value The relative worth, utility, or importance

of a business service or product.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

36 Technical Standard (2012)

Concept Description Notation
Product A coherent collection of services,

accompanied by a contract/set of
agreements, which is offered as a whole to
(internal or external) customers.

Contract A formal or informal specification of
agreement that specifies the rights and
obligations associated with a product.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 37

4 Application Layer

4.1 Application Layer Metamodel

Figure 26 gives an overview of the application layer concepts and their relationships. Many of
the concepts have been inspired by the UML 2.0 standard [7], [10], as this is the dominant
language and the de facto standard for describing software applications. Whenever applicable,
we draw inspiration from the analogy with the business and application layer.

Figure 26: Application Layer Metamodel

Note: This figure does not show all permitted relationships: every concept in the language
can have composition, aggregation, and specialization relationships with concepts of
the same type; furthermore, there are indirect relationships that can be derived as
explained in Section 7.5.

4.2 Structural Concepts

The main structural concept for the application layer is the application component. This concept
is used to model any structural entity in the application layer: not just (re-usable) software

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

38 Technical Standard (2012)

components that can be part of one or more applications, but also complete software
applications, sub-applications, or information systems. Although very similar to the UML 2.0
component, our component concept strictly models the structural aspect of an application: its
behavior is modeled by an explicit relationship to the behavioral concepts.

Also in application architecture, the inter-relationships of components are an essential
ingredient. Therefore, we also introduce the concept of application collaboration here, defined
as a collective of application components which perform application interactions. The concept is
very similar to the collaboration as defined in the UML 2.0 standard [7], [10].

In the purely structural sense, an application interface is the (logical) channel through which the
services of a component can be accessed. In a broader sense (as used in, among others, the UML
2.0 definition), an application interface defines some elementary behavioral characteristics: it
defines the set of operations and events that are provided by the component, or those that are
required from the environment. Thus, it is used to describe the functionality of a component. A
distinction may be made between a provided interface and a required interface. The application
interface concept can be used to model both application-to-application interfaces, which offer
internal application services, and application-to business interfaces (and/or user interfaces),
which offer external application services.

Also at the application layer, we distinguish the passive counterpart of the component, which we
call a data object. This concept is used in the same way as data objects (or object types) in well-
known data modeling approaches, most notably the “class” concept in UML class diagrams. A
data object can be seen as a representation of a business object, as a counterpart of the
representation concept in the business layer.

4.2.1 Application Component

An application component is defined as a modular, deployable, and replaceable part of a
software system that encapsulates its behavior and data and exposes these through a set of
interfaces.

An application component is a self-contained unit of functionality. As such, it is independently
deployable, re-usable, and replaceable. An application component performs one or more
application functions. It encapsulates its contents: its functionality is only accessible through a
set of application interfaces. Co-operating application components are connected via application
collaborations.

An application component may be assigned to one or more application functions, business
processes, or business functions. An application component has one or more application
interfaces, which expose its functionality. Application interfaces of other application
components may be used by an application component. The name of an application component
should preferably be a noun.

Figure 27: Application Component Notation

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 39

Example

In the model below, a financial application is depicted as an application component consisting of
two subcomponents for accounting and billing, each of which offers an application service to the
environment. These services are accessible through a shared accounting & billing application
interface, which is part of the financial application.

Example 17: Application Component

4.2.2 Application Collaboration

An application collaboration is defined as an aggregate of two or more application components
that work together to perform collective behavior.

An application collaboration specifies which components co-operate to perform some task. The
collaborative behavior, including, for example, the communication pattern of these components,
is modeled by an application interaction. An application collaboration typically models a logical
or temporary collaboration of application components, and does not exist as a separate entity in
the enterprise.

An application collaboration is a specialization of a component, and aggregates two or more (co-
operating) application components. An application collaboration is an active structure element
that may be assigned to one or more application interactions or business interactions, which
model the associated behavior. An application interface may be used by an application
collaboration, and an application collaboration may be composed of application interfaces. The
name of an application collaboration should preferably be a noun.

Figure 28: Application Collaboration Notation

Example

In the model below, two components collaborate in transaction administration: an Accounting
component and a Billing component. This collaboration performs the application interaction
Administrate transactions.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

40 Technical Standard (2012)

Example 18: Application Collaboration

4.2.3 Application Interface

An application interface is defined as a point of access where an application service is made
available to a user or another application component.

An application interface specifies how the functionality of a component can be accessed by other
components (provided interface), or which functionality the component requires from its
environment (required interface). An application interface exposes an application service to the
environment. The same application service may be exposed through different interfaces.

In a sense, an application interface specifies a kind of contract that a component realizing this
interface must fulfill. This may include parameters, protocols used, pre- and post-conditions, and
data formats.

An application interface may be part of an application component through composition (not
shown in the standard notation), which means that these interfaces are provided or required by
that component, and can be used by other application components. An application interface can
be assigned to application services or business services, which means that the interface exposes
these services to the environment. The name of an application interface should preferably be a
noun.

Figure 29: Application Interface Notation

Example

In the model below, an Accounting component is shown that provides an application interface for
Transaction data exchange, and a Billing component that requires such an interface.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 41

Example 19: Application Interface

4.2.4 Data Object

A data object is defined as a passive element suitable for automated processing.

An application function operates on a data object. A data object may be communicated via
interactions and used or produced by application services. It should be a self-contained piece of
information with a clear meaning to the business, not just to the application level. Typical
examples of data objects are a customer record, a client database, or an insurance claim.

A data object can be accessed by an application function, application interaction, or application
service. A data object may realize a business object, and may be realized by an artifact. A data
object may have association, specialization, aggregation, or composition relationships with other
data objects. The name of a data object should preferably be a noun.

Figure 30: Data Object Notation

Example

In the model below, two application functions co-operate via an application service, in which a
data object holding Transaction data is exchanged.

Example 20: Data Object

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

42 Technical Standard (2012)

4.3 Behavioral Concepts

Behavior at the application layer can be described in a way that is very similar to business layer
behavior. Also here, we make a distinction between the external behavior of application
components in terms of application services, and the internal behavior of these components; i.e.,
application functions that realize these services.

An application service is an externally visible unit of functionality, provided by one or more
components, exposed through well-defined interfaces, and meaningful to the environment. The
service concept provides a way to explicitly describe the functionality that components share
with each other and the functionality that they make available to the environment. The concept
fits well within the current developments in the area of web services. The functionality that an
interactive computer program provides through a user interface is also modeled using an
application service, exposed by an application-to-business interface representing the user
interface. Internal application services are exposed through an application-to-application
interface.

An application function describes the internal behavior of a component needed to realize one or
more application services. In analogy with the business layer, a separate “application flow”
concept is conceivable as the counterpart of a business process. Note that the internal behavior of
a component should in most cases not be modeled in too much detail in an architectural
description, because for the description of this behavior we may soon be confronted with
detailed design issues.

An application interaction is the behavior of a collaboration of two or more application
components. An application interaction is external behavior from the perspective of each of the
participating components, but the behavior is internal to the collaboration as a whole.

4.3.1 Application Function

An application function is defined as a behavior element that groups automated behavior that can
be performed by an application component.

An application function describes the internal behavior of an application component. If this
behavior is exposed externally, this is done through one or more services. An application
function abstracts from the way it is implemented. Only the necessary behavior is specified.

An application function may realize one or more application services. Application services of
other application functions and infrastructure services may be used by an application function.
An application function may access data objects. An application component may be assigned to
an application function (which means that the application component performs the application
function). The name of an application function should preferably be a verb ending with “-ing”;
e.g., “accounting”.

Figure 31: Application Function Notation

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 43

Example

In the model below, the internal behavior of the Financial application component is modeled as an
application function consisting of two sub-functions. These application functions realize the
application services that are made available to the users of the application.

Example 21: Application Function

4.3.2 Application Interaction

An application interaction is defined as a behavior element that describes the behavior of an
application collaboration.

An application interaction describes the collective behavior that is performed by the components
that participate in an application collaboration. This may, for example, include the
communication pattern between these components. An application interaction can also specify
the externally visible behavior needed to realize an application service. The details of the
interaction between the application components involved in an application interaction can be
expressed during the detailed application design using, e.g., a UML interaction diagram.

An application collaboration may be assigned to an application interaction. An application
interaction may realize an application service. Application services and infrastructure services
may be used by an application interaction. An application interaction may access data objects.
The name of an application interaction should preferably be a verb.

Figure 32: Application Interaction Notation

Example

In the model below, an Accounting component and a Billing component of a financial system co-
operate to compose an administrate transactions interaction. This is modeled as an application
interaction assigned to the collaboration between the two components.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

44 Technical Standard (2012)

Example 22: Application Interaction

4.3.3 Application Service

An application service is defined as a service that exposes automated behavior.

An application service exposes the functionality of components to their environment. This
functionality is accessed through one or more application interfaces. An application service is
realized by one or more application functions that are performed by the component. It may
require, use, and produce data objects.

An application service should be meaningful from the point of view of the environment; it
should provide a unit of functionality that is, in itself, useful to its users. It has a purpose, which
states this utility to the environment. This means, for example, that if this environment includes
business processes, application services should have business relevance.

A purpose may be associated with an application service. An application service may be used by
business processes, business functions, business interactions, or application functions. An
application function may realize an application service. An application interface may be
assigned to an application service. An application service may access data objects. The name of
an application service should preferably be a verb ending with “-ing”; e.g., “transaction
processing”. Also, a name explicitly containing the word “service” may be used.

Figure 33: Application Service Notation

Example

In the model below, a Transaction processing (application-to-application) service is realized by the
Accounting application function, and is accessible by other components through a Transaction
processing application programming interface (API). This service is used by the Billing application
function performed by the Billing component.

The Billing application function offers an (application-to-business) function Bill creation, which can
be used to support business processes, and is accessible to business roles through a Billing screen
as an application-to-business interface.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 45

Example 23: Application Service

4.4 Summary of Application Layer Components

Table 2 gives an overview of the concepts at the application layer, with their definitions.

Table 2: Application Layer Concepts

Concept Definition Notation
Application
component

A modular, deployable, and replaceable
part of a software system that encapsulates
its behavior and data and exposes these
through a set of interfaces.

Application
collaboration

An aggregate of two or more application
components that work together to perform
collective behavior.

Application
interface

A point of access where an application
service is made available to a user or
another application component.

Data object A passive element suitable for automated
processing.

Application
function

A behavior element that groups automated
behavior that can be performed by an
application component.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

46 Technical Standard (2012)

Concept Definition Notation
Application
interaction

A behavior element that describes the
behavior of an application collaboration.

Application
service

A service that exposes automated
behavior.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 47

5 Technology Layer

5.1 Technology Layer Metamodel

Figure 34 gives an overview of the technology layer concepts and their relationships. Many of
the concepts have been inspired by the UML 2.0 standard [7], [10], as this is the dominant
language and the de facto standard for describing software applications and infrastructure.
Whenever applicable, we draw inspiration from the analogy with the business and application
layers.

Figure 34: Technology Layer Metamodel

Note: This figure does not show all permitted relationships: every concept in the language
can have composition, aggregation, and specialization relationships with concepts of
the same type; furthermore, there are indirect relationships that can be derived as
explained in Section 7.5.

5.2 Structural Concepts

The main structural concept for the technology layer is the node. This concept is used to model
structural entities in this layer. It is identical to the node concept of UML 2.0. It strictly models
the structural aspect of a system: its behavior is modeled by an explicit relationship to the
behavioral concepts.

An infrastructure interface is the (logical) location where the infrastructure services offered by a
node can be accessed by other nodes or by application components from the application layer.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

48 Technical Standard (2012)

Nodes come in two flavors: device and system software, both taken from UML 2.0. A device
models a physical computational resource, upon which artifacts may be deployed for execution.
System software is an infrastructural software component running on a device. Typically, a node
consists of a number of sub-nodes; for example, a device such as a server and system software to
model the operating system.

The inter-relationships of components in the technology layer are mainly formed by the
communication infrastructure. The communication path models the relation between two or
more nodes, through which these nodes can exchange information. The physical realization of a
communication path is a modeled with a network; i.e., a physical communication medium
between two or more devices (or other networks).

5.2.1 Node

A node is defined as a computational resource upon which artifacts may be stored or deployed
for execution.

Nodes are active processing elements that execute and process artifacts, which are the
representation of components and data objects. Nodes are, for example, used to model
application servers, database servers, or client workstations. A node is often a combination of a
hardware device and system software, thus providing a complete execution environment. These
sub-nodes that represent the hardware devices and system software may be modeled explicitly or
left implicit.

Nodes can be interconnected by communication paths. Artifacts can be assigned to (i.e.,
deployed on) nodes.

The name of a node should preferably be a noun. A node can consist of sub-nodes.

Artifacts deployed on a node may either be drawn inside the node or connected to it with an
assignment relationship.

Figure 35: Node Notation

Example

In the model below, we see an Application Server node, which consists of a Blade device and Java
EE-based application server system software.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 49

Example 24: Node

5.2.2 Device

A device is defined as a hardware resource upon which artifacts may be stored or deployed for
execution.

A device is a specialization of a node that represents a physical resource with processing
capability. It is typically used to model hardware systems such as mainframes, PCs, or routers.
Usually, they are part of a node together with system software. Devices may be composite; i.e.,
consist of sub-devices.

Devices can be interconnected by networks. Artifacts can be assigned to (i.e., deployed on)
devices. System software can be assigned to a device. A node can contain one or more devices.

The name of a device should preferably be a noun referring to the type of hardware; e.g., “IBM
System z mainframe”.

A device can consist of sub-devices.

Different icons may be used to distinguish between different types of devices; e.g. mainframes
and PCs.

Figure 36: Device Notation

Example

The model below shows an example of a number of servers, modeled as devices, interconnected
through a local area network (LAN).

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

50 Technical Standard (2012)

Example 25: Device

5.2.3 System Software

System software represents a software environment for specific types of components and objects
that are deployed on it in the form of artifacts.

System software is a specialization of a node that is used to model the software environment in
which artifacts run. This can be, for example, an operating system, a JEE application server, a
database system, a workflow engine, or COTS software such as ERP or CRM packages. Also,
system software can be used to represent, for example, communication middleware. Usually,
system software is combined with a device representing the hardware environment to form a
general node.

System software can be assigned to a device. Artifacts can be assigned to (i.e., deployed on)
system software. A node can contain system software.

The name of system software should preferably be a noun referring to the type of execution
environment; e.g., “JEE server”. System software may contain other system software; e.g., an
operating system containing a database.

Figure 37: System Software Notation

Example

In the model below, we see a mainframe device that deploys two system software environments: a
customer transaction server and a database management system (DBMS).

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 51

Example 26: System Software

5.2.4 Infrastructure Interface

An infrastructure interface is defined as a point of access where infrastructure services offered
by a node can be accessed by other nodes and application components.

An infrastructure interface specifies how the infrastructure services of a node can be accessed by
other nodes (provided interface), or which functionality the node requires from its environment
(required interface). An infrastructure interface exposes an infrastructure service to the
environment. The same service may be exposed through different interfaces.

In a sense, an infrastructure interface specifies a kind of contract that a component realizing this
interface must fulfill. This may include, for example, parameters, protocols used, pre- and post-
conditions, and data formats.

An infrastructure interface may be part of a node through composition (not shown in the
standard notation), which means that these interfaces are provided or required by that node, and
can be used by other nodes. An infrastructure service can be assigned to an infrastructure
interface, which exposes the service to the environment.

The name of an infrastructure interface should preferably be a noun.

Infrastructure
interface

Figure 38: Infrastructure Interface Notations

Example

In the model below, we see a client infrastructure interface exposed, which is part of the client-
server system software.

Example 27: Infrastructure Interface

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

52 Technical Standard (2012)

5.2.5 Network

A network is defined as a communication medium between two or more devices.

A network represents the physical communication infrastructure. This may comprise one or
more fixed or wireless network links. The most basic network is a single link between two
devices. A network has properties such as bandwidth and latency. It embodies the physical
realization of the logical communication paths between nodes.

A network connects two or more devices. A network realizes one or more communication paths.

A network can consist of sub-networks.

Figure 39: Network Notation, as Connection and as Box

Example

In the model below, a 100 Mb/s LAN network connects a mainframe and PC device.

Example 28: Network

5.2.6 Communication Path

A communication path is defined as a link between two or more nodes, through which these
nodes can exchange data.

A communication path is used to model the logical communication relations between nodes. It is
realized by one or more networks, which represent the physical communication links. The
communication properties (e.g., bandwidth, latency) of a communication path are usually
aggregated from these underlying networks.

A communication path connects two or more nodes. A communication path is realized by one or
more networks. A communication path is atomic.

Figure 40: Communication Path Notation, as Connection and as Box

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 53

Example

In the model below, we see a communication path “message queuing” between an Application
Server and a Client.

Example 29: Communication Path

5.3 Behavioral Concepts

Behavior elements in the technology layer are similar to the behavior elements in the other two
layers. Also here, we make a distinction between the external behavior of nodes in terms of
infrastructure services, and the internal behavior of these nodes; i.e., infrastructure functions
that realize these services.

5.3.1 Infrastructure Function

An infrastructure function is defined as a behavior element that groups infrastructural behavior
that can be performed by a node.

An infrastructure function describes the internal behavior of a node; for the user of a node that
performs an infrastructure function, this function is invisible. If its behavior is exposed
externally, this is done through one or more infrastructure services. An infrastructure function
abstracts from the way it is implemented. Only the necessary behavior is specified.

An infrastructure function may realize infrastructure services. Infrastructure services of other
infrastructure functions may be used by an infrastructure function. An infrastructure function
may access artifacts. A node may be assigned to an infrastructure function (which means that the
node performs the infrastructure function). The name of an infrastructure function should
preferably be a verb ending with “-ing”.

Figure 41: Infrastructure Function Notation

Example

In the model below, the database management system (DBMS) node performs two infrastructure
functions: providing data access (realizing a data access service for application software), and
managing data (realizing a data management service for database administration).

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

54 Technical Standard (2012)

Example 30: Infrastructure Function

5.3.2 Infrastructure Service

An infrastructure service is defined as an externally visible unit of functionality, provided by one
or more nodes, exposed through well-defined interfaces, and meaningful to the environment.

An infrastructure service exposes the functionality of a node to its environment. This
functionality is accessed through one or more infrastructure interfaces. It may require, use, and
produce artifacts.

An infrastructure service should be meaningful from the point of view of the environment; it
should provide a unit of functionality that is, in itself, useful to its users, such as application
components and nodes.

Typical infrastructure services may, for example, include messaging, storage, naming, and
directory services. It may access artifacts; e.g., a file containing a message.

An infrastructure service may be used by application components or nodes. An infrastructure
service is realized by a node. An infrastructure service is exposed by a node by assigning it to its
infrastructure interfaces. An infrastructure service may access artifacts.

The name of an infrastructure service should preferably be a verb ending with “-ing”; e.g.,
“messaging”. Also, a name explicitly containing the word “service” may be used.

An infrastructure service may consist of sub-services.

Figure 42: Infrastructure Interface Notation

Example

In the model below, we see a Messaging service realized by Message-Oriented Middleware (MOM)
system software.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 55

Example 31: Infrastructure Service

5.4 Informational Concepts

An artifact is a physical piece of information that is used or produced in a software development
process, or by deployment and operation of a system. It is the representation, in the form of, for
example, a file, of a data object, or an application component, and can be deployed on a node.
The artifact concept has been taken from UML 2.0.

5.4.1 Artifact

An artifact is defined as a physical piece of data that is used or produced in a software
development process, or by deployment and operation of a system.

An artifact represents a concrete element in the physical world. It is typically used to model
(software) products such as source files, executables, scripts, database tables, messages,
documents, specifications, and model files. An instance (copy) of an artifact can be deployed on
a node.

An application component or system software may be realized by one or more artifacts. A data
object may be realized by one or more artifacts. A node may be assigned to an artifact (i.e., the
artifact is deployed on the node). Thus, the two typical ways to use the artifact concept are as an
execution component or as a data file. In fact, these could be defined as specializations of the
artifact concept.

The name of an artifact should preferably be the name of the file it represents; e.g., “order.jar”.
An artifact may consist of sub-artifacts.

Figure 43: Artifact Notation

Example

In the example below, we see an artifact Risk management EJB, which represents a deployable
unit of code, assigned to (deployed on) an application server.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

56 Technical Standard (2012)

Example 32: Artifact

5.5 Summary of Technology Layer Concepts

Table 3 gives an overview of the concepts at the technology layer, with their definitions.

Table 3: Technology Layer Concepts

Concept Definition Notation
Node A computational resource upon which

artifacts may be stored or deployed for
execution.

Device A hardware resource upon which artifacts may
be stored or deployed for execution.

Network A communication medium between two or
more devices.

Communication
path

A link between two or more nodes, through
which these nodes can exchange data.

Infrastructure
interface

A point of access where infrastructure services
offered by a node can be accessed by other
nodes and application components.

System software A software environment for specific types of
components and objects that are deployed on
it in the form of artifacts.

Infrastructure
function

A behavior element that groups infrastructural
behavior that can be performed by a node.

Infrastructure
service

An externally visible unit of functionality,
provided by one or more nodes, exposed
through well-defined interfaces, and
meaningful to the environment.

Artifact A physical piece of data that is used or
produced in a software development process,
or by deployment and operation of a system.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 57

6 Cross-Layer Dependencies

In the previous chapters we have presented the concepts to model the business, application, and
technology layers of an enterprise. However, a central issue in enterprise architecture is
business-IT alignment: how can these layers be matched? In this chapter, we describe the
relationships that the ArchiMate language offers to model the link between business,
applications, and technology.

6.1 Business-Application Alignment

Figure 44 shows the relationships between the business layer, the application layer, and the
technology layer concepts. There are three main types of relationships between these layers:

1. Used by relationships, between application service and the different types of business
behavior elements, and between application interface and business role. These
relationships represent the behavioral and structural aspects of the support of the business
by applications.

2. A realization relationship from a data object to a business object, to indicate that the data
object is a digital representation of the corresponding business object.

3. Assignment relationships, between application component and business process, function,
or interaction, and between application interface and business service, to indicate that, for
example, business processes or business services are completely automated. The case that
a business process, function, or interaction is not completely automated but only
supported by an application component is expressed with a “used by” relationship (see,
e.g., the example of an Application Usage Viewpoint in Section 8.4.11).

In addition, there may be an aggregation relationship between a product and an application or
infrastructure service, to indicate that the application or infrastructure service can be offered
directly to a customer as part of the product. Also, a location may be assigned to all active and
passive structural elements (and, indirectly, behavior elements) in the application and technology
layers.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

58 Technical Standard (2012)

Figure 44: Relationships between Business Layer and Lower Layer Concepts

Note: This figure does not show all permitted relationships: there are indirect relationships
that can be derived as explained in Section 7.5.

6.2 Application-Technology Alignment

Figure 45 shows the relationships between application layer and technology layer concepts.
There are two types of relationships between these layers:

1. Used by relationships, between infrastructure service and the different types of application
behavior elements, and between infrastructure interface and application component. These
relationships represent the behavioral and structural aspects of the use of technical
infrastructure by applications.

2. A realization relationship from artifact to data object, to indicate that the data object is
realized by, for example, a physical data file, and from artifact to application component,
to indicate that a physical data file is an executable that realizes an application or part of
an application. (Note: In this case, an artifact represents a “physical” component that is
deployed on a node; this is modeled with an assignment relationship. A (logical)
application component is realized by an artifact and, indirectly, by the node on which the
artifact is deployed.)

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 59

Figure 45: Relationships between Application Layer and Technology Layer Concepts

Note: This figure does not show all permitted relationships: there are indirect relationships
that can be derived as explained in Section 7.5.

Due to the derived relationships that are explained in Section 7.5, it is also possible to draw
relationships directly between the business and technology layers. For example, if a business
object is realized by a data object, which in turn is realized by an artifact, this artifact indirectly
realizes the business object.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

60 Technical Standard (2012)

7 Relationships

The metamodels and examples from the previous chapters show the different types of
relationships that the ArchiMate language offers. In this chapter, we provide a more precise
description of these relationships.

The relationships can be classified as either:

• Structural, which model the structural coherence of concepts of the same or different
types

• Dynamic, which are used to model (temporal) dependencies between behavioral concepts

• Other, which do not fall in one of the two above categories

7.1 Structural Relationships

7.1.1 Composition Relationship

The composition relationship indicates that an object is composed of one or more other objects.

The composition relationship has been inspired by the composition relationship in UML class
diagrams. In contrast to the aggregation relationship, an object can be part of only one
composition.

In addition to composition relationships that are explicitly defined in the metamodel figures of
the previous sections, composition is always possible between two instances of the same
concept.

Figure 46: Composition Notation

Alternatively, a composition relationship can be expressed by nesting the model elements.

Example

The models below show the two ways to express that the application component Financial
application is composed of three other application components.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 61

Example 33: Composition

7.1.2 Aggregation Relationship

The aggregation relationship indicates that a concept groups a number of other concepts.

The aggregation relationship has been inspired on the aggregation relationship in UML class
diagrams. In contrast to the composition relationship, an object can be part of more than one
aggregation.

In addition to aggregation relationships that are explicitly defined in the metamodel figures of
the previous sections, aggregation is always possible between two instances of the same concept.

Figure 47: Aggregation Notation

Alternatively, an aggregation relationship can be expressed by nesting the model elements.

Example

The models below show the two ways to express that the product Car insurance aggregates a
contract (Policy) and two business services.

Example 34: Aggregation

7.1.3 Assignment Relationship

The assignment relationship links active elements (e.g., business roles or application
components) with units of behavior that are performed by them, or business actors with business
roles that are fulfilled by them.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

62 Technical Standard (2012)

The assignment relationship can relate a business role with a business process or function, an
application component with an application function, a business collaboration with a business
interaction, an application collaboration with an application interaction, a business interface with
a business service, an application interface with an application service, or a business actor with a
business role.

Figure 48: Assignment Notation

Alternatively, an assignment relationship can be expressed by nesting the model elements.

Example

The model in the example below includes the two ways to express the assignment relationship.
The Payment function (application) is assigned to the Financial application (component), and the
Payment service (application) is assigned to the Application interface.

Example 35: Assignment

7.1.4 Realization Relationship

The realization relationship links a logical entity with a more concrete entity that realizes it.

The realization relationship indicates how logical entities (“what”), such as services, are realized
by means of more concrete entities (“how”). The realization relationship is used in an
operational sense (e.g., a process/function realizes a service), but also in a
design/implementation context (e.g., a data object may realize a business object, or an artifact
may realize an application component).

Figure 49: Realization Notation

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 63

Example

The model below illustrates two ways to use the realization relationship. An application
(component) Financial application realizes the Billing service (application); the Billing data object
realizes the business object Invoice.

Example 36: Realization

7.1.5 Used By Relationship

The used by relationship models the use of services by processes, functions, or interactions and
the access to interfaces by roles, components, or collaborations.

The used by relationship describes the services that a role or component offers that are used by
entities in the environment. The used by relationship is applied for both the behavior aspect and
the structure aspect. (Note that, although the notation of the “used by” relationship resembles the
notation of the dependency relationship in UML, the relationship has a distinct meaning in
ArchiMate.)

Figure 50: Used By Notation

Example

The model below illustrates the used by relationship: an application interface (in this case, the
user interface of the application) is used by the Front office employee, while the Update customer
info service is used in the Process change of address business process.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

64 Technical Standard (2012)

Example 37: Used By

7.1.6 Access Relationship

The access relationship models the access of behavioral concepts to business or data objects.

The access relationship indicates that a process, function, interaction, service, or event “does
something” with a (business or data) object; e.g., create a new object, read data from the object,
write or modify the object data, or delete the object. The relationship can also be used to indicate
that the object is just associated with the behavior; e.g., it models the information that comes
with an event, or the information that is made available as part of a service. The arrow head, if
present, indicates the direction of the flow of information. (The access relationship should not be
confused with the UML dependency relationship, which uses a similar notation.)

Figure 51: Access Notation

Example

The model below illustrates the access relationship: the Create invoice sub-process writes/creates
the Invoice business object; the Send invoice sub-process reads the Invoice business object.

Example 38: Access

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 65

7.1.7 Association Relationship

An association models a relationship between objects that is not covered by another, more
specific relationship.

Association is mainly used, as in UML, to model relationships between business objects or data
objects that are not modeled by the standard relationships aggregation, composition, or
specialization. In addition to this, the association relationship is used to link the informational
concepts with the other concepts: a business object with a representation, a representation with a
meaning, and a business service with a purpose.

Figure 52: Association Notation

Example

The model illustrates a number of uses of the association relationship.

Example 39: Association

7.2 Dynamic Relationships

7.2.1 Triggering Relationship

The triggering relationship describes the temporal or causal relationships between processes,
functions, interactions, and events.

The triggering relationship is used to model the causal relationships between behavior concepts
in a process. No distinction is made between an active triggering relationship and a passive
causal relationship.

Figure 53: Triggering Notation

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

66 Technical Standard (2012)

Example

The model below illustrates that triggering relationships are mostly used to model causal
dependencies between (sub-)processes and/or events.

Example 40: Triggering

7.2.2 Flow Relationship

The flow relationship describes the exchange or transfer of, for example, information or value
between processes, function, interactions, and events.

The flow relationship is used to model the flow of, for example, information between behavior
concepts in a process. A flow relationship does not imply a causal or temporal relationship.

Figure 54: Flow Notation

Example

The model below shows a Claim assessment business function, which forwards decisions about
the claims to the Claim settlement business function. In order to determine the order in which the
claims should be assessed, Claim assessment makes use of schedule information received from
the Scheduling business function.

Example 41: Flow

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 67

7.3 Other Relationships

7.3.1 Grouping

The grouping relationship indicates that objects belong together based on some common
characteristic.

Similar to the UML package, the grouping relationship is used to group an arbitrary group of
model objects, which can be of the same type or of different types. In contrast to the aggregation
or composition relationships, there is no “overall” object of which the grouped objects form a
part.

Figure 55: Grouping Notation

Unlike the other language concepts, grouping has no formal semantics. It is only used to show
graphically that model elements have something in common. Model elements may belong to
multiple (overlapping) groups.

Example

In the model below, the grouping relationship is used to group business objects that belong to the
same information domain, in this case Financial administration.

Example 42: Grouping

7.3.2 Junction

A junction is used to connect dynamic relationships of the same type.

A junction is used in a number of situations to connect dynamic (triggering or flow)
relationships of the same type; e.g., to indicate splits or joins.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

68 Technical Standard (2012)

Figure 56: Junction Notation

Example

In the model below, a junction is used to denote an or-split (choice).

Example 43: Junction

7.3.3 Specialization Relationship

The specialization relationship indicates that an object is a specialization of another object.

The specialization relationship has been inspired by the generalization/specialization relationship
in UML class diagrams, but is applicable to specialize a wider range of concepts. The
specialization relationship can relate any instance of a concept with another instance of the same
concept.

Specialization is always possible between two instances of the same concept.

Figure 57: Specialization Notation

Example

The model below illustrates the use of the specialization relationship for a business process. In
this case the Take out travel insurance and Take out luggage insurance processes are a specialization
of a more generic insurance take out process.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 69

Example 44: Specialization

7.4 Summary of Relationships

Table 4 gives an overview of the ArchiMate relationships with their definitions.

Table 4: Relationships

Structural Relationships Notation
Association Association models a relationship between

objects that is not covered by another, more
specific relationship.

Access The access relationship models the access of
behavioral concepts to business or data
objects.

Used by The used by relationship models the use of
services by processes, functions, or
interactions and the access to interfaces by
roles, components, or collaborations.

Realization The realization relationship links a logical
entity with a more concrete entity that
realizes it.

Assignment The assignment relationship links units of
behavior with active elements (e.g., roles,
components) that perform them, or roles with
actors that fulfill them.

Aggregation The aggregation relationship indicates that an
object groups a number of other objects.

Composition The composition relationship indicates that
an object is composed of one or more other
objects.

Dynamic Relationships Notation
Flow The flow relationship describes the exchange

or transfer of, for example, information or
value between processes, function,
interactions, and events.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

70 Technical Standard (2012)

Triggering The triggering relationship describes the
temporal or causal relationships between
processes, functions, interactions, and events.

Other Relationships Notation
Grouping The grouping relationship indicates that

objects, of the same type or different types,
belong together based on some common
characteristic.

Junction A junction is used to connect relationships of
the same type.

Specialization The specialization relationship indicates that
an object is a specialization of another object.

7.5 Derived Relationships

The structural relationships described in the previous sections form an important category of
relationships to describe coherence. The structural relationships are listed in Table 4 in
ascending order by “strength”: association is the weakest structural relationship; composition is
the strongest. Part of the language definition is an abstraction rule that states that two
relationships that join at an intermediate element can be combined and replaced by the weaker of
the two.

If two structural relationships r:R and s:S are permitted between elements a, b, and c such that
r(a,b) and s(b,c), then a structural relationship t:T is also permitted, with t(a,c) and type T being
the weakest of R and S.

For the application of this rule, it is assumed that the assignment relationship has a direction (as
indicated by the role names in Figure 2, Figure 3, Figure 9, Figure 26, Figure 34, and Figure 44).

Transitively applying this property allows us to replace a “chain” of structural relationships
(with intermediate model elements) by the weakest structural relationship in the chain. For a
more formal description and derivation of this rule we refer to [13].

With this rule, it is possible to determine the “indirect” relationships that exist between model
elements without a direct relationship, which may be useful for, among other things, impact
analysis. An example is shown in Figure 48: assume that we would like to know what the impact
on the client is if the CRM system fails. In this case, an indirect “used by” relationship (the thick
arrow on the left) can be derived from this system to the Claim registration service (from the chain
assignment – used by – realization – used by – realization). No indirect (structural) relationship
is drawn between the CRM system and the Claims payment service.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 71

Example 45: Derived Structural Relationship

For the two dynamic relationships, the following rules apply:

• The begin and/or end point of a triggering or flow relationship between behavioral
elements (e.g., processes or functions) may be transferred to active structural elements
(e.g., business actors or application components) that are assigned to them.

• The begin and/or end point of a triggering or flow relationship between behavior elements
may be transferred to services that they realize.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

72 Technical Standard (2012)

Example 46: Derived Dynamic Relationship

It is important to note that all these derived relationships are also valid in ArchiMate. These are
not shown in the “barebones” metamodel illustrations shown in the previous sections, because
this would clutter up the diagrams. However, the table in Section A.2 shows all permitted
relationships between two elements in the language.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 73

8 Architecture Viewpoints

8.1 Introduction

Establishing and maintaining a coherent enterprise architecture is clearly a complex task,
because it involves many different people with differing backgrounds using various notations. In
order to get a handle on this complexity, researchers have initially focused on the definition of
architectural frameworks for classifying and positioning the various architectural descriptions
with respect to each other (e.g., the Zachman framework [5], [8]). A problem with looking at
enterprise architecture through the lens of an architectural framework is that it categorizes and
divides architectural descriptions rather than providing insight into their coherence.

ArchiMate advocates a more flexible approach in which architects and other stakeholders can
define their own views on the enterprise architecture. In this approach, views are specified by
viewpoints. Viewpoints define abstractions on the set of models representing the enterprise
architecture, each aimed at a particular type of stakeholder and addressing a particular set of
concerns. Viewpoints can both be used to view certain aspects in isolation, and for relating two
or more aspects.

The notion of viewpoint-oriented architecture has been around for a while in requirements and
software engineering. In the 1990s, a substantial number of researchers worked on what was
phrased as “the multiple perspectives problem” [14], [15]. By this term they referred to the
problem of how to organize and guide (software) development in a setting with many actors,
using diverse representation schemes, having diverse domain knowledge and different
development strategies. A general framework has been developed in order to address the diverse
issues related to this problem [14], [15]. In this framework, a viewpoint combines the notion of
“actor”, “role”, or “agent” in the development process with the idea of a “perspective” or “view”
which an actor maintains. More precisely, viewpoints are defined as loosely coupled, locally
managed, distributable objects; thus containing identity, state, and behavior. A viewpoint is more
than a “partial specification”; in addition, it contains partial knowledge of how to develop that
partial specification. These early ideas on viewpoint-oriented software engineering have found
their way into ISO/IEC 42010:2007 [1] on which we have based our definitions below.

As a result of these ideas, several architecture frameworks can be found in the field of literature,
which are essentially viewpoint classification schemes. For example, the Zachman framework
[5], [8] divides the enterprise architecture into 36 different enterprise-wide “architectures” (i.e.,
viewpoints). Tapscott and Caston’s framework [16] distinguishes five different and
complementing viewpoints: business, work, information, application, and technology. Kruchten
[17] introduces the “4+1” method, in which four views (logic, process, development, and
physical), each having its own notation, are coupled through a fifth view: the scenario view
illustrating the collaboration between the other four views.

Viewpoints are also prominently present in the ISO standardized Reference Model for Open
Distributed Processing (RM-ODP) [6]. The RM-ODP identifies five viewpoints from which to

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

74 Technical Standard (2012)

specify ODP systems, each focusing on a particular area of concern; i.e., enterprise, information,
computational, engineering, and technology. It is claimed that the ODP viewpoints form a
necessary and sufficient set to meet the needs of ODP standards. More recently, the term
“viewpoint” is also used in OMG’s Model Driven Architecture (MDA) initiative to refer to the
different model types; i.e., Platform-Independent Model (PIM) and Platform-Specific Model
(PSM) [18]. Hence, we conclude that the use of viewpoints and architectural views are well-
established concepts in software architecture.

In the domain of enterprise architecture, the TOGAF framework describes a taxonomy of views
for different categories of stakeholders. Next to this description of views, TOGAF also provides
guidelines for the development and use of viewpoints and views in enterprise architecture
models.

The views and viewpoints proposed by any of the above mentioned frameworks should not be
considered in isolation: views are inter-related and, often, it is exactly a combination of views
together with their underlying inter-dependency relationships that is the best way to describe and
communicate a piece of architecture. It should, however, be noted that views and viewpoints
have a limiting character. They are eventually a restriction of the whole system (and
architecture) to a partial number of aspects – a view is just a partial incomplete depiction of the
system.

8.2 Views, Viewpoints, and Stakeholders

Views are an ideal mechanism to purposefully convey information about architecture areas. In
general, a view is defined as a part of an architecture description that addresses a set of related
concerns and is addressed to a set of stakeholders. A view is specified by means of a viewpoint,
which prescribes the concepts, models, analysis techniques, and visualizations that are provided
by the view. Simply put, a view is what you see and a viewpoint is where you are looking from.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 75

Figure 58: Conceptual Model of Architectural Description (from [1])

Viewpoints are a means to focus on particular aspects of the architecture. These aspects are
determined by the concerns of a stakeholder with whom communication takes place. What
should and should not be visible from a specific viewpoint is therefore entirely dependent on the
argumentation with respect to a stakeholder’s concerns.

Viewpoints are designed for the purpose of communicating certain aspects of an architecture.
The communication enabled by a viewpoint can be strictly informative, but in general is bi-
directional. The architect informs stakeholders, and stakeholders give their feedback (critique or
consent) on the presented aspects. What is and what is not shown in a view depends on the scope
of the viewpoint and on what is relevant to the concerns of the stakeholder. Ideally, these are the
same; i.e., the viewpoint is designed with specific concerns of a stakeholder in mind. Relevance
to a stakeholder’s concern, therefore, is the selection criterion that is used to determine which
objects and relationships are to appear in a view.

The following are examples of stakeholders and concerns as a basis for the specification of
viewpoints:

• End user: For example, what are the consequences for his work and workplace?

• Architect: What is the consequence for the maintainability of a system, with respect to
corrective, preventive, and adaptive maintenance?

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

76 Technical Standard (2012)

• Upper-level management: How can we ensure our policies are followed in the
development and operation of processes and systems? What is the impact of decisions (on
personnel, finance, ICT, etc.)?

• Operational manager: Responsible for exploitation or maintenance: For example, what
new technologies are there to prepare for? Is there a need to adapt maintenance processes?
What is the impact of changes to existing applications? How secure are my systems?

• Project manager: Responsible for the development of new applications: What are the
relevant domains and their relationships? What is the dependence of business processes on
the applications to be built? What is their expected performance?

• Developer: What are the modifications with respect to the current situation that need to be
done?

8.3 Viewpoint Classification

An architect is confronted with many different types of stakeholders and concerns. To help him
in selecting the right viewpoints for the task at hand, we introduce a framework for the definition
and classification of viewpoints and views. The framework is based on two dimensions: purpose
and content. The following three types of architecture support the purpose dimension of
architecture views:

• Designing: Design viewpoints support architects and designers in the design process from
initial sketch to detailed design. Typically, design viewpoints consist of diagrams, like
those used in, for example, UML.

• Deciding: Decision support viewpoints assist managers in the process of decision-making
by offering insight into cross-domain architecture relationships, typically through
projections and intersections of underlying models, but also by means of analytical
techniques. Typical examples are cross-reference tables, landscape maps, lists, and
reports.

• Informing: Informing viewpoints help to inform any stakeholder about the enterprise
architecture, in order to achieve understanding, obtain commitment, and convince
adversaries. Typical examples are illustrations, animations, cartoons, flyers, etc.

The goal of this classification is to assist architects and others find suitable viewpoints given
their task at hand; i.e., the purpose that a view must serve and the content it should display. With
the help of this framework, it is easier to find typical viewpoints that might be useful in a given
situation. This implies that we do not provide an orthogonal categorization of each viewpoint
into one of three classes; these categories are not exclusive in the sense that a viewpoint in one
category cannot be applied to achieve another type of support. For instance, some decision
support viewpoints may be used to communicate to any other stakeholders as well.

For characterizing the content of a view we define the following abstraction levels:

• Details: Views on the detailed level typically consider one layer and one aspect from the
ArchiMate framework. Typical stakeholders are a software engineer responsible for
design and implementation of a software component or a process owner responsible for

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 77

effective and efficient process execution. Examples of views are a BPMN process diagram
and a UML class diagram.

• Coherence: At the coherence abstraction level, multiple layers or multiple aspects are
spanned. Extending the view to more than one layer or aspect enables the stakeholder to
focus on architecture relationships like process-uses-system (multiple layer) or
application-uses-object (multiple aspect). Typical stakeholders are operational managers
responsible for a collection of IT services or business processes.

• Overview: The overview abstraction level addresses both multiple layers and multiple
aspects. Typically, such overviews are addressed to enterprise architects and decision-
makers, such as CEOs and CIOs.

In Figure 59, the dimensions of purpose and abstraction level are visualized in a single picture,
together with examples of typical stakeholders that are addressed by these viewpoints. The top
half of this figure shows the purpose dimension, while the bottom half shows the level of
abstraction (or detail). Table 5 and Table 6 summarize the different purposes and abstraction
levels.

architect,
software

developer,
business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

product manager,
CIO, CEO

customer,
employee,

others

architect,
software

developer,
business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,
CIO, CEO

customer,
employee,

others

Figure 59: Classification of Enterprise Architecture Viewpoints

Table 5: Viewpoint Purpose

 Typical Stakeholders Purpose Examples
Designing architect, software

developer, business
process designer

navigate, design, support
design decisions, compare
alternatives

UML diagram, BPMN
diagram, flowchart, ER
diagram

Deciding manager, CIO, CEO decision-making cross-reference table,
landscape map, list, report

Informing employee, customer,
others

explain, convince, obtain
commitment

animation, cartoon,
process illustration, chart

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

78 Technical Standard (2012)

Table 6: Viewpoint Abstraction Levels

 Typical Stakeholders Purpose Examples
Details software engineer,

process owner
design, manage UML class diagram,

BPMN process diagram
Coherence operational managers analyze dependencies,

impact of-change
views expressing
relationships like “use”,
“realize”, and “assign”

Overview enterprise architect, CIO,
CEO

change management landscape map

8.4 Standard Viewpoints in ArchiMate

A viewpoint in ArchiMate is a selection of a relevant subset of the ArchiMate concepts (and
their relationships) and the representation of that part of an architecture that is expressed in
different diagrams. A set of such viewpoints was developed based on practical experience. Some
of these viewpoints have a scope that is limited to a single layer or aspect. Thus, the Business
Function and Business Process viewpoints show the two main perspectives on the business
behavior; the Organization viewpoint depicts the structure of the enterprise in terms of its
departments, roles, etc.; the Information Structure viewpoint describes the information and data
used; the Application Structure, Behavior, and Co-operation viewpoints contain the applications
and components and their mutual relationships; and the Infrastructure viewpoint shows the
infrastructure and platforms underlying the enterprise’s information systems in terms of
networks, devices, and system software. Other viewpoints link multiple layers and/or aspects:
the Actor Co-operation and Product viewpoints relate the enterprise to its environment; the
Application Usage viewpoint relates applications to their use in, for example, business
processes; and the Deployment viewpoint shows how applications are mapped onto the
underlying infrastructure.

In the following sections, the ArchiMate viewpoints are described in detail. For each viewpoint
the comprised concepts and relationships, the guidelines for the viewpoint use, and the goal and
target group and of the viewpoint are indicated. Furthermore, each viewpoint description
contains example models. For more details on the goal and use of viewpoints, refer to [2],
Chapter 6. The diagrams illustrating the permitted concepts and relationships for each viewpoint
do not show all permitted relationships: every element in a given viewpoint can have
composition, aggregation, and specialization relationships with elements of the same type;
furthermore, there are indirect relationships that can be derived as explained in Section 7.5.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 79

8.4.1 Introductory Viewpoint

The Introductory viewpoint forms a subset of the full ArchiMate language using a simplified
notation. It is typically used at the start of a design trajectory, when not everything needs to be
detailed yet, or to explain the essence of an architecture model to non-architects that require a
simpler, more intuitive notation. Another use of this basic, less formal viewpoint is that it tries to
avoid the impression that the architectural design is already fixed, an idea that may easily arise
when using a more formal, highly structured or detailed visualization.

We use a simplified notation for the concepts (e.g., a cloud to represent a network, as is common
in informal diagrams of the technical infrastructure), and for the relationships. All relationships
except “triggering” and “realization” are denoted by simple lines; “realization” has an arrow in
the direction of the realized service; “triggering” is also represented by an arrow. The concepts
are denoted with slightly thicker lines and rounded corners, which give a less formal impression.
The example below illustrates this notation. On purpose, the layout of this example is not as
“straight” as an ordinary architecture diagram; this serves to avoid the idea that the design is
already fixed.

Table 7: Introductory Viewpoint Description

Introductory Viewpoint
Stakeholders Enterprise architects, managers
Concerns Make design choices visible, convince stakeholders
Purpose Designing, deciding, informing

Abstraction Level Coherence, Overview, Detail

Layer Business, Application, and Technology layers (see also Figure 4)

Aspects Structure, behavior, information (see also Figure 4)

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

80 Technical Standard (2012)

Concepts and Relationships

Example

Damage claiming process

Customer
information

Claims
payment

CRM
application

 Policy
 administration

 Financial
 application

Claim
registration

Client ArchiSurance

MainframeUNIX
servers

Network

Register Accept Valuate Pay

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 81

8.4.2 Organization Viewpoint

The Organization viewpoint focuses on the (internal) organization of a company, a department, a
network of companies, or of another organizational entity. It is possible to present models in this
viewpoint as nested block diagrams, but also in a more traditional way, such as organizational
charts. The Organization viewpoint is very useful in identifying competencies, authority, and
responsibilities in an organization.

Table 8: Organization Viewpoint Description

Organization Viewpoint
Stakeholders Enterprise, process and domain architects, managers, employees,

shareholders
Concerns Identification of competencies, authority, and responsibilities
Purpose Designing, deciding, informing

Abstraction Level Coherence

Layer Business layer (see also Figure 4)

Aspects Structure (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

82 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 83

8.4.3 Actor Co-operation Viewpoint

The Actor Co-operation viewpoint focuses on the relationships of actors with each other and
their environment. A common example of this is the “context diagram”, which puts an
organization into its environment, consisting of external parties such as customers, suppliers, and
other business partners. It is very useful in determining external dependencies and collaborations
and shows the value chain or network in which the actor operates.

Another important use of the Actor Co-operation viewpoint is in showing how a number of co-
operating business actors and/or application components together realize a business process.
Hence, in this view, both business actors or roles and application components may occur.

Table 9: Actor Co-operation Viewpoint Description

Actor Co-operation Viewpoint
Stakeholders Enterprise, process, and domain architects
Concerns Relationships of actors with their environment
Purpose Designing, deciding, informing

Abstraction Level Detail

Layer Business layer (application layer) (see also Figure 4)

Aspects Structure, behavior (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

84 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 85

8.4.4 Business Function Viewpoint

The Business Function viewpoint shows the main business functions of an organization and their
relationships in terms of the flows of information, value, or goods between them. Business
functions are used to represent the most stable aspects of a company in terms of the primary
activities it performs, regardless of organizational changes or technological developments.
Therefore, the business function architecture of companies that operate in the same market often
exhibit close similarities. The business function viewpoint thus provides high-level insight in the
general operations of the company, and can be used to identify necessary competencies, or to
structure an organization according to its main activities.

Table 10: Business Function Viewpoint Description

Business Function Viewpoint
Stakeholders Enterprise, process, and domain architects
Concerns Identification of competencies, identification of main activities, reduction

of complexity
Purpose Designing

Abstraction Level Coherence

Layer Business layer (see also Figure 4)

Aspects Behavior, structure (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

86 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 87

8.4.5 Business Process Viewpoint

The Business Process viewpoint is used to show the high-level structure and composition of one
or more business processes. Next to the processes themselves, this viewpoint contains other
directly related concepts, such as:

• The services that a business process offers to the outside world, showing how a process
contributes to the realization of the company’s products

• The assignment of business processes to roles, which gives insight into the responsibilities
of the associated actors

• The information used by the business process

Each of these can be regarded as a “sub-view” of the business process view.

Table 11: Business Process Viewpoint Description

Business Process Viewpoint
Stakeholders Process and domain architects, operational managers
Concerns Structure of business processes, consistency and completeness,

responsibilities
Purpose Designing

Abstraction Level Detail

Layer Business layer (see also Figure 4)

Aspects Behavior (see also Figure 4)

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

88 Technical Standard (2012)

Concepts and Relationships

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 89

8.4.6 Business Process Co-operation Viewpoint

The Business Process Co-operation viewpoint is used to show the relationships of one or more
business processes with each other and/or with their environment. It can both be used to create a
high-level design of business processes within their context and to provide an operational
manager responsible for one or more such processes with insight into their dependencies.
Important aspects of business process co-operation are:

• Causal relationships between the main business processes of the enterprise

• Mapping of business processes onto business functions

• Realization of services by business processes

• Use of shared data

Each of these can be regarded as a “sub-view” of the business process co-operation view.

Table 12: Business Process Co-operation Viewpoint Description

Business Process Co-operation Viewpoint
Stakeholders Process and domain architects, operational managers
Concerns Dependencies between business processes, consistency and completeness,

responsibilities
Purpose Designing, deciding

Abstraction Level Coherence

Layer Business layer, application layer (see also Figure 4)

Aspects Behavior (see also Figure 4)

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

90 Technical Standard (2012)

Concepts and Relationships

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 91

8.4.7 Product Viewpoint

The Product viewpoint depicts the value that these products offer to the customers or other
external parties involved and shows the composition of one or more products in terms of the
constituting (business or application) services, and the associated contract(s) or other
agreements. It may also be used to show the interfaces (channels) through which this product is
offered, and the events associated with the product. A Product viewpoint is typically used in
product development to design a product by composing existing services or by identifying which
new services have to be created for this product, given the value a customer expects from it. It
may then serve as input for business process architects and others that need to design the
processes and ICT realizing these products.

Table 13: Product Viewpoint Description

Product Viewpoint
Stakeholders Product developers, product managers, process and domain architects
Concerns Product development, value offered by the products of the enterprise
Purpose Designing, deciding

Abstraction Level Coherence

Layer Business layer, application layer (see also Figure 4)

Aspects Behavior, information (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

92 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 93

8.4.8 Application Behavior Viewpoint

The Application Behavior viewpoint describes the internal behavior of an application; e.g., as it
realizes one or more application services. This viewpoint is useful in designing the main
behavior of applications, or in identifying functional overlap between different applications.

Table 14: Application Behavior Viewpoint Description

Application Behavior Viewpoint
Stakeholders Enterprise, process, application, and domain architects
Concerns Structure, relationships and dependencies between applications,

consistency and completeness, reduction of complexity
Purpose Designing

Abstraction Level Coherence, details

Layer Application layer (see also Figure 4)

Aspects Information, behavior, structure (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

94 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 95

8.4.9 Application Co-operation Viewpoint

The Application Co-operation viewpoint describes the relationships between applications
components in terms of the information flows between them, or in terms of the services they
offer and use. This viewpoint is typically used to create an overview of the application landscape
of an organization. This viewpoint is also used to express the (internal) co-operation or
orchestration of services that together support the execution of a business process.

Table 15: Application Co-operation Viewpoint Description

Application Co-operation Viewpoint
Stakeholders Enterprise , process, application, and domain architects
Concerns Relationships and dependencies between applications,

orchestration/choreography of services, consistency and completeness,
reduction of complexity

Purpose Designing

Abstraction Level Coherence, details

Layer Application layer (see also Figure 4)
Aspects Behavior, structure (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

96 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 97

8.4.10 Application Structure Viewpoint

The Application Structure viewpoint shows the structure of one or more applications or
components. This viewpoint is useful in designing or understanding the main structure of
applications or components and the associated data; e.g., to break down the structure of the
system under construction, or to identify legacy application components that are suitable for
migration/integration.

Table 16: Application Structure Viewpoint Description

Application Structure Viewpoint
Stakeholders Enterprise, process, application, and domain architects
Concerns Application structure, consistency and completeness, reduction of

complexity
Purpose Designing

Abstraction Level Details

Layer Application layer (see also Figure 4)

Aspects Structure, information (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

98 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 99

8.4.11 Application Usage Viewpoint

The Application Usage viewpoint describes how applications are used to support one or more
business processes, and how they are used by other applications. It can be used in designing an
application by identifying the services needed by business processes and other applications, or in
designing business processes by describing the services that are available. Furthermore, since it
identifies the dependencies of business processes upon applications, it may be useful to
operational managers responsible for these processes.

Table 17: Application Usage Viewpoint Description

Application Usage Viewpoint
Stakeholders Enterprise, process, and application architects, operational managers
Concerns Consistency and completeness, reduction of complexity
Purpose Designing, deciding

Abstraction Level Coherence

Layer Business and application layers (see also Figure 4)

Aspects Behavior, structure (see also Figure 4)

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

100 Technical Standard (2012)

Concepts and Relationships

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 101

8.4.12 Infrastructure Viewpoint

The Infrastructure viewpoint contains the software and hardware infrastructure elements
supporting the application layer, such as physical devices, networks, or system software (e.g.,
operating systems, databases, and middleware).

Table 18: Infrastructure Viewpoint Description

Infrastructure Viewpoint
Stakeholders Infrastructure architects, operational managers
Concerns Stability, security, dependencies, costs of the infrastructure
Purpose Designing

Abstraction Level Details

Layer Technology layer (see also Figure 4)

Aspects Behavior, structure (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

102 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 103

8.4.13 Infrastructure Usage Viewpoint

The Infrastructure Usage viewpoint shows how applications are supported by the software and
hardware infrastructure: the infrastructure services are delivered by the devices; system software
and networks are provided to the applications. This viewpoint plays an important role in the
analysis of performance and scalability, since it relates the physical infrastructure to the logical
world of applications. It is very useful in determining the performance and quality requirements
on the infrastructure based on the demands of the various applications that use it.

Table 19: Infrastructure Usage Viewpoint Description

Infrastructure Usage Viewpoint
Stakeholders Application, infrastructure architects, operational managers
Concerns Dependencies, performance, scalability
Purpose Designing

Abstraction Level Coherence

Layer Application and technology layers (see also Figure 4)

Aspects Behavior, structure (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

104 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 105

8.4.14 Implementation and Deployment Viewpoint

The Implementation and Deployment viewpoint shows how one or more applications are
realized on the infrastructure. This comprises the mapping of (logical) applications and
components onto (physical) artifacts, such as Enterprise Java Beans, and the mapping of the
information used by these applications and components onto the underlying storage
infrastructure; e.g., database tables or other files. Deployment views play an important role in the
analysis of performance and scalability, since they relate the physical infrastructure to the logical
world of applications. In security and risk analysis, deployment views are used to identify, for
example, critical dependencies and risks.

Table 20: Implementation and Deployment Viewpoint Description

Implementation and Deployment Viewpoint
Stakeholders Application and infrastructure architects, operational managers
Concerns Dependencies, security, risks
Purpose Designing

Abstraction Level Coherence

Layer Application layer, technology layer (see also Figure 4)

Aspects Information, behavior, structure (see also Figure 4)

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

106 Technical Standard (2012)

Concepts and Relationships

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 107

8.4.15 Information Structure Viewpoint

The Information Structure viewpoint is comparable to the traditional information models created
in the development of almost any information system. It shows the structure of the information
used in the enterprise or in a specific business process or application, in terms of data types or
(object-oriented) class structures. Furthermore, it may show how the information at the business
level is represented at the application level in the form of the data structures used there, and how
these are then mapped onto the underlying infrastructure; e.g., by means of a database schema.

Table 21: Information Structure Viewpoint Description

Information Structure Viewpoint
Stakeholders Domain and information architects
Concerns Structure and dependencies of the used data and information, consistency

and completeness
Purpose Designing

Abstraction Level Details

Layer Business layer, application layer, technology layer (see also Figure 4)

Aspects Information (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

108 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 109

8.4.16 Service Realization Viewpoint

The Service Realization viewpoint is used to show how one or more business services are
realized by the underlying processes (and sometimes by application components). Thus, it forms
the bridge between the business products viewpoint and the business process view. It provides a
“view from the outside” on one or more business processes.

Table 22: Service Realization Viewpoint Description

Service Realization Viewpoint
Stakeholders Process and domain architects, product and operational managers
Concerns Added-value of business processes, consistency and completeness,

responsibilities
Purpose Designing, deciding

Abstraction Level Coherence

Layer Business layer (application layer) (see also Figure 4)

Aspects Behavior, structure, information (see also Figure 4)

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

110 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 111

8.4.17 Layered Viewpoint

The Layered viewpoint pictures several layers and aspects of an enterprise architecture in one
diagram. There are two categories of layers, namely dedicated layers and service layers. The
layers are the result of the use of the “grouping” relationship for a natural partitioning of the
entire set of objects and relationships that belong to a model. The infrastructure, the application,
the process, and the actors/roles layers belong to the first category. The structural principle
behind a fully layered viewpoint is that each dedicated layer exposes, by means of the
“realization” relationship, a layer of services, which are further on “used by” the next dedicated
layer. Thus, we can easily separate the internal structure and organization of a dedicated layer
from its externally observable behavior expressed as the service layer that the dedicated layer
realizes. The order, number, or nature of these layers are not fixed, but in general a (more or
less) complete and natural layering of an ArchiMate model should contain the succession of
layers depicted in the example given below. However, this example is by no means intended to
be prescriptive. The main goal of the Layered viewpoint is to provide overview in one diagram.
Furthermore, this viewpoint can be used as support for impact of change analysis and
performance analysis or for extending the service portfolio.

Table 23: Layered Viewpoint Description

Layered Viewpoint
Stakeholders Enterprise, process, application, infrastructure, and domain architects
Concerns Consistency, reduction of complexity, impact of change, flexibility
Purpose Designing, deciding, informing

Abstraction Level Overview

Layer Business layer, application layer, technology layer (see also Figure 4)

Aspects Information, behavior, structure (see also Figure 4)

Concepts and Relationships

All concepts and all relationships.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

112 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 113

8.4.18 Landscape Map Viewpoint

A landscape map is a matrix that represents a three-dimensional co-ordinate system that
represents architectural relationships. The dimensions of the landscape maps can be freely
chosen from the architecture that is being modeled. In practice, often dimensions are chosen
from different architectural domains; for instance, business functions, application components,
and products. Note that a landscape map uses the ArchiMate concepts, but not the standard
notation of these concepts.

In most cases, the vertical axis represents behavior like business processes or functions; the
horizontal axis represents “cases” for which those functions or processes must be executed, such
as different products, services market segments, or scenarios; the third dimension represented by
the cells of the matrix is used for assigning resources like information systems, infrastructure, or
human resources. The value of cells can be visualized by means of colored rectangles with text
labels. Obviously, landscape maps are a more powerful and expressive representation of
relationships than traditional cross tables. They provide a practical manner for the generation and
publication of overview tables for managers, process, and system owners. Furthermore,
architects may use landscape maps as a resource allocation instrument and as an analysis tool for
the detection of patterns and changes in this allocation.

Table 24: Landscape Map Viewpoint Description

Landscape Map Viewpoint
Stakeholders Enterprise architects, top managers: CEO, CIO
Concerns Readability, management and reduction of complexity, comparison of

alternatives
Purpose Deciding

Abstraction Level Overview

Layer Business layer, application layer, technology layer (see also Figure 4)

Aspects Information, behavior, structure (see also Figure 4)

Concepts and Relationships

All concepts and relationships.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

114 Technical Standard (2012)

Example

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business
Functions

Products

Financial
Handling

Car insurance
application

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 115

9 Language Extension Mechanisms

Every specific purpose and usage of an architecture modeling language brings about its own
specific demands on the language. Yet, it should be possible to use a language for only a limited,
though non-specific, modeling purpose. Therefore, the ArchiMate core language, embedded in
the ArchiMate metamodel, as described in Chapters 2 to 7, contains only the basic concepts and
relationships that serve general enterprise architecture modeling purposes. However, the
language should also be able to facilitate, through extension mechanisms, specialized, or
domain-specific purposes, such as:

• Support for specific types of model analysis

• Support the communication of architectures

• Capture the specifics of a certain application domain (e.g., the financial sector)

The argument behind this statement is to provide a means to allow extensions of the core
language that are tailored towards such specific domains or applications, without burdening the
core with a lot of additional concepts and notation which most people would barely use. The
remainder of this section is devoted to a number of possible extensions mechanisms that, in
addition to the core, are or can become part of the ArchiMate language.

9.1 Adding Attributes to ArchiMate Concepts and Relationships

As said before, the core of ArchiMate contains only the concepts and relationships that are
necessary for general architecture modeling. However, users might want to be able to, for
example, perform model-based performance or cost calculations, or to attach supplementary
information (textual, numerical, etc.) to the model elements. A simple way to enrich ArchiMate
concepts and relationships in a generic way is to add supplementary information by means of a
“profiling” specialization mechanism (see also [11]). A profile is a data structure which can be
defined separate from the ArchiMate language, but can be dynamically coupled with concepts or
relationships; i.e., the user of the language is free to decide whether and when the assignment of
a profile to a model element is necessary. Profiles can be specified as sets of typed attributes, by
means of a profile definition language. Each of these attributes may have a default value that can
be changed by the user.

We can distinguish two types of profiles:

• Pre-defined profiles: These are profiles that have a predefined attribute structure and can
be implemented beforehand in any tool supporting the ArchiMate language. Examples of
such profiles are sets of attributes for ArchiMate concepts and relationships that have to
be specified in order to execute common types of analysis.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

116 Technical Standard (2012)

• User-defined profiles: Through a profile definition language, the user is able to define
new profiles, thus extending the definition of ArchiMate concepts or relationships with
supplementary attribute sets.

Example

Table 25 below shows possible profiles with input attributes needed for certain types of cost and
performance analysis of architecture models [19]. Each “used by” relationship may have a
weight (indicating the average number of uses); each (business, application, or infrastructure)
“service” may have fixed and variable costs and an (average) service time; and each structure
element (e.g., business role, business actor, application component, device) may have fixed and
variable costs and a capacity.

Table 25: Profile Example

“Used By” Profile “Service” Profile “Structure Element” Profile
Attribute Type Attribute Type Attribute Type
Weight Real Fixed cost Currency Fixed cost Currency
 Variable cost Currency Variable cost Currency
 Service time Time Capacity Integer

9.2 Specialization of Concepts

Specialization is a simple and powerful way to define new concepts based on the existing ones.
Specialized concepts inherit the properties of their “parent” concepts, but additional restrictions
with respect to their use may apply. For example, some of the relationships that apply for the
“parent” concept need not be allowed for the specialization. A specialized concept strongly
resembles a stereotype as it is used in UML. Specialization of concepts provides extra flexibility,
as it allows organizations or individual users to customize the language to their own preferences
and needs, while the underlying precise definition of the concepts is conserved. This also implies
that analysis and visualization techniques developed for the ArchiMate language still apply when
the specialized concepts are used.

Figure 60 shows a number of examples of concept specializations that have proven to be useful
in several practical cases.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 117

Figure 60: More Examples of Specialized Concepts

Also, the concepts in the layer-specific metamodels can be considered specializations of the
concepts in the generic metamodel of Chapter 2.

As the above examples indicate, we may introduce a new graphical notation for a specialized
concept, but usually with a resemblance to the notation of the parent concept; e.g., by adding or
changing the icon. It is also possible to use a <<stereotype>>-notation as in UML. Finally, for a
specialized concept, certain attributes may be predefined, as described in the previous section.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

118 Technical Standard (2012)

10 Motivation Extension

10.1 Motivation Aspect Metamodel

Figure 61 shows the metamodel of motivational concepts. It includes the actual motivations or
intentions – i.e., goals, principles, requirements, and constraints – and the sources of these
intentions; i.e., stakeholders, drivers, and assessments.

Motivational elements are related to the core elements via the requirement or constraint concept.

Figure 61: Motivation Extension Metamodel

Note: This figure does not show all permitted relationships: every non-abstract element in the
Motivation extension can have aggregation and specialization relationships with
elements of the same type.

10.2 Motivational Concepts

Motivational concepts are used to model the motivations, or reasons, that underlie the design or
change of some enterprise architecture. These motivations influence, guide, and constrain the
design.

It is essential to understand the factors, often referred to as drivers, which influence the
motivational elements. They can originate from either inside or outside the enterprise. Internal
drivers, also called concerns, are associated with stakeholders, which can be some individual
human being or some group of human beings, such as a project team, enterprise, or society.
Examples of such internal drivers are customer satisfaction, compliance to legislation, or

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 119

profitability. It is common for enterprises to undertake an assessment of these drivers; e.g., using
a SWOT analysis, in order to respond in the best way.

The actual motivations are represented by goals, principles, requirements, and constraints. Goals
represent some desired result – or end – that a stakeholder wants to achieve; e.g., increasing
customer satisfaction by 10%. Principles and requirements represent desired properties of
solutions – or means – to realize the goals. Principles are normative guidelines that guide the
design of all possible solutions in a given context. For example, the principle “Data should be
stored only once” represents a means to achieve the goal of “Data consistency” and applies to all
possible designs of the organization’s architecture. Requirements represent formal statements of
need, expressed by stakeholders, which must be met by the architecture or solutions. For
example, the requirement “Use a single CRM system” conforms to the aforementioned principle
by applying it to the current organization’s architecture in the context of the management of
customer data.

10.2.1 Stakeholder

A stakeholder is defined as the role of an individual, team, or organization (or classes thereof)
that represents their interests in, or concerns relative to, the outcome of the architecture.

This definition is based on the definition in TOGAF [4]. A stakeholder has one or more interests
in, or concerns about, the organization and its enterprise architecture. In order to direct efforts to
these interests and concerns, stakeholders change, set, and emphasize goals. Examples of
stakeholders are the CEO, the board of directors, shareholders, customers, business, and
application architects, but also legislative authorities. The name of a stakeholder should
preferably be a noun.

Figure 62: Stakeholder Notation

Example

The model below illustrates the modeling of stakeholders. Two main stakeholders are modeled:
the Board of ArchiSurance and Customer. The Board is composed of three other stakeholders: the
CIO, the CEO, and the CFO.

Example 47: Stakeholder

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

120 Technical Standard (2012)

10.2.2 Driver

A driver is defined as something that creates, motivates, and fuels the change in an organization.

Drivers may be internal, in which case they are usually associated with a stakeholder. Examples
of internal drivers (or “concerns”) are “Customer satisfaction”, “Compliance to legislation”, and
“Profitability”. Drivers of change may also be external; e.g., economic changes or changing
legislation. The name of a driver should preferably be a noun.

Figure 63: Driver Notation

Example

The model below illustrates the modeling of internal and external drivers of change.
Stakeholders CEO and Customer share a common concern Customer satisfaction, which is an
internal driver of change. The stakeholder CEO also has the satisfaction of the company’s
shareholders as a concern. This driver can be decomposed into two sub-drivers: Profit and Stock
value. In addition to these internal drivers, there is an external driver Economic changes, which
influences the stock value.

Example 48: Driver

10.2.3 Assessment

An assessment is defined as the outcome of some analysis of some driver.

An assessment may reveal strengths, weaknesses, opportunities, or threats for some area of
interest. These outcomes need to be addressed by adjusting existing goals or setting new ones,
which may trigger changes to the enterprise architecture.

Strengths and weaknesses are internal to the organization. Opportunities and threats are external
to the organization. Weaknesses and threats can be considered as problems that need to be
addressed by goals that “negate” the weaknesses and threats. Strengths and opportunities may be

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 121

translated directly into goals. For example, the weakness “customers complain about the
helpdesk” can be addressed by defining the goal “improve helpdesk”. Or, the opportunity
“customers favor insurances that can be managed on-line” can be addressed by the goal
“introduce on-line portfolio management”. The name of an assessment should preferably be a
noun or a (very) short sentence.

Figure 64: Assessment Notation

Example

The model below describes the assessments of driver Customer satisfaction and the sub-concern
Helpdesk support. In this case, all assessments represent weaknesses. Concerning Customer
satisfaction in general, customers complain and even leave ArchiSurance. The assessment
Complaining customers is further detailed and divided into four complaints: the lack of insight into
the status of a claim, the inconvenient way of submitting claims, the lack of insight into the
customer’s portfolio, and the inconsistency and incompleteness of customer information.
Concerning Helpdesk support in particular, customers experience long waiting queues and high
service times.

Example 49: Assessment

10.2.4 Goal

A goal is defined as an end state that a stakeholder intends to achieve.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

122 Technical Standard (2012)

In principle, an end can represent anything a stakeholder may desire, such as a state of affairs, or
a produced value. Examples of goals are: to increase profit, to reduce waiting times at the
helpdesk, or to introduce on-line portfolio management.

Goals are generally expressed using qualitative words; e.g., “increase”, “improve”, or “easier”.
Goals can also be decomposed; e.g., “increase profit” can be decomposed into the goals “reduce
cost” and “increase sales”. However, it is also very common to associate concrete objectives
with goals, which can be used to describe both the quantitative and time-related measures which
are essential to describe the desired state, and when it should be achieved.

Figure 65: Goal Notation

Example

The model below illustrates the modeling of goals to address the assessments of the driver Costs:
the applications costs and the costs of employees are too high. The former assessment is
addressed by the goals Reduce maintenance costs and Reduce direct application costs (of usage). The
latter assessment is addressed by the goal Reduce workload employees, which is decomposed into
Reduce manual work and Reduce interaction with customer.

Example 50: Goal

10.2.5 Requirement

A requirement is defined as a statement of need that must be realized by a system.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 123

In the end, a business goal must be realized by a plan or concrete change goal, which may or
may not require a new system or changes to an existing system.

The term “system” is used in its general meaning; i.e., as a group of (functionally) related
elements, where each element may be considered as a system again. Therefore, a system may
refer to any active structural element, behavioral element, or passive structural element of some
organization, such as a business actor, application component, business process, application
service, business object, or data object.

Requirements model the properties of these elements that are needed to achieve the “ends” that
are modeled by the goals. In this respect, requirements represent the “means” to realize goals.

During the design process, goals may be decomposed until the resulting sub-goals are
sufficiently detailed to enable their realization by properties that can be exhibited by systems. At
this point, goals can be realized by requirements that assign these properties to the systems.

For example, one may identify two alternative requirements to realize the goal to improve
portfolio management: (i) by assigning a personal assistant to each customer, or (ii) by
introducing on-line portfolio management. The former requirement can be realized by a human
actor and the latter by a software application. These requirements can be decomposed further to
define the requirements on the human actor and the software application in more detail.

Figure 66: Requirement Notation

Example

The model below illustrates the decomposition of goals towards requirements. The goals
Facilitate self-service and Make customer interaction more effective result from the successive
decomposition of the goals Reduce workload employees and Reduce interaction with customer. The
goal Facilitate self-service can be realized by the alternative requirements Provide on-line portfolio
service and Provide on-line information service. Both requirements are realized by some software
application. In addition, the requirement Provide on-line portfolio service may realize the goal
Improve portfolio management. Alternatively, this goal can be realized by assigning a personal
assistant to each customer.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

124 Technical Standard (2012)

Example 51: Requirement

10.2.6 Constraint

A constraint is defined as a restriction on the way in which a system is realized.

In contrast to a requirement, a constraint does not prescribe some intended functionality of the
system to be realized, but imposes a restriction on the way in which the system may be realized.
This may be a restriction on the implementation of the system (e.g., specific technology that is to
be used), or a restriction on the implementation process (e.g., time or budget constraints).

Figure 67: Constraint Notation

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 125

Example

For the realization of a new portfolio management application, two constraints are imposed, as
shown in the model below: for the realization of the application, Java should be used, and the
budget of the implementation project is limited to 500k Euro.

Example 52: Constraint

10.2.7 Principle

A principle is defined as a normative property of all systems in a given context, or the way in
which they are realized.

Principles are strongly related to goals and requirements. Similar to requirements, principles
define intended properties of systems. However, in contrast to requirements, principles are
broader in scope and more abstract than requirements. A principle defines a general property that
applies to any system in a certain context. A requirement defines a property that applies to a
specific system.

A principle needs to be made specific for a given system by means of one or more requirements,
in order to enforce that the system conforms to the principle. For example, the principle
“Information management processes comply with all relevant laws, policies, and regulations” is
realized by the requirements that are imposed by the actual laws, policies, and regulations that
apply to the specific system under design.

A principle is motivated by some goal. For example, the aforementioned principle may be
motivated by the goal to maintain a good reputation and/or the goal to avoid penalties. The
principle provides a means to realize its motivating goal, which is generally formulated as a
guideline. This guideline constrains the design of all systems in a given context by stating the
general properties that are required from any system in this context to realize the goal. Principles
are intended to be more stable than requirements in the sense that they do not change as quickly
as requirements may do. Organizational values, best practices, and design knowledge may be
reflected and made applicable in terms of principles.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

126 Technical Standard (2012)

Figure 68: Principle Notation

Example

The model below illustrates the use of principles. Principle Systems should be customer facing is
modeled as a means to realize the goals Reduce interaction with customer and Reduce manual work.
The principle is further specialized into the requirements Provide on-line portfolio service and
Provide on-line information service to apply the principle to the actual systems (architecture) under
design.

Example 53: Principle

10.2.8 Summary of Motivational Concepts

Table 34 gives an overview of the motivational concepts, with their definitions.

Table 26: Motivational Concepts

Concept Definition Notation
Stakeholder The role of an individual, team, or

organization (or classes thereof) that
represents their interests in, or concerns
relative to, the outcome of the architecture.

Driver Something that creates, motivates, and fuels
the change in an organization.

Assessment The outcome of some analysis of some

driver.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 127

Concept Definition Notation
Goal An end state that a stakeholder intends to

achieve.

Requirement A statement of need that must be realized by
a system.

Constraint A restriction on the way in which a system is
realized.

Principle A normative property of all systems in a
given context, or the way in which they are
realized.

10.3 Relationships

The metamodels and examples from the previous sections show the different types of
relationships that can be used between two motivational elements and between one motivational
element and one core element. This section provides a more precise description of these
relationships.

10.3.1 Aggregation Relationship

The aggregation relationship models that some intention is divided into multiple intentions.

The aggregation relationship is generally used to describe an intention in more detail by
decomposing the intention into multiple, more concrete intentions.

Figure 69: Aggregation Notation

Alternatively, an aggregation can be expressed by nesting the model elements.

Example

The models below show the two ways to express the decomposition of goal Reduce workload
employees into the sub goals Reduce interaction with customer and Reduce manual work.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

128 Technical Standard (2012)

Example 54: Aggregation (Decomposition)

10.3.2 Realization Relationship

The realization relationship models that some end is realized by some means.

The realization relationship is used to represent the following means-end relationships:

1. A goal (the end) is realized by a principle, constraint, or requirement (the means).

2. A principle (the end) is realized by a constraint or requirement (the means).

3. A requirement (the end) is realized by a system (the means), which can be represented by
an active structure element, a behavior element, or a passive structure element.

Figure 70: Realization Notation

Example

The model below illustrates several ways to use the realization relationship. Principle Systems
should be customer facing is a means to realize the goal Reduce interaction with customer.
Requirement Provide on-line portfolio service is a means to realize sub-goal Facilitate self-service, and
to realize the principle Systems should be customer facing. And this requirement can be realized by
the business service On-line portfolio service.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 129

Example 55: Realization (Means-End)

10.3.3 Influence Relationship

The influence relationship models that some motivational element has a positive or negative
influence on another motivational element.

The influence relationship is used to describe that some motivational element may influence (the
realization of) another motivational element. In general, a motivational element is realized to a
certain degree. An influence by some other motivational element may affect this degree
positively or negatively, depending on the degree in which this other motivational element is
satisfied itself. For example, the degree in which the goal to increase customer satisfaction is
realized may be represented by the percentage of satisfied customers that participate in a market
interview. This percentage may be influenced positively by, for example, the goal to improve the
company’s reputation; i.e., a higher degree of improvement results in a higher increase in
customer satisfaction. On the other hand, the goal to lay off employees may influence the
company’s reputation negatively; i.e., more lay-offs could result in a lower increase (or even
decrease) in the company’s reputation. And thus (indirectly), the goal to increase customer
satisfaction may also be influenced negatively.

A positive influence relationship does not imply that the realization of the influenced
motivational element depends on the contributing intention. The necessary means to realize
some motivational element are modeled using the realization relationship.

A negative influence relationship does not imply that the realization of the influenced
motivational element is completely excluded by the contributing motivational element.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

130 Technical Standard (2012)

The influence relationship re-uses the notation of the flow relationship, signifying a “flow of
influence”. An attribute can be used to indicate the direction and strength of the influence. The
choice of possible attribute values is left to the modeler; e.g., {++, +, 0, -, --} or [0..10].5

Figure 71: Influence Notation

Example

The model below illustrates the use of the influence relationship for making a trade-off between
the two requirements that realize the goal Improve portfolio management. The goal Increase
customer satisfaction and the principle Systems should be customer facing are used as trade-off
criteria. Both requirements positively influence the intended increase of customer satisfaction.
The requirement of using a personal assistant scores a little better for this criterion. However, the
requirement scores a lot worse for the customer-facing criterion.

The positive score of the requirement Provide on-line portfolio service for the customer-facing
principle is consistent with the description of the requirement realizing the principle in an earlier
example.

Example 56: Influence

10.3.4 Summary of Relationships

Table 27 gives an overview of the relationships, with their definition, that involve one or more
intentional concepts.

5 This standard abstracts from the specification of the functions that describe the exact relation between the degree of
realization of the related intentions and the strength factor.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 131

Table 27: Relationships

Intentional Relationships Notation
Aggregation Aggregation models that some intentional

element is divided into multiple intentional
elements.

Realization Realization models that some end is
realized by some means.

Influence Influence models that some motivational
element has a positive or negative influence
on the realization of another motivational
element.

10.4 Cross-Aspect Dependencies

The purpose of the motivation extension is to model the motivation behind the core elements in
some enterprise architecture. Therefore, it should be possible to relate motivational elements to
core elements.

As shown in Figure 72, a requirement or constraint can be related directly to a core element by
means of a realization relationship. Other motivational elements cannot be related directly to
core elements, but only indirectly by means of derived relationships via requirements or
constraints.

Figure 72: Relationships between Motivation Extension and the ArchiMate Core Concepts

Also, a business actor may be assigned to a stakeholder, which can be seen as a motivational role
(as opposed to an operational business role) that an actor may fulfill.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

132 Technical Standard (2012)

10.5 Viewpoints

A number of standard viewpoints for modeling motivational aspects have been defined. Each of
these viewpoints presents a different perspective on modeling the motivation that underlies some
enterprise architecture and allows a modeler to focus on certain aspects. Therefore, each
viewpoint considers only a selection of the concepts and relationships that have been described
in the preceding sections.

The following viewpoints are distinguished:

• The stakeholder viewpoint, which focuses on modeling the stakeholders, drivers, the
assessments of these drivers, and the initial goals to address these drivers and assessments

• The goal realization viewpoint, which focuses on refining the initial, high-level goals into
more concrete (sub-)goals using the aggregation relationship, and finally into
requirements and constraints using the realization relationship

• The goal contribution viewpoint, which focuses on modeling and analyzing the influence
relationships between goals (and requirements)

• The principles viewpoint, which focuses on modeling the relevant principles and the goals
that motivate these principles

• The requirements realization viewpoint, which focuses on modeling the realization of
requirements and constraints by means of core elements, such as actors, services,
processes, application components, etc.

• The motivation viewpoint, which covers the entire motivational aspect and allows one to
use all motivational elements

All viewpoints are separately described below. For each viewpoint the comprised concepts and
relationships, the guidelines for the viewpoint use, and the goal and target group and of the
viewpoint are indicated. Furthermore, each viewpoint description contains example models. For
more details on the goal and use of viewpoints, refer to [2], Chapter 7.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 133

10.5.1 Stakeholder Viewpoint

The stakeholder viewpoint allows the analyst to model the stakeholders, the internal and external
drivers for change, and the assessments (in terms of strengths, weaknesses, opportunities, and
threats) of these drivers. Also, the links to the initial (high-level) goals that address these
concerns and assessments may be described. These goals form the basis for the requirements
engineering process, including goal refinement, contribution and conflict analysis, and the
derivation of requirements that realize the goals.

Table 28: Stakeholder Viewpoint Description

Stakeholder Viewpoint
Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers
Concerns Architecture mission and strategy, motivation
Purpose Designing, deciding, informing

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

134 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 135

10.5.2 Goal Realization Viewpoint

The goal realization viewpoint allows a designer to model the refinement of (high-level) goals
into more concrete goals, and the refinement of concrete goals into requirements or constraints
that describe the properties that are needed to realize the goals. The refinement of goals into sub-
goals is modeled using the aggregation relationship. The refinement of goals into requirements is
modeled using the realization relationship.

In addition, the principles may be modeled that guide the refinement of goals into requirements.

Table 29: Goal Realization Viewpoint Description

Goal Realization Viewpoint
Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers
Concerns Architecture mission, strategy and tactics, motivation
Purpose Designing, deciding

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

136 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 137

10.5.3 Goal Contribution Viewpoint

The goal contribution viewpoint allows a designer or analyst to model the influence relationships
between goals and requirements. The resulting views can be used to analyze the impact that
goals have on each other or to detect conflicts between stakeholder goals.

Typically, this viewpoint may be used after goals have, to some extent, been refined into sub-
goals and, possibly, into requirements. Therefore, aggregation and realization relationships may
also be shown in this viewpoint.

Table 30: Goal Contribution Description

Goal Contribution Viewpoint
Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers
Concerns Architecture mission, strategy and tactics, motivation
Purpose Designing, deciding

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

138 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 139

10.5.4 Principles Viewpoint

The principles viewpoint allows the analyst or designer to model the principles that are relevant
to the design problem at hand, including the goals that motivate these principles. In addition,
relationships between principles, and their goals, can be modeled. For example, principles may
influence each other positively or negatively.

Table 31: Principles Viewpoint Description

Principles Viewpoint
Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers
Concerns Architecture mission and strategy, motivation
Purpose Designing, deciding, informing

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

140 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 141

10.5.5 Requirements Realization Viewpoint

The requirements realization viewpoint allows the designer to model the realization of
requirements by the core elements, such as business actors, business services, business
processes, application services, application components, etc. Typically, the requirements result
from the goal refinement viewpoint.

In addition, this viewpoint can be used to refine requirements into more detailed requirements.
The aggregation relationship is used for this purpose.

Table 32: Requirements Realization Viewpoint Description

Requirements Realization Viewpoint
Stakeholders Enterprise and ICT architects, business analysts, requirements managers
Concerns Architecture strategy and tactics, motivation
Purpose Designing, deciding, informing

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

142 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 143

10.5.6 Motivation Viewpoint

The motivation viewpoint allows the designer or analyst to model the motivation aspect, without
focusing on certain elements within this aspect. For example, this viewpoint can be used to
present a complete or partial overview of the motivation aspect by relating stakeholders, their
primary goals, the principles that are applied, and the main requirements on services, processes,
applications, and objects.

Table 33: Motivation Viewpoint Description

Motivation Viewpoint
Stakeholders Enterprise and ICT architects, business analysts, requirements managers
Concerns Architecture strategy and tactics, motivation
Purpose Designing, deciding, informing

Abstraction Level Overview, Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

144 Technical Standard (2012)

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 145

11 Implementation and Migration Extension

11.1 Implementation and Migration Extension Metamodel

Figure 73 shows the metamodel of implementation and migration concepts.

Figure 73: Implementation and Migration Extension Metamodel

Conceptually, a work package is similar to a business process, in that it consists of a set of
causally related tasks, aimed at producing a well-defined result. However, a work package is a
unique, “one-off” process. Still, a work package can be described in a way very similar to the
description of a process.

11.2 Implementation and Migration Concepts

11.2.1 Work Package

The central behavioral concept is a work package. A work package has a clearly defined
beginning and end date, and a well-defined set of goals or results. The work package concept can
be used to model projects, but also, e.g., sub-projects or tasks within a project, programs, or
project portfolios.

A work package is defined as a series of actions designed to accomplish a unique goal within a
specified time.

Figure 74: Work Package Notation

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

146 Technical Standard (2012)

Example

The model below illustrates a model of a work package that models a program to rationalize the
application portfolio. This program consists of two projects that are executed sequentially, each
of them also modeled as a work package. First, a project is carried out to integrate the back-
office systems (except for the CRM systems) into a single back-office system. Next, a project is
carried out to integrate the CRM systems.

Example 57: Work Package

11.2.2 Deliverable

Work packages produce deliverables. These may be results of any kind; e.g., reports, papers,
services, software, physical products, etc., or intangible results such as organizational change. A
deliverable may also be the implementation of (a part of) an architecture.

A deliverable is defined as a precisely-defined outcome of a work package.

Figure 75: Deliverable Notation

Example

In PRINCE2, the deliverables (products) of a project are leading. The overall result of a project
is described in a “project product description”; the hierarchical decomposition of this product in
sub-products is shown in a Product Breakdown Structure, an example of which is shown in the
model below.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 147

Example 58: Deliverable

11.2.3 Plateau

An important premise in TOGAF is that the various architectures are described for different
stages in time. In each of the Phases B, C, and D of the ADM, a Baseline Architecture and
Target Architecture are created, describing the current situation and the desired future situation.
In Phase E (Opportunities and Solutions), so-called Transition Architectures are defined,
showing the enterprise at incremental states reflecting periods of transition between the Baseline
and Target Architectures. Transition Architectures are used to allow for individual work
packages and projects to be grouped into managed portfolios and programs, illustrating the
business value at each stage.

In order to support this, we introduce the plateau concept.

A plateau is defined as a relatively stable state of the architecture that exists during a limited
period of time.

Figure 76: Plateau Notation

Example

The model below illustrates the use of the plateau concept to model the migration from Baseline
to Target Architecture, defining a number of intermediate (possibly alternative) Transition
Architectures.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

148 Technical Standard (2012)

Example 59: Plateau

11.2.4 Gap

A gap is an important outcome of a gap analysis in Phases B, C, and D of the TOGAF ADM,
and forms an important input for the subsequent implementation and migration planning. The
gap concept is linked to two plateaus (e.g., Baseline and Target Architecture, or two subsequent
Transition Architectures), and represents the differences between these plateaus.

A gap is defined as an outcome of a gap analysis between two plateaus.

Figure 77: Gap Notation

Example

The model below illustrates the gap between the Baseline and Target infrastructure, showing
which of the elements of the infrastructure are added to or removed from the Baseline.

Example 60: Gap

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 149

11.2.5 Summary of Implementation and Migration Concepts

Table 34 gives an overview of the implementation and migration concepts, with their definitions.

Table 34: Motivational Concepts

Concept Definition Notation
Work Package A series of actions designed to accomplish

a unique goal within a specified time.

Deliverable A precisely-defined outcome of a work

package.

Plateau A relatively stable state of the architecture

that exists during a limited period of time.

Gap An outcome of a gap analysis between

two plateaus.

11.3 Relationships

The Implementation and Migration extension re-uses the standard ArchiMate relationships.

11.4 Cross-Aspect Dependencies

Figure 78 shows how the implementation and migration concepts can be related to the
ArchiMate core concepts.

Figure 78: Relationships between Implementation & Migration Extension and the ArchiMate Core
Concepts

A business role may be assigned to a work package.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

150 Technical Standard (2012)

A plateau is linked to an architecture that is valid for a certain time span. To indicate which parts
of the architecture belong to a certain plateau, a plateau may aggregate any of the concepts of the
ArchiMate core.

A gap is associated with the core concepts that are unique to one of the plateaus linked by the
gap; i.e., the core concepts that make up the difference between these plateaus.

A deliverable may realize, among others, the implementation of an architecture or a part of an
architecture. Therefore, any of the concepts of the ArchiMate core may be linked to a deliverable
by means of a realization relationship.

Like most of the core concepts, a location may be assigned to a work package or deliverable.

Weaker relationships may also be defined. For example, the association relationship may be
used to show that parts of the architecture are affected in some way by certain work packages.

Strictly speaking, the relationships between the implementation and migration concepts and the
motivation concepts are indirect relationships; e.g., a deliverable realizes a requirement or goal
through the realization of an ArchiMate core element (e.g., an application component, business
process, or service). However, it is still useful to make these relationships explicit, to show
directly that a deliverable is needed to realize certain requirements and goals.

Also, goals and requirements can be associated with a certain plateau; e.g., certain requirements
may only be applicable to the Target Architecture, while others may apply to a certain Transition
Architecture. This can be modeled by means of the aggregation relationship.

Figure 79 summarizes the relationships between the concepts of the Implementation and
Migration extension and the concepts of the Motivation extension.

Figure 79: Relationships between Plateau, Deliverable, and Motivation Concepts

11.5 Viewpoints

The following standard viewpoints for modeling implementation and migration aspects are
distinguished:

• The project viewpoint is primarily used to model the management of architecture change.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 151

• The migration viewpoint is used to model the transition from an existing architecture to a
target architecture.

• The implementation and migration viewpoint is used to model the relationships between
the programs and projects and the parts of the architecture that they implement.

All viewpoints are described separately below. For each viewpoint the comprised concepts and
relationships, the guidelines for the viewpoint use, and the goal and target group and of the
viewpoint are indicated. Furthermore, each viewpoint description contains example models. For
more details on the goal and use of viewpoints, refer to [2], Chapter 7.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

152 Technical Standard (2012)

11.5.1 Project Viewpoint

A project viewpoint is primarily used to model the management of architecture change. The
“architecture” of the migration process from an old situation (current state enterprise
architecture) to a new desired situation (target state enterprise architecture) has significant
consequences on the medium and long-term growth strategy and the subsequent decision-
making process. Some of the issues that should be taken into account by the models designed in
this viewpoint are:

• Developing fully-fledged organization-wide enterprise architecture is a task that may
require several years.

• All systems and services must remain operational regardless all the presumable
modifications and changes of the enterprise architecture during the change process.

• The change process may have to deal with immature technology standards (e.g.,
messaging, security, data, etc.).

• The change has serious consequences for the personnel, the culture, the way of working,
and the organization.

Furthermore, there are several other governance aspects that might constrain the transformation
process, such as internal and external co-operation, project portfolio management, project
management (deliverables, goals, etc.), plateau planning, financial and legal aspects, etc.

Project Viewpoint
Stakeholders (operational) managers, enterprise and ICT architects, employees, shareholders
Concerns Architecture vision and policies, motivation
Purpose Deciding, informing

Abstraction Level Overview

Layers/Extensions Implementation and Migration extension

Aspects Information, behavior, structure

Table 35: Description of the Project Viewpoint

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 153

Concepts and Relationships

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

154 Technical Standard (2012)

11.5.2 Migration Viewpoint

The migration viewpoint entails models and concepts that can be used for specifying the
transition from an existing architecture to a desired architecture. Since the plateau and gap
concepts have been quite extensively presented in Section 11.2, here the migration viewpoint is
only briefly described and positioned by means of the table below.

Migration Viewpoint
Stakeholders Enterprise architects, process architects, application architects, infrastructure

architects and domain architects, employees, shareholders
Concerns History of models
Purpose Designing, deciding, informing

Abstraction Level Overview

Layers/Extensions Implementation and Migration extension

Aspects Not applicable.

Table 36: Description of the Migration Viewpoint

Concepts and Relationships

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 155

11.5.3 Implementation and Migration Viewpoint

The implementation and migration viewpoint is used to relate programs and projects to the parts
of the architecture that they implement. This view allows modeling of the scope of programs,
projects, project activities in terms of the plateaus that are realized or the individual architecture
elements that are affected. In addition, the way the elements are affected may be indicated by
annotating the relationships.

Furthermore, this viewpoint can be used in combination with the programs and projects
viewpoint to support portfolio management:

• The programs and projects viewpoint is suited to relate business goals to programs and
projects. For example, this makes it possible to analyze at a high level whether all
business goals are covered sufficiently by the current portfolio(s).

• The implementation and migration viewpoint is suited to relate business goals (and
requirements) via programs and projects to (parts of) the architecture. For example, this
makes it possible to analyze potential overlap between project activities or to analyze the
consistency between project dependencies and dependencies among plateaus or
architecture elements.

Architecture Implementation and Migration Viewpoint
Stakeholders (operational) managers, enterprise and ICT architects, employees, shareholders
Concerns Architecture vision and policies, motivation
Purpose Deciding, informing

Abstraction Level Overview

Layers/Extensions Business layer, application layer, technology layer, implementation & migration
extension

Aspects Information, behaviour, structure

Table 37: Description of the Architecture Implementation and Migration Viewpoint

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

156 Technical Standard (2012)

Concepts and Relationships

Example

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 157

12 Future Directions (Informative)

This chapter is informative. It should be used as a guide to current thinking; there is not
necessarily a commitment to implement all of these future directions in their entirety.

The first version of the ArchiMate language as specified in Issue 1.0 of this Technical Standard
has a strong focus on describing the operational aspects of an enterprise. In addition to this, the
current version includes two extensions: the Motivation extension and the Implementation and
Migration extension.

Although the aim is to keep the core of the language relatively small, a number of other
directions for extending the language, as well as more advanced tool support for inherent
features of ArchiMate models, can be envisaged. In this chapter, we identify some likely
extensions for future versions of the language and associated tool support.

12.1 Extending and Refining the Concepts

In the practical use of ArchiMate, a number of areas have been identified in which a future
extension of the language may be considered:

• Business policies and rules

• The design process

• Architecture-level predictions

Furthermore, there are a number of individual concepts that may be considered for future
versions of the language; e.g.:

• Capability, defined as a collection of business and IT resources that together provide the
ability to execute one or more business processes

• Milestone (as part of the Implementation & Migration extension)

12.1.1 Business Policies and Rules

Business policies are sets of general rules followed by a business that define business processes
and practices. Business rules make these policies actionable for specific situations. Business
rules separate business knowledge, based on, for example, legislation and regulations, business
strategy, and business policies, from the business processes and systems that use this knowledge.

At the enterprise architecture level, sets of policies or rules may be modeled and linked to other
elements of the architecture, such as business processes, application components, or services.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

158 Technical Standard (2012)

12.1.2 Design Process

Second, the language could provide additional support for the early stages of the architecture
development process. In these early stages, architects often use informal, sketchy, and
incomplete models that later evolve into formally correct ArchiMate models. Hence, a relaxation
of formal correctness criteria in the early design stages might be in order. Support for this design
evolution is closely related to the concepts from the Motivation extension, since design decisions
are guided by goals, principles, and requirements, and the design process is instrumental to the
evolution of the architecture.

12.1.3 Other Improvements

Next to the extensions in the areas mentioned above, some definitions of language concepts
might also be improved and clarified. For example, the grouping concept could be given more
explicit semantics. In practical use, some concepts have been used to good effect for other
purposes than strictly intended; their future definitions may be updated to account for such
usage.

A more formal specification of the metamodel of the language, expressed in a standard such as
OMG’s MOF or Encore (part of the Eclipse Modeling Framework), would facilitate the
implementation of the language in software tools.

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 159

A Summary of Language Notation

A.1 Core Concepts and Relationships

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

160 Technical Standard (2012)

A.2 Extensions

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 161

B Overview of Relationships

B.1 Core Concepts

From ↓ / To → B
us

in
es

s A
ct

or

B
us

in
es

s R
ol

e

B
us

in
es

s C
ol

la
bo

ra
tio

n

L
oc

at
io

n

B
us

in
es

s I
nt

er
fa

ce

B
us

in
es

s P
ro

ce
ss

B
us

in
es

s F
un

ct
io

n

B
us

in
es

s I
nt

er
ac

tio
n

B
us

in
es

s E
ve

nt

B
us

in
es

s S
er

vi
ce

B
us

in
es

s O
bj

ec
t

R
ep

re
se

nt
at

io
n

Pr
od

uc
t

C
on

tr
ac

t

M
ea

ni
ng

V
al

ue

Business Actor cfgostu fiotu fiotu o fiotu fiotu fiotu fiotu ot ioru ao o o ao o o

Business Role fotu cfgostu cfgostu o cfgiotu fiotu fiotu fiotu ot ioru ao o o ao o o

Business Collaboration fgotu cfgostu cfgostu o cfgotu iou fiou iou ot ioru ao o o ao o o

Location io io io cgos io io io io io io io io o io o o

Business Interface fotu fotu fotu o cfgostu ou ou ou ot iou ao o o ao o o

Business Process fotu fotu fotu o fotu cfgostu cfgostu cfgostu ot oru ao o o ao o o

Business Function fotu fotu fotu o fotu cfgostu cfgostu cfgostu ot oru ao o o ao o o

Business Interaction fotu fotu fotu o fotu cfgostu cfgostu cfgostu ot oru ao o o ao o o

Business Event ot ot ot ot ot ot ot ot cgost o ao o o ao o o

Business Service ou ou ou o ou ou ou ou o cfgostu ao o o ao o o

Business Object o o o o o o o o o o cgos o o cgos o o

Representation o o o o o o o o o o or cgos o or o o

Product ou ou ou o ou ou ou ou o gou ao o cgos ago o o

Contract o o o o o o o o o o cgos o o cgos o o

Meaning o o o o o o o o o o o o o o cgos o

Value o o o o o o o o o o o o o o o cgos

Application
Component fotu fotu fotu o fotu fiotu iou iou o ioru ao o o ao o o

Application
Collaboration fotu fotu fotu o fotu fiotu fiotu iou o ioru ao o o ao o o

Application Interface ou ou ou o fotu fotu fotu ou o ou ao o o ao o o

Application Function ou ou ou o fotu fotu ou ou o ou ao o o ao o o

Application
Interaction ou ou ou o fotu fotu ou ou o ou ao o o ao o o

Application Service ou ou ou o ou ou ou ou o ou ao o o ao o o

Data Object o o o o o o o o o o or o o or o o

Node ou ou ou o ou oru oru oru o oru aoru o o aoru o o

Device ou ou ou o ou oru oru oru o oru aoru o o aoru o o

System Software ou ou ou o ou oru oru oru o oru aoru o o aoru o o

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

162 Technical Standard (2012)

From ↓ / To → B
us

in
es

s A
ct

or

B
us

in
es

s R
ol

e

B
us

in
es

s C
ol

la
bo

ra
tio

n

L
oc

at
io

n

B
us

in
es

s I
nt

er
fa

ce

B
us

in
es

s P
ro

ce
ss

B
us

in
es

s F
un

ct
io

n

B
us

in
es

s I
nt

er
ac

tio
n

B
us

in
es

s E
ve

nt

B
us

in
es

s S
er

vi
ce

B
us

in
es

s O
bj

ec
t

R
ep

re
se

nt
at

io
n

Pr
od

uc
t

C
on

tr
ac

t

M
ea

ni
ng

V
al

ue

Infrastructure
Interface aou aou aou o aou aou aou aou o aou aou o o aou o o

Network o o o o o o o o o o o o o o o o

Communication Path o o o o o o o o O o o o o o o o

Infrastructure
Function ou ou ou o ou ou oru oru O oru aou o o aou o o

Infrastructure Service ou ou ou o ou ou ou ou O ou aou o o aou o o

Artifact ou ou ou o ou oru oru oru O oru aor o o aor o o

Junction ft ft ft o ft ft ft ft ft ft

Relationships

(a)ccess ass(i)gnment (c)omposition (r)ealization (t)riggering

a(g)gregation ass(o)ciation (f)low (s)pecialization (u)sed by

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 163

From ↓ / To → A
pp

lic
at

io
n

C
om

po
ne

nt

A
pp

lic
at

io
n

C
ol

la
bo

ra
tio

n

A
pp

lic
at

io
n

In
te

rf
ac

e

A
pp

lic
at

io
n

Fu
nc

tio
n

A
pp

lic
at

io
n

In
te

ra
ct

io
n

A
pp

lic
at

io
n

Se
rv

ic
e

D
at

a
O

bj
ec

t

N
od

e

D
ev

ic
e

Sy
st

em
 S

of
tw

ar
e

In
fr

as
tr

uc
tu

re
 In

te
rf

ac
e

N
et

w
or

k

C
om

m
un

ic
at

io
n

Pa
th

In
fr

as
tr

uc
tu

re
 F

un
ct

io
n

In
fr

as
tr

uc
tu

re
 S

er
vi

ce

A
rt

ifa
ct

Ju
nc

tio
n

Business Actor fot fot fot fot fot o o o o o o o o o o o ft

Business Role fot fot fot fot fot o o o o o o o o o o o ft

Business Collaboration fot fot o fot fot o o o o o o o o o o o ft

Location io io io io io io io io io io io io io io io io io

Business Interface o o o o o o o o o o o o o o o o ft

Business Process fot fot o o o o o o o o o o o o o o ft

Business Function fot fot o o o o o o o o o o o o o o ft

Business Interaction fot fot o o o o o o o o o o o o o o ft

Business Event ot ot o o o o o o o o o o o o o o ft

Business Service o o o o o o o o o o o o o o o o ft

Business Object o o o o o o o o o o o o o o o o

Representation o o o o o o o o o o o o o o o o

Product ou ou ou ou o gou ao ou ou ou ou o o ou gou ao

Contract o o o o o o o o o o o o o o o o

Meaning o o o o o o o o o o o o o o o o

Value o o o o o o o o o o o o o o o o

Application
Component cfgostu cfgostu cfgotu iou iou ioru ao o o o o o o o o o ft

Application
Collaboration cfgostu cfgostu cfgotu iou iou ioru ao o o o o o o o o o ft

Application Interface fotu fotu cfgostu ou ou iou ao o o o o o o o o o ft

Application Function ou ou ou cfgostu fot oru ao o o o o o o o o o ft

Application Interaction ou ou ou fotu cfgost oru ao o o o o o o o o o ft

Application service ou ou ou ou ou cfgostu ao o o o o o o o o o ft

Data Object o o o o o o cgos o o o o o o o o o

Node aoru aoru aoru aoru aoru aoru aoru cfgostu cfgostu cfgostu cfgotu o o iou ioru aiou ft

Device aoru aoru aoru aoru aoru aoru aoru cfgostu cfgostu cfgiostu cfgotu o o iou ioru aiou ft

System Software aoru aoru aoru aoru aoru aoru aoru cfgostu cfgostu cfgostu cfgotu o o iou ioru aiou ft

Infrastructure
Interface aou aou aou aou aou aou aou fotu fotu fotu cfgostu o o ou iou aou ft

Network o o o o o o o o o o o cgos or o o

Communication Path o o o o o o o o o o o o cgos o o o

Infrastructure
Function aou aou aou aou aou auo aou ou ou ou ou o c cfgostu oru aou ft

Infrastructure Service ou ou ou ou ou ou aou ou ou ou ou o o ou cfgostu aou ft

Artifact oru oru oru oru oru oru aor o o or or o o or or cgors

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

164 Technical Standard (2012)

From ↓ / To → A
pp

lic
at

io
n

C
om

po
ne

nt

A
pp

lic
at

io
n

C
ol

la
bo

ra
tio

n

A
pp

lic
at

io
n

In
te

rf
ac

e

A
pp

lic
at

io
n

Fu
nc

tio
n

A
pp

lic
at

io
n

In
te

ra
ct

io
n

A
pp

lic
at

io
n

Se
rv

ic
e

D
at

a
O

bj
ec

t

N
od

e

D
ev

ic
e

Sy
st

em
 S

of
tw

ar
e

In
fr

as
tr

uc
tu

re
 In

te
rf

ac
e

N
et

w
or

k

C
om

m
un

ic
at

io
n

Pa
th

In
fr

as
tr

uc
tu

re
 F

un
ct

io
n

In
fr

as
tr

uc
tu

re
 S

er
vi

ce

A
rt

ifa
ct

Ju
nc

tio
n

Junction ft ft ft ft ft ft ft ft ft ft ft ft ft

Relationships

(a)ccess ass(i)gnment (c)omposition (r)ealization (t)riggering

a(g)gregation ass(o)ciation (f)low (s)pecialization (u)sed by

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 165

B.2 Extensions

From ↓ / To → St
ak

eh
ol

de
r

D
ri

ve
r

A
ss

es
sm

en
t

G
oa

l

R
eq

ui
re

m
en

t

Pr
in

ci
pl

e

C
on

st
ra

in
t

W
or

k
Pa

ck
ag

e

D
el

iv
er

ab
le

Pl
at

ea
u

G
ap

C
or

e
E

le
m

en
t

B
us

in
es

s A
ct

or

B
us

in
es

s R
ol

e

L
oc

at
io

n

V
al

ue

Stakeholder gcso o o o o o o o o o o o o o o

Driver o gcson on on on on on o o o o o o o o on

Assessment o on gcson on on on on o o o o o o o o on

Goal o on on gcson on on on o o o o o o o o on

Requirement o on on ron gcson ron gcson o o o o o o o o on

Principle o on on ron on gcson on o o o o o o o o on

Constraint o on on ron gcson ron gcson o o o o o o o o o

Work Package o o o ro ro o ro gcsoft ro ro o ro roft roft o o

Deliverable o o o ro ro ro ro o gcso o o go go go o o

Plateau o o o gro gro o gro o o gcsot o go go go o o

Gap o o o o o o o o o o gcso o o o o o

Core Element o o o ro ro ro ro o o o o

Business Actor io o o ro ro ro ro ioft ro o o

Business Role o o o ro ro ro ro ioft ro o o

Location io o o o o o o io io o o

Value o o o o o o o o o o o

Relationships

(c)omposition i(n)fluence ass(i)gnment ass(o)ciation (t)riggering

(f)low a(g)gregation (r)ealization (s)pecialization

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

166 Technical Standard (2012)

Index
access relationship 64
actor co-operation view 83
aggregation ... 127
aggregation relationship 61
application behavior view 93
application collaboration 39
application component 38
application co-operation view 95
application function 42
application interaction 43
application interface 40
application layer 6
application service 44
application structure view 97
application-technology alignment 58
ArchiMate framework 7
artifact .. 55
assessment .. 120
assignment relationship 62
association relationship 65
attributes ... 115
basic viewpoint 78
behavior element 4
business actor 15
business collaboration 17
business event 26
business function 23
business function view 85
business interaction 25
business interface 18
business layer ... 6
Business Layer Metamodel 14
business object 20
business policy 157
business process 22
business process co-operation view 89
business process view 87
business products view 91
business role ... 16
business rule 157
business service 27
Business-Application Alignment 57
collaboration ... 5
communication path 52
composition relationship 60
constraint .. 124
contract ... 33

data object .. 41
decision support viewpoints 76
deliverable .. 146
derived relationships 70
design viewpoints 76
device ... 49
driver .. 120
flow relationship 66
gap .. 148
goal ... 121
goal contribution view 137
goal realization view 135
grouping relationship 67
implementation & deployment view .. 105
implementation & migration extension

 ... 10, 145
implementation and migration view ... 155
influence ... 129
information structure view 107
informing viewpoints 76
infrastructure function 53
infrastructure interface 51
infrastructure service 54
interaction .. 6
interface .. 5
introductory view 79
junction .. 67
landscape map 113
layered view 111
layering .. 6
location ... 19
meaning .. 30
migration view 154
motivation extension 8, 118
motivation view 143
motivational concepts 118
motivational element 8
network .. 52
node .. 48
organization structure view 81
passive structure elements 4
plateau .. 147
policy ... 157
principle ... 125
principles view 139
product ... 32
profile ... 115

© 2009-2012 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.0 Specification 167

project viewpoint 152
realization ... 128
realization relationship 62
representation 29
requirement ... 122
requirements realization view 141
service .. 4
service realization view 109
specialization of concepts 116
specialization relationship 68
stakeholder ... 119

stakeholder view 133
structure element 4
system software 50
technical infrastructure view 101
technology layer 6
transition architecture 147
triggering relationship 65
used by relationship 63
value ... 31
viewpoint .. 73
work package 145

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

