
Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Open Group Standard

ArchiMate
®
 2.1 Specification

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ii Technical Standard (2013)

Copyright © 2012-2013, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the

copyright owner.

It is fair use of this specification for implementers to use the names, labels, etc. contained within the

specification. The intent of publication of the specification is to encourage implementations of the

specification.

Technical Standard

ArchiMate
®
 2.1 Specification

ISBN: 1-937218-43-0

Document Number: C13L

Published by The Open Group, December 2013.

Comments relating to the material contained in this document may be submitted to:

The Open Group

Apex Plaza

Forbury Road

Reading

Berkshire, RG1 1AX

United Kingdom

or by electronic mail to:

ogspecs@opengroup.org

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

mailto:ogspecs@opengroup.org

ArchiMate® 2.1 Specification iii

Contents

Preface .. ix

Trademarks ..xii

Acknowledgements ... xiii

Referenced Documents .. xv

1 Introduction ... 1

2 Language Structure ... 2

2.1 Design Approach .. 2
2.2 Core Concepts ... 3
2.3 Collaboration and Interaction ... 4
2.4 Relationships ... 5
2.5 Layering .. 5
2.6 The ArchiMate Framework .. 6
2.7 Motivation Extension .. 8
2.8 Implementation and Migration Extension .. 10
2.9 ArchiMate and TOGAF .. 11
2.10 Use of Colors .. 12

3 Business Layer .. 13

3.1 Business Layer Metamodel ... 13
3.2 Active Structure Concepts .. 14

3.2.1 Business Actor ... 14
3.2.2 Business Role .. 15
3.2.3 Business Collaboration .. 16
3.2.4 Business Interface.. 17
3.2.5 Location ... 18

3.3 Behavioral Concepts ... 19
3.3.1 Business Process.. 20
3.3.2 Business Function.. 21
3.3.3 Business Interaction .. 22
3.3.4 Business Event .. 23
3.3.5 Business Service .. 24

3.4 Passive Structure Concepts ... 26
3.4.1 Business Object ... 27
3.4.2 Representation ... 28
3.4.3 Meaning ... 29
3.4.4 Value ... 30
3.4.5 Product .. 31
3.4.6 Contract ... 32

3.5 Summary of Business Layer Concepts ... 33

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

iv Technical Standard (2013)

4 Application Layer ... 35

4.1 Application Layer Metamodel .. 35
4.2 Active Structure Concepts .. 35

4.2.1 Application Component .. 36
4.2.2 Application Collaboration ... 37
4.2.3 Application Interface ... 38

4.3 Behavioral Concepts ... 39
4.3.1 Application Function ... 39
4.3.2 Application Interaction .. 40
4.3.3 Application Service ... 41

4.4 Passive Structure Concepts ... 42
4.4.1 Data Object .. 43

4.5 Summary of Application Layer Components 43

5 Technology Layer ... 45

5.1 Technology Layer Metamodel .. 45
5.2 Active Structure Concepts .. 45

5.2.1 Node .. 46
5.2.2 Device .. 47
5.2.3 System Software .. 48
5.2.4 Infrastructure Interface .. 49
5.2.5 Network ... 50
5.2.6 Communication Path ... 50

5.3 Behavioral Concepts ... 51
5.3.1 Infrastructure Function .. 51
5.3.2 Infrastructure Service .. 52

5.4 Passive Structure Concepts ... 53
5.4.1 Artifact .. 53

5.5 Summary of Technology Layer Concepts .. 54

6 Cross-Layer Dependencies.. 55

6.1 Business Layer and Lower Layers Alignment 55
6.2 Application-Technology Alignment ... 56

7 Relationships ... 58

7.1 Structural Relationships .. 58
7.1.1 Composition Relationship ... 58
7.1.2 Aggregation Relationship .. 59
7.1.3 Assignment Relationship ... 59
7.1.4 Realization Relationship .. 60
7.1.5 Used By Relationship .. 61
7.1.6 Access Relationship .. 62
7.1.7 Association Relationship ... 63

7.2 Dynamic Relationships ... 63
7.2.1 Triggering Relationship ... 63
7.2.2 Flow Relationship.. 64

7.3 Other Relationships... 65
7.3.1 Grouping .. 65
7.3.2 Junction ... 65

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification v

7.3.3 Specialization Relationship ... 66
7.4 Summary of Relationships .. 67
7.5 Derived Relationships ... 68

8 Architecture Viewpoints ... 71

8.1 Introduction ... 71
8.2 Views, Viewpoints, and Stakeholders .. 72
8.3 Viewpoint Classification ... 74
8.4 Standard Viewpoints in ArchiMate .. 76

8.4.1 Introductory Viewpoint ... 77
8.4.2 Organization Viewpoint .. 79
8.4.3 Actor Co-operation Viewpoint .. 81
8.4.4 Business Function Viewpoint .. 83
8.4.5 Business Process Viewpoint .. 85
8.4.6 Business Process Co-operation Viewpoint 87
8.4.7 Product Viewpoint ... 89
8.4.8 Application Behavior Viewpoint ... 91
8.4.9 Application Co-operation Viewpoint 93
8.4.10 Application Structure Viewpoint ... 95
8.4.11 Application Usage Viewpoint ... 97
8.4.12 Infrastructure Viewpoint ... 99
8.4.13 Infrastructure Usage Viewpoint .. 101
8.4.14 Implementation and Deployment Viewpoint 103
8.4.15 Information Structure Viewpoint 105
8.4.16 Service Realization Viewpoint .. 107
8.4.17 Layered Viewpoint .. 109
8.4.18 Landscape Map Viewpoint .. 111

9 Language Extension Mechanisms ... 113

9.1 Adding Attributes to ArchiMate Concepts and Relationships 113
9.2 Specialization of Concepts and Relationships 114

10 Motivation Extension .. 116

10.1 Motivation Aspect Metamodel ... 116
10.2 Motivational Concepts .. 116

10.2.1 Stakeholder .. 117
10.2.2 Driver .. 118
10.2.3 Assessment .. 118
10.2.4 Goal ... 119
10.2.5 Requirement .. 120
10.2.6 Constraint .. 122
10.2.7 Principle .. 123
10.2.8 Summary of Motivational Concepts 124

10.3 Relationships ... 125
10.3.1 Association Relationship ... 125
10.3.2 Aggregation Relationship .. 126
10.3.3 Realization Relationship .. 126
10.3.4 Influence Relationship ... 128
10.3.5 Summary of Relationships .. 129

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

vi Technical Standard (2013)

10.4 Cross-Aspect Dependencies ... 129
10.5 Viewpoints .. 130

10.5.1 Stakeholder Viewpoint .. 132
10.5.2 Goal Realization Viewpoint .. 134
10.5.3 Goal Contribution Viewpoint .. 136
10.5.4 Principles Viewpoint ... 138
10.5.5 Requirements Realization Viewpoint 139
10.5.6 Motivation Viewpoint ... 141

11 Implementation and Migration Extension ... 143

11.1 Implementation and Migration Extension Metamodel 143
11.2 Implementation and Migration Concepts .. 143

11.2.1 Work Package.. 143
11.2.2 Deliverable .. 144
11.2.3 Plateau ... 145
11.2.4 Gap .. 146
11.2.5 Summary of Implementation and Migration Concepts 147

11.3 Relationships ... 147
11.4 Cross-Aspect Dependencies ... 147
11.5 Viewpoints .. 148

11.5.1 Project Viewpoint .. 150
11.5.2 Migration Viewpoint ... 152
11.5.3 Implementation and Migration Viewpoint 153

12 Future Directions (Informative) .. 155

12.1 Extending and Refining the Concepts... 155
12.1.1 Business Policies and Rules .. 155
12.1.2 Design Process .. 156
12.1.3 Other Improvements .. 156

A Summary of Language Notation (Informative) ... 157

A.1 Core Concepts and Relationships ... 157
A.2 Extensions ... 158

B Relationship Tables ... 159

B.1 Core Concepts ... 159
B.2 Extensions ... 163

Index ... 164

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification vii

Table of Figures

Figure 1: Metamodels at Different Levels of Specificity .. 2

Figure 2: Generic Metamodel: The Core Concepts of ArchiMate 4
Figure 3: Collaboration and Interaction ... 5
Figure 4: Architectural Framework ... 6
Figure 5: Relationship between Core and Motivational Elements in ArchiMate 9
Figure 6: Relationships between Motivational, Core, and Implementation and Migration

Elements .. 10

Figure 7: Correspondence between ArchiMate and TOGAF .. 11

Figure 8: Correspondence between ArchiMate (including extensions) and TOGAF 12
Figure 9: Business Layer Metamodel .. 13

Figure 10: Business Actor Notation .. 14
Figure 11: Business Role Notation .. 15

Figure 12: Business Collaboration Notation .. 16
Figure 13: Business Interface Notation ... 17
Figure 14: Location Notation ... 18

Figure 15: Business Process Notation ... 20
Figure 16: Business Function Notation ... 21

Figure 17: Business Interaction Notation .. 23
Figure 18: Business Event Notation .. 24

Figure 19: Business Service Notation .. 25
Figure 20: Business Object Notation ... 28

Figure 21: Representation Notation ... 28
Figure 22: Meaning Notation ... 29
Figure 23: Value Notation ... 30

Figure 24: Product Notation .. 31
Figure 25: Contract Notation ... 32

Figure 26: Application Layer Metamodel ... 35
Figure 27: Application Component Notation .. 36
Figure 28: Application Collaboration Notation ... 37
Figure 29: Application Interface Notation ... 38

Figure 30: Application Function Notation ... 40
Figure 31: Application Interaction Notation .. 41

Figure 32: Application Service Notation ... 42
Figure 33: Data Object Notation .. 43
Figure 34: Technology Layer Metamodel ... 45
Figure 35: Node Notation .. 46
Figure 36: Device Notation ... 47

Figure 37: System Software Notation .. 48
Figure 38: Infrastructure Interface Notations .. 49

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

viii Technical Standard (2013)

Figure 39: Network Notation, as Connection and as Box ... 50
Figure 40: Communication Path Notation, as Connection and as Box 50
Figure 41: Infrastructure Function Notation .. 51
Figure 42: Infrastructure Service Notation .. 52

Figure 43: Artifact Notation .. 53
Figure 44: Relationships between Business Layer and Lower Layer Concepts 56
Figure 45: Relationships between Application Layer and Technology Layer Concepts 57
Figure 46: Composition Notation .. 58
Figure 47: Aggregation Notation ... 59

Figure 48: Assignment Notation .. 60
Figure 49: Realization Notation ... 60
Figure 50: Used By Notation ... 61

Figure 51: Access Notation ... 62
Figure 52: Association Notation .. 63
Figure 53: Triggering Notation .. 63

Figure 54: Flow Notation ... 64
Figure 55: Grouping Notation ... 65
Figure 56: Junction Notation ... 66

Figure 57: Specialization Notation .. 66
Figure 58: Conceptual Model of Architectural Description (from [1]) 73

Figure 59: Classification of Enterprise Architecture Viewpoints 75
Figure 60: Examples of Specialized Concepts and Relationships 115
Figure 61: Motivation Extension Metamodel .. 116

Figure 62: Stakeholder Notation .. 117

Figure 63: Driver Notation .. 118
Figure 64: Assessment Notation .. 119
Figure 65: Goal Notation ... 120

Figure 66: Requirement Notation .. 121
Figure 67: Constraint Notation .. 122

Figure 68: Principle Notation .. 124
Figure 69: Association Notation .. 125
Figure 70: Aggregation Notation ... 126
Figure 71: Realization Notation ... 127

Figure 72: Influence Notation .. 128
Figure 73: Relationships between Motivation Extension and the ArchiMate Core

Concepts .. 130

Figure 74: Implementation and Migration Extension Metamodel................................. 143
Figure 75: Work Package Notation ... 143
Figure 76: Deliverable Notation .. 144
Figure 77: Plateau Notation ... 145

Figure 78: Gap Notation .. 146
Figure 79: Relationships between Implementation & Migration Extension and the

ArchiMate Core Concepts .. 147
Figure 80: Relationships between Plateau, Deliverable, and Motivation Concepts 148

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification ix

Preface

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives

through IT standards. With more than 400 member organizations, The Open Group has a diverse

membership that spans all sectors of the IT community – customers, systems and solutions

suppliers, tool vendors, integrators, and consultants, as well as academics and researchers – to:

 Capture, understand, and address current and emerging requirements, and establish

policies and share best practices

 Facilitate interoperability, develop consensus, and evolve and integrate specifications and

open source technologies

 Offer a comprehensive set of services to enhance the operational efficiency of consortia

 Operate the industry’s premier certification service

Further information on The Open Group is available at www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused

on development of Open Group Standards and Guides, but which also includes white papers,

technical studies, certification and testing documentation, and business titles. Full details and a

catalog are available at www.opengroup.org/bookstore.

Readers should note that updates – in the form of Corrigenda – may apply to any publication.

This information is published at www.opengroup.org/corrigenda.

This Document

This document is the ArchiMate 2.1 Specification, an Open Group Standard.

Issue 2.1 is a maintenance update to ArchiMate 2.0, addressing comments raised since the

introduction of ArchiMate 2.0 in 2012. It retains the major features and structure of ArchiMate

2.0, thereby preserving existing investment in ArchiMate 2.0. ArchiMate 2.0 includes a number

of corrections, clarifications, and improvements compared to ArchiMate 1.0, as well as two

optional language extensions: the Motivation extension and the Implementation and Migration

extension.

Intended Audience

The intended audience of this Technical Standard is threefold:

 Enterprise architecture practitioners, such as architects (application, information, process,

infrastructure, products/services, and, obviously, enterprise architects), senior and

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

http://www.opengroup.org/
http://www.opengroup.org/bookstore
http://www.opengroup.org/corrigenda

x Technical Standard (2013)

operational management, project leaders, and anyone committed to work within the

reference framework defined by the enterprise architecture. It is assumed that the reader

has a certain skill level and is effectively committed to enterprise architecture. Such a

person is most likely the architect – that is, someone who has affinity with modeling

techniques, knows his way around the organization, and is familiar with information

technology.

 Those who intend to implement the ArchiMate language in a software tool. They will find

a complete and detailed description of the language in this document.

 The academic community, on which we rely for amending and improving the language

based on state-of-the-art research results in the architecture field.

Structure

The structure of this Technical Standard is as follows:

 Chapter 1, Introduction, provides a brief introduction to the purpose of this standard.

 Chapter 2, Language Structure, presents some general ideas, principles, and assumptions

underlying the development of the ArchiMate metamodel and introduces the ArchiMate

Framework.

 Chapter 3, Business Layer, covers the definition and usage of the business layer concept,

together with examples.

 Chapter 4, Application Layer, covers the definition and usage of the application layer

concept, together with examples.

 Chapter 5, Technology Layer, covers the definition and usage of the technical

infrastructure layer concept, together with examples.

 Chapter 6, Cross-Layer Dependencies, and Chapter 7, Relationships, cover the definition

of relationship concepts in a similar way.

 Chapter 8, Architecture Viewpoints, presents and clarifies a set of architecture viewpoints,

developed in ArchiMate based on practical experience. All ArchiMate viewpoints are

described in detail. For each viewpoint the comprised concepts and relationships, the

guidelines for the viewpoint use, and the goal and target group and of the viewpoint are

specified. Furthermore, each viewpoint description contains example models.

 Chapter 9, Language Extension Mechanisms, handles extending and/or specializing the

ArchiMate language for specialized or domain-specific purposes.

 Chapter 10, Motivation Extension, describes an optional language extension with

concepts, relationships, and viewpoints for expressing the motivation for an architecture

(e.g., stakeholders, concerns, goals, principles, and requirements).

 Chapter 11, Implementation and Migration Extension, describes an optional language

extension with concepts, relationships, and viewpoints for expressing the implementation

and migration aspects of an architecture (e.g., project, programs, plateaus, and gaps).

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification xi

 Chapter 12, Future Directions (Informative), is an informative chapter that identifies

extensions and directions for developments in the next versions of the language.

 Appendix A, Summary of Language Notation (Informative), is an informative appendix.

 Appendix B, Relationship Tables, is a normative appendix detailing the required

relationships between elements of the language.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xii Technical Standard (2013)

Trademarks

ArchiMate
®
, DirecNet

®
, Jericho Forum

®
, Making Standards Work

®
, OpenPegasus

®
, The Open

Group
®
, TOGAF

®
, and UNIX

®
 are registered trademarks and Boundaryless Information Flow™,

Dependability Through Assuredness™, FACE™, Open Platform 3.0™, and The Open Group

Certification Mark™ are trademarks of The Open Group.

Java
®
 is a registered trademark of Oracle and/or its affiliates.

MDA
®
, Model Driven Architecture

®
, OMG

®
, and UML

®
 are registered trademarks and

BPMN™, Business Process Modeling Notation™, MOF™, and Unified Modeling Language™

are trademarks of the Object Management Group.

All other brands, company, and product names are used for identification purposes only and may

be trademarks that are the sole property of their respective owners.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification xiii

Acknowledgements

The Open Group gratefully acknowledges The Open Group ArchiMate Forum for developing

this Open Group Standard.

The Open Group gratefully acknowledges the contribution of the following people in the

development of this and earlier versions of this Open Group Standard:

 Maria-Eugenia Iacob, University of Twente

 Henk Jonkers, BiZZdesign BV

 Marc M. Lankhorst, formerly Novay, now BiZZdesign BV

 Erik (H.A.) Proper, Public Research Centre Henri Tudor & Radboud University Nijmegen

 Dick A.C. Quartel, BiZZdesign BV

The Open Group and ArchiMate project team would like to thank in particular the following

individuals for their support and review of this and earlier versions of this Open Group Standard:

 Iver Band

 Mary Beijleveld

 Alexander Bielowski

 Adrian Campbell

 John Coleshaw

 Jörgen Dahlberg

 Garry Doherty

 Wilco Engelsman

 Roland Ettema

 Henry M. Franken

 Sonia González

 Kirk Hansen

 Jos van Hillegersberg

 Andrew Josey

 Louw Labuschagne

 Veer Muchandi

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xiv Technical Standard (2013)

 Michelle Nieuwoudt

 Bill Poole

 Henk Volbeda

 Egon Willemsz

 Raina Wissing

The results presented in this Open Group Standard have largely been produced during the

ArchiMate project, and The Open Group gratefully acknowledges the contribution of the many

people – former members of the project team – who have contributed to them.

The ArchiMate project comprised the following organizations:

 ABN AMRO

 Centrum voor Wiskunde en Informatica

 Dutch Tax and Customs Administration

 Leiden Institute of Advanced Computer Science

 Novay

 Ordina

 Radboud Universiteit Nijmegen

 Stichting Pensioenfonds ABP

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification xv

Referenced Documents

The following documents are referenced in this Open Group Standard:

[1] ISO/IEC 42010:2007, Systems and Software Engineering – Recommended Practice

for Architectural Description of Software-Intensive Systems, Edition 1.

[2] Enterprise Architecture at Work: Modeling, Communication, and Analysis,

M.M. Lankhorst et al, Springer, 2005.

[3] Architecture Principles: The Cornerstones of Enterprise Architecture,

D. Greefhorst, E. Proper, Springer, 2011.

[4] TOGAF, Version 9.1, The Open Group, 2011.

[5] A Framework for Information Systems Architecture, J.A. Zachman, IBM Systems

Journal, Volume 26, No. 3, pp. 276–292, 1987.

[6] ITU Recommendation X.901 | ISO/IEC 10746-1:1998, Information Technology –

Open Distributed Processing – Reference Model – Part 1: Overview, International

Telecommunication Union, 1996.

[7] Unified Modeling Language: Infrastructure, Version 2.0 (formal/05-05-05), Object

Management Group, March 2006.

[8] Extending and Formalizing the Framework for Information Systems Architecture,

J.F. Sowa, J.A. Zachman,, IBM Systems Journal, Volume 31, No. 3, pp. 590-616,

1992.

[9] Enterprise Ontology: Theory and Methodology, J.L.G. Dietz, Springer, 2006.

[10] Unified Modeling Language: Superstructure, Version 2.0 (formal/05-07-04), Object

Management Group, August 2005.

[11] A Business Process Design Language, H. Eertink, W. Janssen, P. Oude Luttighuis,

W. Teeuw, C. Vissers, in Proceedings of the First World Congress on Formal

Methods, Toulouse, France, September 1999.

[12] Enterprise Business Architecture: The Formal Link between Strategy and Results,

R. Whittle, C.B. Myrick, CRC Press, 2004.

[13] Composition of Relations in Enterprise Architecture, R.v. Buuren, H. Jonkers,

M.E. Iacob, P. Strating, in Proceedings of the Second International Conference on

Graph Transformation, pp. 39–53, Edited by H. Ehrig et al, Rome, Italy, 2004.

[14] Viewpoints: A Framework for Integrating Multiple Perspectives in System

Development, A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, M. Goedicke,

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xvi Technical Standard (2013)

in International Journal on Software Engineering and Knowledge Engineering,

Volume 2, No. 1, pp. 31–58, 1992.

[15] Viewpoints for Requirements Definition, G. Kotonya, I. Sommerville, IEE/BCS

Software Engineering Journal, Volume 7, No. 6, pp. 375–387, November 1992.

[16] Paradigm Shift – The New Promise of Information Technology, D. Tapscott,

A. Caston, New York: McGraw-Hill, 1993.

[17] The 4+1 View Model of Architecture, P.B. Kruchten, IEEE Software, Volume 12,

No. 6, pp. 42–50, 1995.

[18] Model-Driven Architecture: Applying MDA to Enterprise Computing, D. Frankel,

Wiley, 2003.

[19] Performance and Cost Analysis of Service-Oriented Enterprise Architectures,

H. Jonkers, M. E. Iacob, in Global Implications of Modern Enterprise Information

Systems: Technologies and Applications, Edited by A. Gunasekaran, IGI Global,

2009.

[20] Business Process Modeling Notation Specification (dtc/06-02-01), Object

Management Group, February 2006.

[21] The Chaos Report, The Standish Group, 1994.

[22] No Silver Bullet: Essence and Accidents of Software Engineering, F.P. Brooks,

IEEE Computer, 20(4):10–19, 1987.

[23] Managing Successful Programs, Office of Government Commerce (OGC),

Stationery Office Books, 2007.

[24] Managing Successful Projects with PRINCE2 – 2009 Edition, Office of

Government Commerce (OGC), Stationery Office Books, 2009.

[25] A Guide to the Project Management Body of Knowledge (PMBoK Guide), Fourth

Edition, Project Management Institute, 2009.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 1

1 Introduction

An architecture is typically developed because key people have concerns that need to be

addressed by the business and IT systems within the organization. Such people are commonly

referred to as the “stakeholders” in the system. The role of the architect is to address these

concerns, by identifying and refining the requirements that the stakeholders have, developing

views of the architecture that show how the concerns and the requirements are going to be

addressed, and by showing the trade-offs that are going to be made in reconciling the potentially

conflicting concerns of different stakeholders. Without the architecture, it is unlikely that all the

concerns and requirements will be considered and met.

Architecture descriptions are formal descriptions of a system, organized in a way that supports

reasoning about the structural and behavioral properties of the system and its evolution. They

define the components or building blocks that make up the overall system, and provide a plan

from which products can be procured, and subsystems developed, that will work together to

implement the overall system. It thus enables you to manage your overall IT investment in a way

that meets the needs of your business.

To provide a uniform representation for diagrams that describe enterprise architectures, the

ArchiMate enterprise architecture modeling language has been developed. It offers an integrated

architectural approach that describes and visualizes the different architecture domains and their

underlying relations and dependencies.

ArchiMate is a lightweight and scalable language in several respects:

 Its architecture framework is simple but comprehensive enough to provide a good

structuring mechanism for architecture domains, layers, and aspects.

 The language incorporates the concepts of the “service orientation” paradigm that

promotes a new organizing principle in terms of (business, application, and infrastructure)

services for organizations, with far-reaching consequences for their enterprise

architecture.

The role of the ArchiMate standard is to provide a graphical language for the representation of

enterprise architectures over time (i.e., including transformation and migration planning), as well

as their motivation and rationale. The evolution of the standard is closely linked to the

developments of the TOGAF standard and the emerging results from The Open Group forums

and work groups active in this area. As a consequence, the ArchiMate standard does not provide

its own set of defined terms, but rather follows those provided by the TOGAF standard.

This specification contains the formal definition of ArchiMate as a visual design language with

adequate concepts for specifying inter-related architectures, and specific viewpoints for selected

stakeholders. This is complemented by some considerations regarding language extension

mechanisms, analysis, and methodological support. Furthermore, this document is accompanied

by a separate document, in which certification and governance procedures surrounding the

specification are specified.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

2 Technical Standard (2013)

2 Language Structure

The unambiguous specification and description of enterprise architecture’s components and

especially of their relationships requires an architecture modeling language that addresses the

issue of consistent alignment and facilitates a coherent modeling of enterprise architectures.

This chapter presents the construction of the ArchiMate architecture modeling language. The

precise definition and illustration of its generic set of core concepts and relationships follow in

Chapters 3, 4, 5, 6, and 7. The concepts and relationships of the two language extensions are

described in more detail in Chapters 10 and 11. They provide a proper basis for visualization,

analysis, tooling, and use of these concepts and relationships.

Sections 2.1 through 2.5 discuss some general ideas, principles, and assumptions underlying the

development of the ArchiMate metamodel. Section 2.6 presents the ArchiMate Framework,

which is used in the remainder of this document as a reference taxonomy scheme for architecture

concepts, models, viewpoints, and views. Sections 2.7 and 2.8 describe the basic structure of the

two language extensions. Section 2.9 briefly describes the relationship between ArchiMate and

TOGAF.

2.1 Design Approach

A key challenge in the development of a general metamodel for enterprise architecture is to

strike a balance between the specificity of languages for individual architecture domains, and a

very general set of architecture concepts, which reflects a view of systems as a mere set of inter-

related entities. Figure 1 illustrates that concepts can be described at different levels of

specialization.

ProcessApplication

Domain- and company-

specific concepts

Enterprise architecture

concepts

Generic concepts

m
o
re

 g
e
n
e
ri
c

m
o
re

 s
p
e
c
if
ic

Entity

Relation

Figure 1: Metamodels at Different Levels of Specificity

At the base of the triangle we find the metamodels of the architecture modeling concepts used by

specific organizations, as well as a variety of existing modeling languages and standards; UML

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 3

is an example of a language in this category. At the top of the triangle we find the “most

general” metamodel for system architectures, essentially a metamodel that merely comprises

notions such as “entity” and “relation”.

The design of the ArchiMate language started from a set of relatively generic concepts (higher

up in the pyramid). These have been specialized towards application at different architectural

layers, as explained below in the following sections.

The most important design restriction on the language is that it has been explicitly designed to be

as small as possible, but still usable for most enterprise architecture modeling tasks. Many other

languages, such as UML 2.0, try to accommodate all needs of all possible users. In the interest of

simplicity of learning and use, ArchiMate has been limited to the concepts that suffice for

modeling the proverbial 80% of practical cases.

2.2 Core Concepts

The core language consists of three main types of elements (note, however, that the model

elements often represent classes of entities in the real world): active structure elements, behavior

elements, and passive structure elements (objects). The active structure elements are the

business actors, application components, and devices that display actual behavior; i.e., the

‘subjects’ of activity (right side of the Figure 2).

An active structure element is defined as an entity that is capable of performing behavior.

Then there is the behavioral or dynamic aspect (center of Figure 2). The active structure

concepts are assigned to behavioral concepts, to show who or what performs the behavior.

A behavior element is defined as a unit of activity performed by one or more active structure

elements.

The passive structure elements are the objects on which behavior is performed.

A passive structure element is defined as an object on which behavior is performed.

In the domain of information-intensive organizations, which is the main focus of the language,

passive structure elements are usually information or data objects, but they may also be used to

represent physical objects. These three aspects – active structure, behavior, and passive structure

– have been inspired by natural language, where a sentence has a subject (active structure), a

verb (behavior), and an object (passive structure).

Second, we make a distinction between an external view and an internal view on systems. When

looking at the behavioral aspect, these views reflect the principles of service orientation.

A service is defined as a unit of functionality that a system exposes to its environment, while

hiding internal operations, which provides a certain value (monetary or otherwise).

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

4 Technical Standard (2013)

Figure 2: Generic Metamodel: The Core Concepts of ArchiMate
1

Thus, the service is the externally visible behavior of the providing system, from the perspective

of systems that use that service; the environment consists of everything outside this providing

system. The value provides the motivation for the service’s existence. For the external users,

only this exposed functionality and value, together with non-functional aspects such as the

quality of service, costs, etc., are relevant. These can be specified in a contract or Service Level

Agreement (SLA). Services are accessible through interfaces, which constitute the external view

on the active structural aspect.

An interface is defined as a point of access where one or more services are made available to the

environment.

An interface provides an external view on the service provider and hides its internal structure.

2.3 Collaboration and Interaction

Going one level deeper in the structure of the language, we distinguish between behavior that is

performed by a single structure element (e.g., actor, role component, etc.), or collective behavior

(interaction) that is performed by a collaboration of multiple structure elements.

A collaboration is defined as a (temporary) grouping (or aggregation) of two or more structure

elements, working together to perform some collective behavior.

This collective behavior can be modeled as an interaction.

1 In this figure, and all the other metamodel pictures in this document, a convention for role names of relationships is used that is

similar to UML (but using verbs instead of nouns). For example, a Behavior Element realizes a Service, and a Service is realized by a

Behavior Element. If no cardinality is shown for a relationship end, a default of 0..* (zero or more) is assumed; if the default does not

apply, the cardinality is shown explicitly in the metamodel.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 5

An interaction is defined as a unit of behavior performed by a collaboration of two or more

structure elements.

Figure 3: Collaboration and Interaction

2.4 Relationships

Next to the core concepts outlined above, ArchiMate contains a core set of relationships. Several

of these relationships have been adopted from corresponding relationship concepts that occur in

existing standards; e.g., relationships such as composition, aggregation, association, and

specialization are taken from UML 2.0, while triggering is used in many business process

modeling languages.

Note: For the sake of readability, the metamodel figures in the next sections do not show all

possible relationships in the language. Refer to Section 7.5 on additional derived

relationships. Furthermore, aggregation, composition, and specialization relationships

are always permitted between two elements that have the same type.

2.5 Layering

The ArchiMate language defines three main layers (depicted with different colors in the

examples in the next chapters), based on specializations of the core concepts described in

Sections 2.2 and 2.3:

1. The Business Layer offers products and services to external customers, which are realized

in the organization by business processes performed by business actors.

2. The Application Layer supports the business layer with application services which are

realized by (software) applications.

3. The Technology Layer offers infrastructure services (e.g., processing, storage, and

communication services) needed to run applications, realized by computer and

communication hardware and system software.

The general structure of models within the different layers is similar. The same types of concepts

and relationships are used, although their exact nature and granularity differ. In Chapters 3, 4,

and 5, we further develop these concepts to obtain concepts specific to a particular layer. Figure

2 shows the central structure that is found in each layer.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6 Technical Standard (2013)

In line with service orientation, the most important relationship between layers is formed by

“used by” relationships, which show how the higher layers make use of the services of lower

layers. (Note, however, that services need not only be used by elements in a higher layer, but

also can be used by elements in the same layer.) A second type of link is formed by realization

relationships: elements in lower layers may realize comparable elements in higher layers; e.g., a

“data object” (Application layer) may realize a “business object” (Business layer); or an

“artifact” (Technology layer) may realize either a “data object” or an “application component”

(Application layer).

2.6 The ArchiMate Framework

The aspects and layers identified in the previous sections can be organized as a framework of

nine cells, as illustrated in Figure 4.

It is important to realize that the classification of concepts based on aspects and layers is only a

global one. It is impossible to define a strict boundary between the aspects and layers, because

concepts that link the different aspects and layers play a central role in a coherent architectural

description. For example, running somewhat ahead of the later conceptual discussions,

(business) functions and (business) roles serve as intermediary concepts between “purely

behavioral” concepts and “purely structural” concepts.

Technology

Application

Business

Environment

Passive

structure
Behavior Active

structure

Figure 4: Architectural Framework

The structure of the framework allows for modeling of the enterprise from different viewpoints,

where the position within the cells highlights the concerns of the stakeholder. A stakeholder

typically can have concerns that cover multiple cells.

The dimensions of the framework are as follows:

 Layers: The three levels at which an enterprise can be modeled – business, application,

and technology:

— The business layer offers products and services to external customers, which are

realized in the organization by business processes.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 7

— The application layer supports the business layer with application services that are

realized by (software) applications.

— The technology layer offers infrastructure services (e.g., processing, storage, and

communication services) needed to support applications, realized by computer and

communication hardware and system software.

 Aspects:

— The active structure aspect represents the structural concepts (the business actors,

application components, and devices that display actual behavior; i.e., the “subjects” of

activity).

— The behavior aspect represents the behavior (processes, functions, events, and services)

performed by the actors. Behavioral concepts are assigned to structural concepts, to

show who or what displays the behavior.

— The passive structure aspect represents the objects on which behavior is performed.

These are usually information objects in the business layer and data objects in the

application layer, but they may also be used to represent physical objects.

Besides the core aspects shown in Figure 4 (passive structure, behavior, and active structure),

which are mainly operational in nature, the work of an enterprise architect touches upon

numerous other aspects, not explicitly covered by the ArchiMate Framework, some of which

may cross several (or all) conceptual domains; for example:

 Goals, principles, and requirements

 Risk and security

 Governance

 Policies and business rules

 Costs

 Performance

 Timing

 Planning and evolution

Not all of these aspects can be completely covered using the standard language extension

mechanisms as described in Chapter 9. In order to facilitate tool vendors and methodology

experts in providing support for these aspects within the overall ArchiMate language, specific

extensions can be added. These modular extension add new concepts, relationships, or attributes,

while complying to the design restriction that ArchiMate is explicitly designed to be as small as

possible.

Also, it may be useful to add concepts or attributes related to the design process rather than to

the system or organization that is to be described or designed. Examples of such concepts or

attributes are requirements and design decisions.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

8 Technical Standard (2013)

This issue of the specification addresses two such extensions: the Motivation extension and the

Implementation and Migration extension. The Motivation extension is introduced in the next

section and elaborated in more detail in Chapter 10. The Implementation and Migration

extension is introduced in Section 2.8 and elaborated in more detail in Chapter 11. Other aspects

may be addressed in future extensions of the language (see Chapter 12 for a more thorough

discussion of this).

2.7 Motivation Extension

The core concepts of ArchiMate focus on describing the architecture of systems that support the

enterprise. Not covered are the elements which, in different ways, motivate the design and

operation of the enterprise. These motivational aspects correspond to the “Why” column of the

Zachman framework [8], which was intentionally left out of scope in the design of ArchiMate

1.0.

The Motivation extension of ArchiMate adds the motivational concepts such as goal, principle,

and requirement. It addresses the way the enterprise architecture is aligned to its context, as

described by motivational elements.

A motivational element is defined as an element that provides the context or reason lying behind

the architecture of an enterprise.

In addition, the Motivation extension recognizes the concepts of stakeholders, drivers, and

assessments. Stakeholders represent (groups of) persons or organizations that influence, guide,

or constrain the enterprise. Drivers represent internal or external factors which influence the

plans and aims of an enterprise. An understanding of strengths, weaknesses, opportunities, and

threats in relation to these drivers will help the formation of plans and aims to appropriately

address these issues.

Figure 5 depicts that the core elements of an architectural description are related to motivational

elements via requirements. Goals and principles have to be translated into requirements before

core elements, such as services, processes, and applications, can be assigned that realize them.

The possible relationships among motivational elements are explained in Chapter 10.

Another relationship between the core metamodel and the Motivation extension is that a

business actor may be assigned to a stakeholder, which can be seen as a motivational role (as

opposed to an operational business role) that an actor may fulfill.

The main reason to introduce motivational concepts in ArchiMate is to support requirements

management and to support the Preliminary Phase and Phase A (Architecture Vision) of the

TOGAF ADM, which establish the high-level business goals, architecture principles, and initial

business requirements.

Requirements management is an important activity in the process of designing and managing

enterprise architectures. Goals from various stakeholders form the basis for any change to an

organization. These goals need to be translated into requirements on the organization’s

architecture. This architecture should reflect how the requirements are realized by services,

processes, and software applications in the day-to-day operations. Therefore, the quality of the

architecture is largely determined by the ability to capture and analyze the relevant goals and

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 9

requirements, the extent to which they can be realized by the architecture, and the ease with

which goal and requirements can be changed.

Figure 5: Relationship between Core and Motivational Elements in ArchiMate

Principles and requirements are strongly related [3]. Principles are general rules and guidelines

that help inform and support the way in which an organization sets about fulfilling its mission. In

contrast, requirements constrain and shape a specific design of some enterprise architecture. This

corresponds to the distinction between two commonly used interpretations of enterprise

architecture: (i) as the structure of some organization in terms of its components and their

relationships, and (ii) as a set of principles that should be applied to any such structure.
2
 The

scope of the first interpretation concerns a single design of the organization, whereas the second

concerns any possible design. Requirements are associated with the first interpretation. Instead,

principles are independent of a specific design and have to be specialized into requirements in

the process of designing the organization’s architecture. This makes the application of principles

an important part of requirements management.

Inadequate requirements management is one of the main causes of impaired or failed IT projects

[21], due to exceeding budgets or deadlines, or not delivering the expected results. This is well

phrased by the following quote of Brooks [22]: “No other part of the work so cripples the

resulting system if done wrong”. Therefore, the requirements management process and the

architecture development process need to be well-aligned, and traceability should be maintained

between requirements and the architectural elements that realize these requirements.

In the TOGAF Architecture Development Method (ADM) [4], requirements management is a

central process that applies to all phases of the ADM cycle. While TOGAF presents

“requirements” on requirements management, it refrains from mandating or recommending

existing languages, methods, and tools from the area of requirements engineering. ArchiMate

supports the requirements management process by means of the motivational concepts.

2
 Both interpretations are combined in the second meaning of architecture as described in Section 2.2.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

10 Technical Standard (2013)

2.8 Implementation and Migration Extension

The Implementation and Migration extension of ArchiMate adds concepts to support the late

ADM phases, related to the implementation and migration of architectures: Phase E

(Opportunities and Solutions), Phase F (Migration Planning), and Phase G (Implementation

Governance).

This extension includes concepts for modeling implementation programs and projects to support

program, portfolio, and project management, and a plateau concept to support migration

planning. The proposed extension aims at covering the main concepts of program and project

management standards and best practices, such as MSP [23], PRINCE2 [24], and PMBoK [25].

Concepts that are specific to one of these methods are not part of the extension, but may be

defined as specialization of the generic concepts. In this way, the set of concepts and

relationships that are defined in the extension is kept at a minimum.

Furthermore, concepts or relationships from the ArchiMate core or the Motivation extension are

re-used where possible. Figure 6 depicts the relationship between concepts from the

Implementation and Migration extension and concepts from the ArchiMate core and Motivation

extension. A deliverable may realize core elements within an architecture. A gap may be

associated with any number of core elements. A location may be assigned to work packages and

deliverables. A work package realizes requirements indirectly through the realization of core

elements (e.g., an application component, business process, or service). Also, core elements are

linked to the other concepts of the Motivation extension by means of derived relationships. The

possible relationships among implementation and migration, core, and motivational elements are

explained in more detail in Chapters 10 and 11.

Figure 6: Relationships between Motivational, Core, and Implementation and Migration Elements

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 11

2.9 ArchiMate and TOGAF

The ArchiMate language, as described in this Technical Standard, complements TOGAF [4] in

that it provides a vendor-independent set of concepts, including a graphical representation, that

helps to create a consistent, integrated model “below the waterline”, which can be depicted in

the form of TOGAF views.

The structure of the core ArchiMate language closely corresponds with the three main

architectures as addressed in the TOGAF ADM. This is illustrated in Figure 7. This

correspondence would suggest a fairly easy mapping between TOGAF views and the ArchiMate

viewpoints.

TOGAF ADM ArchiMate

Technology

Application

Business

Passive

e
structure

Behavior Active
structure

Figure 7: Correspondence between ArchiMate and TOGAF

Some TOGAF views are not matched in the ArchiMate core, however. Partially, this is because

the scope of TOGAF is broader and in particular addresses more of the high-level strategic

issues and the lower-level engineering aspects of system development, whereas the ArchiMate

core is limited to the enterprise architecture level of abstraction. However, the two language

extensions, described in Chapters 10 and 11, address these additional issues. They define

concepts such as goal, principle, and requirement, as well as the planning and migration-oriented

concepts. Figure 8 illustrates this.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

12 Technical Standard (2013)

Implementation & Migration

Business layer

Application layer

Technology layer

Information Behavior Structure Motivation
Phase A:

Architecture

Vision

Preliminary

Requirements

Management

Phase H:

Architecture

Change

Management

Phase E:

Opportunities

& Solutions

Phase F:

Migration

Planning

Phase G:

Implementation

Governance

Phase B:

Business

Architecture

Phase C:

Information

Systems

Architectures

Phase D:

Technology

Architecture

Figure 8: Correspondence between ArchiMate (including extensions) and TOGAF

Although some of the viewpoints that are defined in TOGAF cannot easily be mapped onto

ArchiMate viewpoints, the ArchiMate language and its analysis techniques do support the

concepts addressed in these viewpoints. While there is no one-to-one mapping between them,

there is still a fair amount of correspondence between the ArchiMate viewpoints and the

viewpoints that are defined in TOGAF. Although corresponding viewpoints from ArchiMate and

TOGAF do not necessarily have identical coverage, we can see that many viewpoints from both

methods address largely the same issues.

TOGAF and ArchiMate can easily be used in conjunction and they appear to cover much of the

same ground, although with some differences in scope and approach.

2.10 Use of Colors

In the metamodel pictures within this specification, colors are used to distinguish concepts

belonging to the different aspects of the ArchiMate Framework: green for passive structure,

yellow for behavior, and blue for active structure. In ArchiMate models, there are no formal

semantics assigned to colors and the use of color is left to the modeler. However, they can be

used freely to stress certain aspects in models. For instance, in many of the example models

presented in this specification, colors are used to distinguish between the layers of the

ArchiMate Framework: yellow for the business layer, blue for the application layer, and green

for the technology layer. They can also be used for visual emphasis. A recommended text

providing guidelines is Chapter 6 of [2].

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 13

3 Business Layer

3.1 Business Layer Metamodel

Figure 9 shows the metamodel of business layer concepts. The metamodel follows the structure

of the generic metamodel introduced in the previous chapter. However, this layer also includes a

number of additional informational concepts which are relevant in the business domain: a

product and associated contract, the meaning of business objects, and the value of products and

business services.

Figure 9: Business Layer Metamodel

Note: This figure does not show all permitted relationships: every concept in the language

can have composition, aggregation, and specialization relationships with concepts of

the same type; furthermore, there are indirect relationships that can be derived, as

explained in Section 7.5.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

14 Technical Standard (2013)

3.2 Active Structure Concepts

The active structure aspect at the business layer refers to the static structure of an organization,

in terms of the entities that make up the organization and their relationships. The active entities

are the subjects (e.g., business actors or business roles) that perform behavior such as business

processes or functions (capabilities). Business actors may be individual persons (e.g., customers

or employees), but also groups of people (organization units) and resources that have a

permanent (or at least long-term) status within the organizations. Typical examples of the latter

are a department and a business unit.

Architectural descriptions focus on structure, which means that the inter-relationships of entities

within an organization play an important role. To make this explicit, the concept of business

collaboration has been introduced. Business collaborations have been inspired by collaborations

as defined in the UML 2.0 standard [7], [10], although the UML collaborations apply to

components in the application layer. Also, the ArchiMate business collaboration concept has a

strong resemblance to the “community” concept as defined in the RM-ODP Enterprise Language

[6], as well as to the “interaction point” concept, defined in Amber [11] as the place where

interactions occur.

The concept of business interfaces is introduced to explicitly model the (logical or physical)

locations or channels where the services that a role offers to the environment can be accessed.

The same service may be offered on a number of different interfaces; e.g., by mail, by telephone,

or through the Internet. In contrast to application modeling, it is uncommon in current business

layer modeling approaches to recognize the business interface concept.

3.2.1 Business Actor

A business actor is defined as an organizational entity that is capable of performing behavior.

A business actor performs the behavior assigned to (one or more) business roles. A business

actor is an organizational entity as opposed to a technical entity; i.e., it belongs to the business

layer. Actors may, however, include entities outside the actual enterprise; e.g., customers and

partners. Examples of business actors are humans, departments, and business units. A business

actor may be assigned to one or more business roles. The name of a business actor should

preferably be a noun.

Business

actor

Figure 10: Business Actor Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 15

Example

The model below illustrates the use of business actors. The company ArchiSurance is modeled

as a business actor that is composed of two departments. The Travel insurance seller role is

assigned to the travel department. In this role, the travel department performs the Take out

insurance process, which offers a service that is accessible via the business interface assigned to

this role.

Example 1: Business Actor

3.2.2 Business Role

A business role is defined as the responsibility for performing specific behavior, to which an

actor can be assigned.

Business processes or business functions are assigned to a single business role with certain

responsibilities or skills. A business actor that is assigned to a business role ultimately performs

the corresponding behavior. In addition to the relation of a business role with behavior, a

business role is also useful in a (structural) organizational sense; for instance, in the division of

labor within an organization.

A business role may be assigned to one or more business processes or business functions, while

a business actor may be assigned to a business role. A business interface or an application

interface may be used by a business role, while a business interface may be part of a business

role (through a composition relationship, which is not shown explicitly in the interface notation).

The name of a business role should preferably be a noun.

Business

role

Figure 11: Business Role Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

16 Technical Standard (2013)

Example

In the model below, the business role Insurance Seller is fulfilled by the Insurance Department actor

and has telephone as a provided interface. The business role Insurance Buyer is fulfilled by the

Customer actor, and has telephone as a required interface.

Example 2: Business Role

3.2.3 Business Collaboration

Business collaboration is defined as an aggregate of two or more business roles that work

together to perform collective behavior.

A business process or function may be interpreted as the internal behavior assigned to a single

business role. In some cases behavior is the collective effort of more than one business role; in

fact a collaboration of two or more business roles results in collective behavior which may be

more than simply the sum of the behavior of the separate roles. Business collaborations represent

this collective effort. Business interactions are used to describe the internal behavior that takes

place within business collaboration. A collaboration is a (possibly temporary) collection of roles

within an organization which perform collaborative behavior (interactions). Unlike a department,

which may also group roles, a business collaboration does not have an official (permanent)

status within the organization; it is specifically aimed at a specific interaction or set of

interactions between roles. However, a business collaboration can be regarded as a kind of

“virtual role”, hence its designation as a specialization of role. It is especially useful in modeling

B2B interactions between different organizations.

A business collaboration may be composed of a number of business roles, and may be assigned

to one or more business interactions. A business interface or an application interface may be

used by a business collaboration, while a business collaboration may have business interfaces

(through composition). The name of a business collaboration should preferably be a noun. It is

also rather common to leave a business collaboration unnamed.

Business

collaboration

Figure 12: Business Collaboration Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 17

Example

The model below illustrates a possible use of the collaboration concept. In this example, selling

an insurance product involves the Sales department, fulfilling a sales support role, and a

department specialized in that particular type of insurance, fulfilling an insurance seller role. The

example also shows that one role, in this case Sales support, can participate in more than one

collaboration.

Example 3: Business Collaboration

3.2.4 Business Interface

A business interface is defined as a point of access where a business service is made available to

the environment.

A business interface exposes the functionality of a business service to other business roles

(provided interface), or expects functionality from other business services (required interface). It

is often referred to as a channel (telephone, internet, local office, etc.). The same business

service may be exposed through different interfaces.

A business interface may be part of a business role through a composition relationship, which is

not shown in the standard notation, and a business interface may be used by a business role. A

business interface may be assigned to one or more business services, which means that these

services are exposed by the interface. The name of a business interface should preferably be a

noun.

Figure 13: Business Interface Notation

Business
interface

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

18 Technical Standard (2013)

Example

In the model below, the business services provided by the Luggage insurance seller and its

collaboration with the Medical insurance seller are exposed by means of a web form and call center

business interface, respectively.

Example 4: Business Interface

3.2.5 Location

A location is defined as a conceptual point or extent in space.

The location concept is used to model the distribution of structural elements such as business

actors, application components, and devices. This is modeled by means of an assignment

relationship from location to structural element. Indirectly, a location can also be assigned to a

behavior element, to indicate where the behavior is performed.

Figure 14: Location Notation

Example

The model below shows that the departments of an insurance company are distributed over

different locations. The Legal and Finance departments are centralized at the main office, and

there are claims handling departments at various local offices throughout the country.

 Location

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 19

Example 5: Location

3.3 Behavioral Concepts

Based on service orientation, a crucial design decision for the behavioral part of our metamodel

is the distinction between “external” and “internal” behavior of an organization.

The externally visible behavior is modeled by the concept business service. A business service

represents a coherent piece of functionality that offers added value to the environment,

independent of the way this functionality is realized internally. A distinction can be made

between “external” business services, offered to external customers, and “internal” business

services, offering supporting functionality to processes or functions within the organization.

Several types of internal behavior elements that can realize a service are distinguished. Although

the distinction between the two is not always sharp, it is often useful to distinguish a process

view and a function view on behavior; two concepts associated with these views, business

process and business function, are defined. Both concepts can be used to group more detailed

business processes/functions, but based on different grouping criteria. A business process

represents a workflow or value stream consisting of smaller processes/functions, with one or

more clear starting points and leading to some result. It is sometimes described as “customer to

customer”, where this customer may also be an internal customer, in the case of sub-processes

within an organization. The goal of such a business process is to “satisfy or delight the

customer” [12]. A business function offers functionality that may be useful for one or more

business processes. It groups behavior based on, for example, required skills, resources,

(application) support, etc. Typically, the business processes of an organization are defined based

on the products and services that the organization offers, while the business functions are the

basis for, for example, the assignment of resources to tasks and the application support.

A business interaction is a unit of behavior similar to a business process or function, but which

is performed in a collaboration of two or more roles within the organization. Unlike the

interaction concept in Amber [11], which is an atomic unit of collaborative behavior, our

business interaction can be decomposed into smaller interactions. Although interactions are

external behavior from the perspective of the roles participating in the collaboration, the

behavior is internal to the collaboration as a whole. Similar to processes or functions, the result

of a business interaction can be made available to the environment through a business service.

A business event is something that happens (externally) and may influence business processes,

functions, or interactions. The “business event” concept is similar to the “trigger” concept in

Amber [11] and the “initial state” and “final state” concepts as used in, for example, UML

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

20 Technical Standard (2013)

activity diagrams. However, our business event is more generally applicable in the sense that it

can also be used to model other types of events, in addition to triggers.

3.3.1 Business Process

A business process is defined as a behavior element that groups behavior based on an ordering of

activities. It is intended to produce a defined set of products or business services.

A business process describes the internal behavior performed by a business role that is required

to produce a set of products and services. For a consumer the products and services are relevant

and the required behavior is merely a black box, hence the designation “internal”.

In comparison to a business interaction, in which a collaboration of two or more business roles

are (interactively) involved, at a given level of granularity only one business role is involved

with a business process. However, a complex business process may be an aggregation of other,

finer-grained processes, each of which may be assigned to finer-grained roles that are aggregated

by roles that are aggregated by the original role.

There is a potential many-to-many relationship between business processes and business

functions. Informally speaking, processes describe some kind of “flow” of activities, whereas

functions group activities according to required skills, knowledge, resources, etc.

A business process may be triggered by, or trigger, any other business behavior element (e.g.,

business event, business process, business function, or business interaction). A business process

may access business objects. A business process may realize one or more business services and

may use (internal) business services or application services. A business role or an application

component may be assigned to a business process to perform this process manually or

automated, respectively. The name of a business process should preferably be a verb in the

simple present tense; e.g., “handle claim”.

In an ArchiMate model, the existence of business processes is depicted. It does not, however, list

the flow of activities in detail. During business process modeling, a business process can be

expanded using a business process design language; e.g., BPMN [20].

Business

process

Figure 15: Business Process Notation

Example

The model below illustrates the use of business processes and its relation with other concepts.

The Take out insurance process is composed of three sub-processes. For clarity, the sub-processes

are drawn in the overall process (structuring). Each sub-process triggers the next sub-process.

The event Request for Insurance triggers the first sub-process. A particular role, in this case an

insurance seller, is assigned to perform the required work. The process itself realizes an Insurance

selling service. The Receive request sub-process uses the business object Customer info.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 21

Example 6: Business Process

3.3.2 Business Function

A business function is defined as a behavior element that groups behavior based on a chosen set

of criteria (typically required business resources and/or competences).

Just like a business process, a business function also describes internal behavior performed by a

business role. However, while a business process group’s behavior is based on a sequence or

“flow” of activities that is needed to realize a product or service, a business function typically

groups behavior based on required business resources, skills, competences, knowledge, etc.

There is a potential many-to-many relation between business processes and business functions.

Complex processes in general involve activities that offer various functions. In this sense a

business process forms a string of business functions. In general, a business function delivers

added value from a business point of view. Organizational units or applications may coincide

with business functions due to their specific grouping of business activities.

A business function may be triggered by, or trigger, any other business behavior element

(business event, business process, business function, or business interaction). A business

function may access business objects. A business function may realize one or more business

services and may use (internal) business services or application services. A business role or an

application component may be assigned to a business function. The name of a business function

should preferably be a verb ending with “-ing”; e.g., “claims processing”, or a noun ending in “-

ion” or “-ment”; e.g., “administration”.

Business

function

Figure 16: Business Function Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

22 Technical Standard (2013)

Example

The model below illustrates the use of business functions, as well as the relationship between

business functions and business processes. The three business functions group a number of

business sub-processes. The business process, initiated by a business event, involves sub-

processes from different business functions. The Insurer role is assigned to each of the business

functions. Moreover, business functions may access business objects; in this case, the Customer

handling function uses or manipulates the Customer information object. Also, the Financial handling

function makes use of a Billing application service and realizes a Premium collection business

service.

Example 7: Business Function

3.3.3 Business Interaction

A business interaction is defined as a behavior element that describes the behavior of a business

collaboration.

A business interaction is similar to a business process/function, but while a process/function may

be performed by a single role, an interaction is performed by a collaboration of multiple roles.

The roles in the collaboration share the responsibility for performing the interaction.

A business interaction may be triggered by, or trigger, any other business behavior element

(business event, business process, business function, or business interaction). A business

interaction may access business objects. A business interaction may realize one or more business

services and may use (internal) business services or application services. A business

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 23

collaboration or an application collaboration may be assigned to a business interaction. The

name of a business interaction should preferably be a verb in the simple present tense.

Business

interaction

Figure 17: Business Interaction Notation

Example

In the model below, a business interaction is triggered by a request. The business interaction

Take out combined insurance is performed as collaboration between the travel and luggage

insurance seller. The business interaction needs the Policy info business object, and realizes the

(external) business service Combined insurance selling. As part of the business interaction, the

Prepare travel policy and Prepare luggage policy are triggered. The Travel insurance seller and Luggage

insurance seller perform these processes separately.

Example 8: Business Interaction

3.3.4 Business Event

A business event is defined as something that happens (internally or externally) and influences

behavior.

Business processes and other business behavior may be triggered or interrupted by a business

event. Also, business processes may raise events that trigger other business processes, functions,

or interactions. A business event is most commonly used to model something that triggers

behavior, but other types of events are also conceivable; e.g., an event that interrupts a process.

Unlike business processes, functions, and interactions, a business event is instantaneous: it does

not have duration. Events may originate from the environment of the organization (e.g., from a

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

24 Technical Standard (2013)

customer), but also internal events may occur generated by, for example, other processes within

the organization.

A business event may trigger or be triggered (raised) by a business process, business function, or

business interaction. A business event may access a business object and may be composed of

other business events. The name of a business event should preferably be a verb in the perfect

tense; e.g., “claim received”.

Business

event

Figure 18: Business Event Notation

Example

In the model below, the Request insurance event triggers the Take out insurance process. A

business object containing the Customer info accompanies the request. In order to persuade the

customer to purchase more insurance products, a triggering event is raised in the Receive request

process. This triggers the Send product portfolio to customer process.

Example 9: Business Event

3.3.5 Business Service

A business service is defined as a service that fulfills a business need for a customer (internal or

external to the organization).

A business service exposes the functionality of business roles or collaborations to their

environment. This functionality is accessed through one or more business interfaces. A business

service is realized by one or more business processes, business functions, or business

interactions that are performed by the business roles or business collaborations, respectively. It

may access business objects.

A business service should provide a unit of functionality that is meaningful from the point of

view of the environment. It has a purpose, which states this utility. The environment includes the

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 25

(behavior of) users from outside as well as inside the organization. Business services can be

external, customer-facing services (e.g., a travel insurance service) or internal support services

(e.g., a resource management service).

A business service is associated with a value. A business service may be used by a business

process, business function, or business interaction. A business process, business function, or

business interaction may realize a business service. A business interface or application interface

may be assigned to a business service. A business service may access business objects. The

name of a business service should preferably be a verb ending with “-ing”; e.g., “transaction

processing”. Also, a name explicitly containing the word “service” may be used.

Business

service

Figure 19: Business Service Notation

Example

In the model below, external and internal business services are distinguished. The Basic

administration function acts as a shared service center. The take out business processes

corresponding with the travel and luggage insurance use the (internal) business services that are

provided by the Basic administration function. Both business processes realize an (external)

business service. The insurance selling service is accessible via a business interface (e.g., web

form) of the insurance seller. Each business service should be of value to the user(s) of the

service (in this example, the insurance buyer role). This value may be explicitly modeled, if

appropriate. The value of the Travel insurance selling service to an external customer (the

insurance buyer) is that the customer is insured.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

26 Technical Standard (2013)

Example 10: Business Service

3.4 Passive Structure Concepts

In the passive structure aspect at the business layer, we model the passive entities (business

objects) that are manipulated by behavior, such as business processes or functions. The passive

entities represent the important concepts in which the business thinks about a domain.

In addition to the active structure concepts, the behavioral concepts, and the business object,

which are mainly concerned with the operational perspective on an enterprise, the passive

structure aspect at the business layer also defines a number of informational concepts that focus

on what we could call the “intentional” perspective.

Information is fundamentally related to communication. Information always serves a particular

purpose, which is tightly connected to some communicational goal. As communication always

involves a static part (the “message”) and a dynamic part (the communication action itself), the

communicational goals may have a link to both our “meaning” concept and our “value” concept.

Also, in speech act-based approaches to business modeling, such as DEMO [9], the

communicational aspect plays a central role in the context of business transactions.

For the complete description of a meaning, the following two elements are needed, in addition to

the representations (and, indirectly, business objects) with which the meaning is associated:

 Some sort of meaning description: A meaning description is not equal to the

representation causing the meaning: it is a specialized description that aims to clarify or

stipulate a meaning. Natural language may be used for this, but also formal languages or

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 27

diagrams. Typical examples of meaning descriptions are definitions, ontologies,

paraphrases, subject descriptions, and tables of content. Meaning descriptions may draw

from or refer to additional meaning description sources; for example, dictionaries.

Importantly, meaning descriptions do not necessarily have to describe meaning in detail.

The level of detail depends on the types of analysis required. It is quite possible that a

very rough meaning description is good enough to capture at architecture level the sort of

interpretations a business object conveys. Detailed meaning description can only in a

limited number of cases be made very precise; in most cases, interpretation depends on the

general language and knowledge of specific actors, which normally remains largely

implicit.

 A description of the context(s) in which the meaning is conveyed: A context description

covers the situation in which the interpretation takes place. The most important elements

of such a context are the actors sending and receiving the business object, the time and

place of communication and the environment in which this happens. Often, a context can

be briefly described in terms of some business domain.

We see a (financial or information) product as of a collection of services, together with a

contract that specifies the characteristics, rights, and requirements associated with the product.

This “package” is offered as a whole to (internal or external) customers.

We define a contract as a formal or informal specification of agreement that specifies the rights

and obligations associated with a product. The value of a product or service is that which makes

some party appreciate it, possibly in relation to providing it, but more typically to acquiring it.

3.4.1 Business Object

A business object is defined as a passive element that has relevance from a business perspective.

Business objects represent the important “informational” or “conceptual” elements in which the

business thinks about a domain. At the enterprise architecture abstraction level, it is more

common to model types rather than instances. In most cases, a business object is therefore used

to model an object type (cf. a UML class), of which several instances may exist within the

organization. Sometimes, business objects represent actual instances of information produced

and consumed by behavior elements such as business processes. A wide variety of types of

business objects can be defined. Business objects are passive in the sense that they do not trigger

or perform processes. A business object could be used to represent information assets that are

relevant from a business point of view and can be realized by data objects.

Business objects may be accessed (e.g., in the case of information objects, which are most

common in the application domains in which the ArchiMate language is applied, they may be

created, read, written) by a business process, function, business interaction, business event, or

business service. A business object may have association, specialization, aggregation, or

composition relationships with other business objects. A business object may be realized by a

representation or by a data object (or both). The name of a business object should preferably be a

noun.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

28 Technical Standard (2013)

Business

object

Figure 20: Business Object Notation

Example

The model below shows a business object Invoice, which aggregates (multiple) business objects

Invoice line. Two possible realizations of this business object exist: an Electronic invoice (data

object) and a Paper invoice (representation). The business process Create invoice creates the

invoice and the invoice lines, while the business process Send invoice accesses the business

object Invoice.

Example 11: Business Object

3.4.2 Representation

A representation is defined as a perceptible form of the information carried by a business object.

Representations (for example, messages or documents) are the perceptible carriers of

information that are related to business objects. If relevant, representations can be classified in

various ways; for example, in terms of medium (electronic, paper, audio, etc.) or format (HTML,

ASCII, PDF, RTF, etc.). A single business object can have a number of different representations.

Also, a single representation can realize one or more specific business objects.

A representation may realize one or more business objects. A meaning can be associated with a

representation that carries this meaning. The name of a representation is preferably a noun.

Representation

Figure 21: Representation Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 29

Example

The model below shows the business object Request for insurance, which is realized (represented)

by a (physical) request form. The Invoice business object is realized (represented) by a paper bill.

Example 12: Representation

3.4.3 Meaning

Meaning is defined as the knowledge or expertise present in a business object or its

representation, given a particular context.

A meaning is the information-related counterpart of a value: it represents the intention of a

business object or representation (for example, a document, message; the representations related

to a business object). It is a description that expresses the intent of a representation; i.e., how it

informs the external user.

It is possible that different users view the informative functionality of a business object or

representation differently. For example, what may be a “registration confirmation” for a client

could be a “client mutation” for a CRM department (assuming for the sake of argument that it is

modeled as an external user). Also, various different representations may carry essentially the

same meaning. For example, various different documents (a web document, a filled-in paper

form, a “client contact” report from the call center) may essentially carry the same meaning.

A meaning can be associated with a representation that carries this meaning. The name of a

meaning should preferably be a noun or noun phrase.

Meaning

Figure 22: Meaning Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

30 Technical Standard (2013)

Example

The model below shows an Insurance policy document that is the representation of an Insurance

policy, which is a business object. The meaning related to this document is the Insurance policy

notification, which consists of a Policy explanation, an Insurance registration, and a Coverage

description.

Example 13: Meaning

3.4.4 Value

Value is defined as the relative worth, utility, or importance of a business service or product.

Value may apply to what a party gets by selling or making available some product or service, or

it may apply to what a party gets by buying or obtaining access to it. Value is often expressed in

terms of money, but it has long since been recognized that non-monetary value is also essential

to business; for example, practical/functional value (including the right to use a service), and the

value of information or knowledge. Though value can hold internally for some system or

organizational unit, it is most typically applied to external appreciation of goods, services,

information, knowledge, or money, normally as part of some sort of customer-provider

relationship.

A value can be associated with business services and, indirectly, with the products they are part

of, and the roles or actors that use them. Although the name of a value can be expressed in many

different ways (including amounts, objects), where the “functional” value of a service is

concerned it is recommended to try and express it as an action or state that can be performed or

reached as a result of the corresponding service being available.

Value

Figure 23: Value Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 31

Example

In the model below, the value Be Insured is the highest-level expression of what the service

Provide Insurance enables the client to do; three “sub-values” are distinguished that are part of

what Be Insured amounts to.

Example 14: Value

3.4.5 Product

A product is defined as a coherent collection of services, accompanied by a contract/set of

agreements, which is offered as a whole to (internal or external) customers.

This definition describes financial, services-based, or information products that are common in

information-intensive organizations, rather than physical products. A financial or information

product consists of a collection of services, and a contract that specifies the characteristics,

rights, and requirements associated with the product. “Buying” a product gives the customer the

right to use the associated services. Generally, the product concept is used to specify a product

type. The number of product types in an organization is typically relatively stable compared to,

for example, the processes that realize or support the products. “Buying” is usually one of the

services associated with a product, which results in a new instance of that product (belonging to

a specific customer). Similarly, there may be services to modify or destroy a product.

A product may aggregate business services or application services,
3
 as well as a contract. A

value may be associated with a product. The name of a product is usually the name which is

used in the communication with customers, or possibly a more generic noun (e.g., “travel

insurance”).

Product

Figure 24: Product Notation

3
 The latter relation is defined in Chapter 6 on cross-layer dependencies.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

32 Technical Standard (2013)

Example

In the model below, a bank offers the product Telebanking account to its customers. Opening an

account as well as application support (i.e., helpdesk and the like), are modeled as business

services realized by the Customer relations department. As part of the product, the customer can

make use of a banking service which offers application services realized by the Telebanking

application, such as electronic Money transfer and requesting Account status.

Example 15: Product

3.4.6 Contract

A contract is defined as a formal or informal specification of an agreement that specifies the

rights and obligations associated with a product.

The contract concept may be used to model a contract in the legal sense, but also a more

informal agreement associated with a product. It may also be or include a Service Level

Agreement (SLA), describing an agreement about the functionality and quality of the services

that are part of a product. A contract is a specialization of a business object.

The relationships that apply to a business object also apply to a contract. In addition, a contract

may have an aggregation relationship with a product. The name of a contract is preferably a

noun.

Contract

Figure 25: Contract Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 33

Example

The model below shows a Telebanking contract associated with the product Telebanking account.

The contract consists of two parts (subcontracts): the Service Conditions and a Service Level

Agreement.

Example 16: Contract

3.5 Summary of Business Layer Concepts

Table 1 gives an overview of the concepts at the business layer, with their definitions.

Table 1: Business Layer Concepts

Concept Description Notation

Business actor An organizational entity that is capable of

performing behavior. Business

actor

Business role The responsibility for performing specific

behavior, to which an actor can be

assigned.

Business

role

Business

collaboration

An aggregate of two or more business

roles that work together to perform

collective behavior.

Business

collaboration

Business interface A point of access where a business

service is made available to the

environment.

Business
interface

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

34 Technical Standard (2013)

Concept Description Notation

Location A conceptual point or extent in space.

Business process A behavior element that groups behavior

based on an ordering of activities. It is

intended to produce a defined set of

products or business services.

Business

process

Business function A behavior element that groups behavior

based on a chosen set of criteria (typically

required business resources and/or

competences).

Business

function

Business

interaction

A behavior element that describes the

behavior of a business collaboration. Business

interaction

Business event Something that happens (internally or

externally) and influences behavior. Business

event

Business service A service that fulfills a business need for

a customer (internal or external to the

organization).

Business

service

Business object A passive element that has relevance

from a business perspective.
Business

object

Representation A perceptible form of the information

carried by a business object. Representation

Meaning The knowledge or expertise present in a

business object or its representation,

given a particular context.
Meaning

Value The relative worth, utility, or importance

of a business service or product. Value

Product A coherent collection of services,

accompanied by a contract/set of

agreements, which is offered as a whole

to (internal or external) customers.

Product

Contract A formal or informal specification of

agreement that specifies the rights and

obligations associated with a product.

Contract

 Location

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 35

4 Application Layer

4.1 Application Layer Metamodel

Figure 26 gives an overview of the application layer concepts and their relationships. Many of

the concepts have been inspired by the UML 2.0 standard [7], [10], as this is the dominant

language and the de facto standard for describing software applications. Whenever applicable,

we draw inspiration from the analogy with the business and application layer.

Figure 26: Application Layer Metamodel

Note: This figure does not show all permitted relationships: every concept in the language

can have composition, aggregation, and specialization relationships with concepts of

the same type; furthermore, there are indirect relationships that can be derived as

explained in Section 7.5.

4.2 Active Structure Concepts

The main active structure concept for the application layer is the application component. This

concept is used to model any structural entity in the application layer: not just (re-usable)

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

36 Technical Standard (2013)

software components that can be part of one or more applications, but also complete software

applications, sub-applications, or information systems. Although very similar to the UML 2.0

component, our component concept strictly models the structural aspect of an application: its

behavior is modeled by an explicit relationship to the behavioral concepts.

Also in application architecture, the inter-relationships of components are an essential

ingredient. Therefore, we also introduce the concept of application collaboration here, defined

as a collective of application components which perform application interactions. The concept is

very similar to the collaboration as defined in the UML 2.0 standard [7], [10].

In the purely structural sense, an application interface is the (logical) channel through which the

services of a component can be accessed. In a broader sense (as used in, among others, the UML

2.0 definition), an application interface defines some elementary behavioral characteristics: it

defines the set of operations and events that are provided by the component, or those that are

required from the environment. Thus, it is used to describe the functionality of a component. A

distinction may be made between a provided interface and a required interface. The application

interface concept can be used to model both application-to-application interfaces, which offer

internal application services, and application-to business interfaces (and/or user interfaces),

which offer external application services.

4.2.1 Application Component

An application component is defined as a modular, deployable, and replaceable part of a

software system that encapsulates its behavior and data and exposes these through a set of

interfaces.

An application component is a self-contained unit of functionality. As such, it is independently

deployable, re-usable, and replaceable. An application component performs one or more

application functions. It encapsulates its contents: its functionality is only accessible through a

set of application interfaces. Co-operating application components are connected via application

collaborations.

An application component may be assigned to one or more application functions, business

processes, or business functions. An application component has one or more application

interfaces, which expose its functionality. Application interfaces of other application

components may be used by an application component. The name of an application component

should preferably be a noun.

Application

component

Figure 27: Application Component Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 37

Example

In the model below, a financial application is depicted as an application component consisting of

two subcomponents for accounting and billing, each of which offers an application service to the

environment. These services are accessible through a shared accounting & billing application

interface, which is part of the financial application.

Example 17: Application Component

4.2.2 Application Collaboration

An application collaboration is defined as an aggregate of two or more application components

that work together to perform collective behavior.

An application collaboration specifies which components co-operate to perform some task. The

collaborative behavior, including, for example, the communication pattern of these components,

is modeled by an application interaction. An application collaboration typically models a logical

or temporary collaboration of application components, and does not exist as a separate entity in

the enterprise.

An application collaboration is a specialization of a component, and aggregates two or more (co-

operating) application components. An application collaboration is an active structure element

that may be assigned to one or more application interactions or business interactions, which

model the associated behavior. An application interface may be used by an application

collaboration, and an application collaboration may be composed of application interfaces. The

name of an application collaboration should preferably be a noun.

Application

collaboration

Figure 28: Application Collaboration Notation

Example

In the model below, two components collaborate in transaction administration: an Accounting

component and a Billing component. This collaboration performs the application interaction

Administrate transactions.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

38 Technical Standard (2013)

Example 18: Application Collaboration

4.2.3 Application Interface

An application interface is defined as a point of access where an application service is made

available to a user or another application component.

An application interface specifies how the functionality of a component can be accessed by other

components (provided interface), or which functionality the component requires from its

environment (required interface). An application interface exposes an application service to the

environment. The same application service may be exposed through different interfaces.

In a sense, an application interface specifies a kind of contract that a component realizing this

interface must fulfill. This may include parameters, protocols used, pre- and post-conditions, and

data formats.

An application interface may be part of an application component through composition (not

shown in the standard notation), which means that these interfaces are provided or required by

that component, and can be used by other application components. An application interface can

be assigned to application services or business services, which means that the interface exposes

these services to the environment. The name of an application interface should preferably be a

noun.

Application

interface

Figure 29: Application Interface Notation

Example

In the model below, an Accounting component is shown that provides an application interface for

Transaction data exchange, and a Billing component that requires such an interface.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 39

Example 19: Application Interface

4.3 Behavioral Concepts

Behavior at the application layer can be described in a way that is very similar to business layer

behavior. Also here, we make a distinction between the external behavior of application

components in terms of application services, and the internal behavior of these components; i.e.,

application functions that realize these services.

An application service is an externally visible unit of functionality, provided by one or more

components, exposed through well-defined interfaces, and meaningful to the environment. The

service concept provides a way to explicitly describe the functionality that components share

with each other and the functionality that they make available to the environment. The concept

fits well within the current developments in the area of web services. The functionality that an

interactive computer program provides through a user interface is also modeled using an

application service, exposed by an application-to-business interface representing the user

interface. Internal application services are exposed through an application-to-application

interface.

An application function describes the internal behavior of a component needed to realize one or

more application services. In analogy with the business layer, a separate “application flow”

concept is conceivable as the counterpart of a business process. Note that the internal behavior of

a component should in most cases not be modeled in too much detail in an architectural

description, because for the description of this behavior we may soon be confronted with

detailed design issues.

An application interaction is the behavior of a collaboration of two or more application

components. An application interaction is external behavior from the perspective of each of the

participating components, but the behavior is internal to the collaboration as a whole.

4.3.1 Application Function

An application function is defined as a behavior element that groups automated behavior that can

be performed by an application component.

An application function describes the internal behavior of an application component. If this

behavior is exposed externally, this is done through one or more services. An application

function abstracts from the way it is implemented. Only the necessary behavior is specified.

An application function may realize one or more application services. Application services of

other application functions and infrastructure services may be used by an application function.

An application function may access data objects. An application component may be assigned to

an application function (which means that the application component performs the application

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

40 Technical Standard (2013)

function). The name of an application function should preferably be a verb ending with “-ing”;

e.g., “accounting”.

Application

function

Figure 30: Application Function Notation

Example

In the model below, the internal behavior of the Financial application component is modeled as an

application function consisting of two sub-functions. These application functions realize the

application services that are made available to the users of the application.

Example 20: Application Function

4.3.2 Application Interaction

An application interaction is defined as a behavior element that describes the behavior of an

application collaboration.

An application interaction describes the collective behavior that is performed by the components

that participate in an application collaboration. This may, for example, include the

communication pattern between these components. An application interaction can also specify

the externally visible behavior needed to realize an application service. The details of the

interaction between the application components involved in an application interaction can be

expressed during the detailed application design using, e.g., a UML interaction diagram.

An application collaboration may be assigned to an application interaction. An application

interaction may realize an application service. Application services and infrastructure services

may be used by an application interaction. An application interaction may access data objects.

The name of an application interaction should preferably be a verb.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 41

Application

interaction

Figure 31: Application Interaction Notation

Example

In the model below, an Accounting component and a Billing component of a financial system co-

operate to compose an administrate transactions interaction. This is modeled as an application

interaction assigned to the collaboration between the two components.

Example 21: Application Interaction

4.3.3 Application Service

An application service is defined as a service that exposes automated behavior.

An application service exposes the functionality of components to their environment. This

functionality is accessed through one or more application interfaces. An application service is

realized by one or more application functions that are performed by the component. It may

require, use, and produce data objects.

An application service should be meaningful from the point of view of the environment; it

should provide a unit of functionality that is, in itself, useful to its users. It has a purpose, which

states this utility to the environment. This means, for example, that if this environment includes

business processes, application services should have business relevance.

A purpose may be associated with an application service. An application service may be used by

business processes, business functions, business interactions, or application functions. An

application function may realize an application service. An application interface may be

assigned to an application service. An application service may access data objects. The name of

an application service should preferably be a verb ending with “-ing”; e.g., “transaction

processing”. Also, a name explicitly containing the word “service” may be used.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

42 Technical Standard (2013)

Figure 32: Application Service Notation

Example

In the model below, a Transaction processing (application-to-application) service is realized by the

Accounting application function, and is accessible by other components through a Transaction

processing application programming interface (API). This service is used by the Billing application

function performed by the Billing component.

The Billing application function offers an (application-to-business) function Bill creation, which can

be used to support business processes, and is accessible to business roles through a Billing screen

as an application-to-business interface.

Example 22: Application Service

4.4 Passive Structure Concepts

Also at the application layer, we distinguish the passive counterpart of the component, which we

call a data object. This concept is used in the same way as data objects (or object types) in well-

known data modeling approaches, most notably the “class” concept in UML class diagrams. A

data object can be seen as a representation of a business object, as a counterpart of the

representation concept in the business layer. The ArchiMate language does not define a specific

layer for information; however, concepts such as business objects and data objects are used to

represent the information entities and also the logical data components that realize the business

objects.

Application
service

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 43

4.4.1 Data Object

A data object is defined as a passive element suitable for automated processing.

An application function operates on a data object. A data object may be communicated via

interactions and used or produced by application services. It should be a self-contained piece of

information with a clear meaning to the business, not just to the application level. Typical

examples of data objects are a customer record, a client database, or an insurance claim.

A data object can be accessed by an application function, application interaction, or application

service. A data object may realize a business object, and may be realized by an artifact. A data

object may have association, specialization, aggregation, or composition relationships with other

data objects. The name of a data object should preferably be a noun.

Data

object

Figure 33: Data Object Notation

Example

In the model below, two application functions co-operate via an application service, in which a

data object holding Transaction data is exchanged.

Example 23: Data Object

4.5 Summary of Application Layer Components

Table 2 gives an overview of the concepts at the application layer, with their definitions.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

44 Technical Standard (2013)

Table 2: Application Layer Concepts

Concept Definition Notation

Application

component

A modular, deployable, and replaceable

part of a software system that

encapsulates its behavior and data and

exposes these through a set of interfaces.

Application

component

Application

collaboration

An aggregate of two or more application

components that work together to perform

collective behavior.

Application

collaboration

Application

interface

A point of access where an application

service is made available to a user or

another application component.

Application

interface

Application

function

A behavior element that groups automated

behavior that can be performed by an

application component.

Application

function

Application

interaction

A behavior element that describes the

behavior of an application collaboration. Application

interaction

Application

service

A service that exposes automated

behavior.

Data object A passive element suitable for automated

processing.
Data

object

Application
service

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 45

5 Technology Layer

5.1 Technology Layer Metamodel

Figure 34 gives an overview of the technology layer concepts and their relationships. Many of

the concepts have been inspired by the UML 2.0 standard [7], [10], as this is the dominant

language and the de facto standard for describing software applications and infrastructure.

Whenever applicable, we draw inspiration from the analogy with the business and application

layers.

Figure 34: Technology Layer Metamodel

Note: This figure does not show all permitted relationships: every concept in the language

can have composition, aggregation, and specialization relationships with concepts of

the same type; furthermore, there are indirect relationships that can be derived as

explained in Section 7.5.

5.2 Active Structure Concepts

The main active structure concept for the technology layer is the node. This concept is used to

model structural entities in this layer. It is identical to the node concept of UML 2.0. It strictly

models the structural aspect of a system: its behavior is modeled by an explicit relationship to

the behavioral concepts.

An infrastructure interface is the (logical) location where the infrastructure services offered by a

node can be accessed by other nodes or by application components from the application layer.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

46 Technical Standard (2013)

Nodes come in two flavors: device and system software, both taken from UML 2.0. A device

models a physical computational resource, upon which artifacts may be deployed for execution.

System software is an infrastructural software component running on a device. Typically, a node

consists of a number of sub-nodes; for example, a device such as a server and system software to

model the operating system.

The inter-relationships of components in the technology layer are mainly formed by the

communication infrastructure. The communication path models the relation between two or

more nodes, through which these nodes can exchange information. The physical realization of a

communication path is a modeled with a network; i.e., a physical communication medium

between two or more devices (or other networks).

5.2.1 Node

A node is defined as a computational resource upon which artifacts may be stored or deployed

for execution.

Nodes are active processing elements that execute and process artifacts, which are the

representation of components and data objects. Nodes are, for example, used to model

application servers, database servers, or client workstations. A node is often a combination of a

hardware device and system software, thus providing a complete execution environment. These

sub-nodes that represent the hardware devices and system software may be modeled explicitly or

left implicit.

Nodes can be interconnected by communication paths. Artifacts can be assigned to (i.e.,

deployed on) nodes.

The name of a node should preferably be a noun. A node can consist of sub-nodes.

Artifacts deployed on a node may either be drawn inside the node or connected to it with an

assignment relationship.

Node

Figure 35: Node Notation

Example

In the model below, we see an Application Server node, which consists of a Blade device and Java

EE-based application server system software.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 47

Example 24: Node

5.2.2 Device

A device is defined as a hardware resource upon which artifacts may be stored or deployed for

execution.

A device is a specialization of a node that represents a physical resource with processing

capability. It is typically used to model hardware systems such as mainframes, PCs, or routers.

Usually, they are part of a node together with system software. Devices may be composite; i.e.,

consist of sub-devices.

Devices can be interconnected by networks. Artifacts can be assigned to (i.e., deployed on)

devices. System software can be assigned to a device. A node can contain one or more devices.

The name of a device should preferably be a noun referring to the type of hardware; e.g., “IBM

System z mainframe”.

A device can consist of sub-devices.

Different icons may be used to distinguish between different types of devices; e.g. mainframes

and PCs.

Figure 36: Device Notation

Example

The model below shows an example of a number of servers, modeled as devices, interconnected

through a local area network (LAN).

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

48 Technical Standard (2013)

Example 25: Device

5.2.3 System Software

System software represents a software environment for specific types of components and objects

that are deployed on it in the form of artifacts.

System software is a specialization of a node that is used to model the software environment in

which artifacts run. This can be, for example, an operating system, a JEE application server, a

database system, or a workflow engine. Also, system software can be used to represent, for

example, communication middleware. Usually, system software is combined with a device

representing the hardware environment to form a general node.

System software can be assigned to a device. Artifacts can be assigned to (i.e., deployed on)

system software. A node can contain system software.

The name of system software should preferably be a noun referring to the type of execution

environment; e.g., “JEE server”. System software may contain other system software; e.g., an

operating system containing a database.

System

software

Figure 37: System Software Notation

Example

In the model below, we see a mainframe device that deploys two system software environments: a

customer transaction server and a database management system (DBMS).

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 49

Example 26: System Software

5.2.4 Infrastructure Interface

An infrastructure interface is defined as a point of access where infrastructure services offered

by a node can be accessed by other nodes and application components.

An infrastructure interface specifies how the infrastructure services of a node can be accessed by

other nodes (provided interface), or which functionality the node requires from its environment

(required interface). An infrastructure interface exposes an infrastructure service to the

environment. The same service may be exposed through different interfaces.

In a sense, an infrastructure interface specifies a kind of contract that a component realizing this

interface must fulfill. This may include, for example, parameters, protocols used, pre- and post-

conditions, and data formats.

An infrastructure interface may be part of a node through composition (not shown in the

standard notation), which means that these interfaces are provided or required by that node, and

can be used by other nodes. An infrastructure service can be assigned to an infrastructure

interface, which exposes the service to the environment.

The name of an infrastructure interface should preferably be a noun.

Infrastructure

interface

Figure 38: Infrastructure Interface Notations

Example

In the model below, we see a client infrastructure interface exposed, which is part of the client-

server system software.

Example 27: Infrastructure Interface

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

50 Technical Standard (2013)

5.2.5 Network

A network is defined as a communication medium between two or more devices.

A network represents the physical communication infrastructure. This may comprise one or

more fixed or wireless network links. The most basic network is a single link between two

devices. A network has properties such as bandwidth and latency. It embodies the physical

realization of the logical communication paths between nodes.

A network connects two or more devices. A network realizes one or more communication paths.

A network can consist of sub-networks.

Network

Figure 39: Network Notation, as Connection and as Box

Example

In the model below, a 100 Mb/s LAN network connects a mainframe and PC device.

Example 28: Network

5.2.6 Communication Path

A communication path is defined as a link between two or more nodes, through which these

nodes can exchange data.

A communication path is used to model the logical communication relations between nodes. It is

realized by one or more networks, which represent the physical communication links. The

communication properties (e.g., bandwidth, latency) of a communication path are usually

aggregated from these underlying networks.

A communication path connects two or more nodes. A communication path is realized by one or

more networks. A communication path is atomic.

Communication

path

Figure 40: Communication Path Notation, as Connection and as Box

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 51

Example

In the model below, we see a communication path “message queuing” between an Application

Server and a Client.

Example 29: Communication Path

5.3 Behavioral Concepts

Behavior elements in the technology layer are similar to the behavior elements in the other two

layers. Also here, we make a distinction between the external behavior of nodes in terms of

infrastructure services, and the internal behavior of these nodes; i.e., infrastructure functions

that realize these services.

5.3.1 Infrastructure Function

An infrastructure function is defined as a behavior element that groups infrastructural behavior

that can be performed by a node.

An infrastructure function describes the internal behavior of a node; for the user of a node that

performs an infrastructure function, this function is invisible. If its behavior is exposed

externally, this is done through one or more infrastructure services. An infrastructure function

abstracts from the way it is implemented. Only the necessary behavior is specified.

An infrastructure function may realize infrastructure services. Infrastructure services of other

infrastructure functions may be used by an infrastructure function. An infrastructure function

may access artifacts. A node may be assigned to an infrastructure function (which means that the

node performs the infrastructure function). The name of an infrastructure function should

preferably be a verb ending with “-ing”.

Figure 41: Infrastructure Function Notation

Example

In the model below, the database management system (DBMS) node performs two infrastructure

functions: providing data access (realizing a data access service for application software), and

managing data (realizing a data management service for database administration).

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

52 Technical Standard (2013)

Example 30: Infrastructure Function

5.3.2 Infrastructure Service

An infrastructure service is defined as an externally visible unit of functionality, provided by one

or more nodes, exposed through well-defined interfaces, and meaningful to the environment.

An infrastructure service exposes the functionality of a node to its environment. This

functionality is accessed through one or more infrastructure interfaces. It may require, use, and

produce artifacts.

An infrastructure service should be meaningful from the point of view of the environment; it

should provide a unit of functionality that is, in itself, useful to its users, such as application

components and nodes.

Typical infrastructure services may, for example, include messaging, storage, naming, and

directory services. It may access artifacts; e.g., a file containing a message.

An infrastructure service may be used by application components or nodes. An infrastructure

service is realized by a node. An infrastructure service is exposed by a node by assigning it to its

infrastructure interfaces. An infrastructure service may access artifacts.

The name of an infrastructure service should preferably be a verb ending with “-ing”; e.g.,

“messaging”. Also, a name explicitly containing the word “service” may be used.

An infrastructure service may consist of sub-services.

Figure 42: Infrastructure Service Notation

Example

In the model below, we see a Messaging service realized by Message-Oriented Middleware (MOM)

system software.

Infrastructure
service

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 53

Example 31: Infrastructure Service

5.4 Passive Structure Concepts

An artifact is a physical piece of information that is used or produced in a software development

process, or by deployment and operation of a system. It is the representation, in the form of, for

example, a file, of a data object, or an application component, and can be deployed on a node.

The artifact concept has been taken from UML 2.0.

5.4.1 Artifact

An artifact is defined as a physical piece of data that is used or produced in a software

development process, or by deployment and operation of a system.

An artifact represents a concrete element in the physical world. It is typically used to model

(software) products such as source files, executables, scripts, database tables, messages,

documents, specifications, and model files. An instance (copy) of an artifact can be deployed on

a node. An artifact could be used to represent a physical data component that realizes a data

object.

An application component or system software may be realized by one or more artifacts. A data

object may be realized by one or more artifacts. A node may be assigned to an artifact (i.e., the

artifact is deployed on the node). Thus, the two typical ways to use the artifact concept are as an

execution component or as a data file. In fact, these could be defined as specializations of the

artifact concept.

The name of an artifact should preferably be the name of the file it represents; e.g., “order.jar”.

An artifact may consist of sub-artifacts.

Artifact

Figure 43: Artifact Notation

Example

In the example below, we see an artifact Risk management EJB, which represents a deployable

unit of code, assigned to (deployed on) an application server.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

54 Technical Standard (2013)

Example 32: Artifact

5.5 Summary of Technology Layer Concepts

Table 3 gives an overview of the concepts at the technology layer, with their definitions.

Table 3: Technology Layer Concepts

Concept Definition Notation

Node A computational resource upon which

artifacts may be stored or deployed for

execution.
Node

Device A hardware resource upon which artifacts may

be stored or deployed for execution.

Network A communication medium between two or

more devices. Network

Communication

path

A link between two or more nodes, through

which these nodes can exchange data. Communication

path

Infrastructure

interface

A point of access where infrastructure services

offered by a node can be accessed by other

nodes and application components.

Infrastructure

interface

System software A software environment for specific types of

components and objects that are deployed on

it in the form of artifacts.

System

software

Infrastructure

function

A behavior element that groups infrastructural

behavior that can be performed by a node.

Infrastructure

service

An externally visible unit of functionality,

provided by one or more nodes, exposed

through well-defined interfaces, and

meaningful to the environment.

Artifact A physical piece of data that is used or

produced in a software development process,

or by deployment and operation of a system.
Artifact

Infrastructure
service

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 55

6 Cross-Layer Dependencies

In the previous chapters we have presented the concepts to model the business, application, and

technology layers of an enterprise. However, a central issue in enterprise architecture is

business-IT alignment: how can these layers be matched? In this chapter, we describe the

relationships that the ArchiMate language offers to model the link between business,

applications, and technology.

6.1 Business Layer and Lower Layers Alignment

Figure 44 shows the relationships between the business layer, the application layer, and the

technology layer concepts. There are three main types of relationships between these layers:

1. Used by relationships, between application service and the different types of business

behavior elements, and between application interface and business role. These

relationships represent the behavioral and structural aspects of the support of the business

by applications.

2. A realization relationship from a data object to a business object, to indicate that the data

object is a digital representation of the corresponding business object.

3. Assignment relationships, between application component and business process, function,

or interaction, and between application interface and business service, to indicate that, for

example, business processes or business services are completely automated. The case that

a business process, function, or interaction is not completely automated but only

supported by an application component is expressed with a “used by” relationship (see,

e.g., the example of an Application Usage Viewpoint in Section 8.4.11).

In addition, there may be an aggregation relationship between a product and an application or

infrastructure service, to indicate that the application or infrastructure service can be offered

directly to a customer as part of the product. Also, a location may be assigned to all active and

passive structural elements (and, indirectly, behavior elements) in the application and technology

layers.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

56 Technical Standard (2013)

Figure 44: Relationships between Business Layer and Lower Layer Concepts

Note: This figure does not show all permitted relationships: there are indirect relationships

that can be derived as explained in Section 7.5.

6.2 Application-Technology Alignment

Figure 45 shows the relationships between application layer and technology layer concepts.

There are two types of relationships between these layers:

1. Used by relationships, between infrastructure service and the different types of application

behavior elements, and between infrastructure interface and application component. These

relationships represent the behavioral and structural aspects of the use of technical

infrastructure by applications.

2. A realization relationship from artifact to data object, to indicate that the data object is

realized by, for example, a physical data file, and from artifact to application component,

to indicate that a physical data file is an executable that realizes an application or part of

an application. (Note: In this case, an artifact represents a “physical” component that is

deployed on a node; this is modeled with an assignment relationship. A (logical)

application component is realized by an artifact and, indirectly, by the node on which the

artifact is deployed.)

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 57

Figure 45: Relationships between Application Layer and Technology Layer Concepts

Note: This figure does not show all permitted relationships: there are indirect relationships

that can be derived as explained in Section 7.5.

Due to the derived relationships that are explained in Section 7.5, it is also possible to draw

relationships directly between the business and technology layers. For example, if a business

object is realized by a data object, which in turn is realized by an artifact, this artifact indirectly

realizes the business object.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

58 Technical Standard (2013)

7 Relationships

The metamodels and examples from the previous chapters show the different types of

relationships that the ArchiMate language offers. In this chapter, we provide a more precise

description of these relationships.

The relationships can be classified as either:

 Structural, which model the structural coherence of concepts of the same or different

types

 Dynamic, which are used to model (temporal) dependencies between behavioral concepts

 Other, which do not fall in one of the two above categories

7.1 Structural Relationships

7.1.1 Composition Relationship

The composition relationship indicates that an object is composed of one or more other objects.

The composition relationship has been inspired by the composition relationship in UML class

diagrams. In contrast to the aggregation relationship, an object can be part of only one

composition.

In addition to composition relationships that are explicitly defined in the metamodel figures of

the previous sections, composition is always possible between two instances of the same

concept.

Figure 46: Composition Notation

Alternatively, a composition relationship can be expressed by nesting the model elements.

Example

The models below show the two ways to express that the application component Financial

application is composed of three other application components.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 59

Example 33: Composition

7.1.2 Aggregation Relationship

The aggregation relationship indicates that a concept groups a number of other concepts.

The aggregation relationship has been inspired on the aggregation relationship in UML class

diagrams. In contrast to the composition relationship, an object can be part of more than one

aggregation.

In addition to aggregation relationships that are explicitly defined in the metamodel figures of

the previous sections, aggregation is always possible between two instances of the same concept.

Figure 47: Aggregation Notation

Alternatively, an aggregation relationship can be expressed by nesting the model elements.

Example

The models below show the two ways to express that the product Car insurance aggregates a

contract (Policy) and two business services.

Example 34: Aggregation

7.1.3 Assignment Relationship

The assignment relationship links active elements (e.g., business roles or application

components) with units of behavior that are performed by them, or business actors with business

roles that are fulfilled by them.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

60 Technical Standard (2013)

The assignment relationship can relate a business role with a business process or function, an

application component with an application function, a business collaboration with a business

interaction, an application collaboration with an application interaction, a business interface with

a business service, an application interface with an application service, a business actor with a

business role, or a location with a business object, representation, or business actor.

Figure 48: Assignment Notation

Alternatively, an assignment relationship can be expressed by nesting the model elements.

Example

The model in the example below includes the two ways to express the assignment relationship.

The Payment function (application) is assigned to the Financial application (component), and the

Payment service (application) is assigned to the Payment interface.

Example 35: Assignment

7.1.4 Realization Relationship

The realization relationship links a logical entity with a more concrete entity that realizes it.

The realization relationship indicates how logical entities (“what”), such as services, are realized

by means of more concrete entities (“how”). The realization relationship is used in an

operational sense (e.g., a process/function realizes a service), but also in a

design/implementation context (e.g., a data object may realize a business object, or an artifact

may realize an application component).

Figure 49: Realization Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 61

Example

The model below illustrates two ways to use the realization relationship. An application

(component) Financial application realizes the Billing service (application); the Billing data object

realizes the business object Invoice.

Example 36: Realization

7.1.5 Used By Relationship

The used by relationship models the use of services by processes, functions, or interactions and

the access to interfaces by roles, components, or collaborations.

The used by relationship describes the services that a role or component offers that are used by

entities in the environment. The used by relationship is applied for both the behavior aspect and

the structure aspect. (Note that, although the notation of the “used by” relationship resembles the

notation of the dependency relationship in UML, the relationship has a distinct meaning in

ArchiMate.)

Figure 50: Used By Notation

Example

The model below illustrates the used by relationship: an application interface (in this case, the

user interface of the application) is used by the Front office employee, while the Update customer

info service is used in the Process change of address business process.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

62 Technical Standard (2013)

Example 37: Used By

7.1.6 Access Relationship

The access relationship models the access of behavioral concepts to business or data objects.

The access relationship indicates that a process, function, interaction, service, or event “does

something” with a (business or data) object; e.g., create a new object, read data from the object,

write or modify the object data, or delete the object. The relationship can also be used to indicate

that the object is just associated with the behavior; e.g., it models the information that comes

with an event, or the information that is made available as part of a service. The arrow head, if

present, indicates the direction of the flow of information. (The access relationship should not be

confused with the UML dependency relationship, which uses a similar notation.)

Figure 51: Access Notation

Example

The model below illustrates the access relationship: the Create invoice sub-process writes/creates

the Invoice business object; the Send invoice sub-process reads the Invoice business object.

Example 38: Access

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 63

7.1.7 Association Relationship

An association models a relationship between objects that is not covered by another, more

specific relationship.

Association is mainly used, as in UML, to model relationships between business objects or data

objects that are not modeled by the standard relationships aggregation, composition, or

specialization. In addition to this, the association relationship is used to link the passive structure

concepts with the other concepts: a business object with a representation, a representation with a

meaning, and a business service with a value.

Figure 52: Association Notation

Example

The model illustrates a number of uses of the association relationship.

Example 39: Association

7.2 Dynamic Relationships

7.2.1 Triggering Relationship

The triggering relationship describes the temporal or causal relationships between processes,

functions, interactions, and events.

The triggering relationship is used to model the causal relationships between behavior concepts

in a process. No distinction is made between an active triggering relationship and a passive

causal relationship.

Figure 53: Triggering Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

64 Technical Standard (2013)

Example

The model below illustrates that triggering relationships are mostly used to model causal

dependencies between (sub-)processes and/or events.

Example 40: Triggering

7.2.2 Flow Relationship

The flow relationship describes the exchange or transfer of, for example, information or value

between processes, function, interactions, and events.

The flow relationship is used to model the flow of, for example, information between behavior

concepts in a process. A flow relationship does not imply a causal or temporal relationship.

Figure 54: Flow Notation

Example

The model below shows a Claim assessment business function, which forwards decisions about

the claims to the Claim settlement business function. In order to determine the order in which the

claims should be assessed, Claim assessment makes use of schedule information received from

the Scheduling business function.

Example 41: Flow

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 65

7.3 Other Relationships

7.3.1 Grouping

The grouping relationship indicates that objects belong together based on some common

characteristic.

Similar to the UML package, the grouping relationship is used to group an arbitrary group of

model objects, which can be of the same type or of different types. In contrast to the aggregation

or composition relationships, there is no “overall” object of which the grouped objects form a

part.

Figure 55: Grouping Notation

Unlike the other language concepts, grouping has no formal semantics. It is only used to show

graphically that model elements have something in common. Model elements may belong to

multiple (overlapping) groups.

Example

In the model below, the grouping relationship is used to group business objects that belong to the

same information domain, in this case Financial administration.

Example 42: Grouping

7.3.2 Junction

A junction is used to connect dynamic relationships of the same type.

A junction is used in a number of situations to connect dynamic (triggering or flow)

relationships of the same type; e.g., to indicate splits or joins.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

66 Technical Standard (2013)

Figure 56: Junction Notation

Example

In the model below, a junction is used to denote an or-split (choice).

Example 43: Junction

7.3.3 Specialization Relationship

The specialization relationship indicates that an object is a specialization of another object.

The specialization relationship has been inspired by the generalization/specialization relationship

in UML class diagrams, but is applicable to specialize a wider range of concepts. The

specialization relationship can relate any instance of a concept with another instance of the same

concept.

Specialization is always possible between two instances of the same concept.

Figure 57: Specialization Notation

Example

The model below illustrates the use of the specialization relationship for a business process. In

this case the Take out travel insurance and Take out luggage insurance processes are a specialization

of a more generic insurance take out process.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 67

Example 44: Specialization

7.4 Summary of Relationships

Table 4 gives an overview of the ArchiMate relationships with their definitions.

Table 4: Relationships

Structural Relationships Notation

Association Association models a relationship between

objects that is not covered by another, more

specific relationship.

Access The access relationship models the access of

behavioral concepts to business or data

objects.

Used by The used by relationship models the use of

services by processes, functions, or

interactions and the access to interfaces by

roles, components, or collaborations.

Realization The realization relationship links a logical

entity with a more concrete entity that

realizes it.

Assignment The assignment relationship links units of

behavior with active elements (e.g., roles,

components) that perform them, or roles with

actors that fulfill them.

Aggregation The aggregation relationship indicates that an

object groups a number of other objects.

Composition The composition relationship indicates that

an object is composed of one or more other

objects.

Dynamic Relationships Notation

Flow The flow relationship describes the exchange

or transfer of, for example, information or

value between processes, function,

interactions, and events.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

68 Technical Standard (2013)

Triggering The triggering relationship describes the

temporal or causal relationships between

processes, functions, interactions, and events.

Other Relationships Notation

Grouping The grouping relationship indicates that

objects, of the same type or different types,

belong together based on some common

characteristic.

Junction A junction is used to connect relationships of

the same type.

Specialization The specialization relationship indicates that

an object is a specialization of another object.

7.5 Derived Relationships

The structural relationships described in the previous sections form an important category of

relationships to describe coherence. The structural relationships are listed in Table 4 in

ascending order by “strength”: association is the weakest structural relationship; composition is

the strongest. Part of the language definition is an abstraction rule that states that two

relationships that join at an intermediate element can be combined and replaced by the weaker of

the two.

If two structural relationships r:R and s:S are permitted between elements a, b, and c such that

r(a,b) and s(b,c), then a structural relationship t:T is also permitted, with t(a,c) and type T being

the weakest of R and S.

For the application of this rule, it is assumed that the assignment relationship has a direction (as

indicated by the role names in Figure 2, Figure 3, Figure 9, Figure 26, Figure 34, and Figure 44).

Transitively applying this property allows us to replace a “chain” of structural relationships

(with intermediate model elements) by the weakest structural relationship in the chain. For a

more formal description and derivation of this rule we refer to [13].

With this rule, it is possible to determine the “indirect” relationships that exist between model

elements without a direct relationship, which may be useful for, among other things, impact

analysis. An example is shown in Figure 48: assume that we would like to know what the impact

on the client is if the CRM system fails. In this case, an indirect “used by” relationship (the thick

arrow on the left) can be derived from this system to the Claim registration service (from the chain

assignment – used by – realization – used by – realization). No indirect (structural) relationship

is drawn between the CRM system and the Claims payment service.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 69

Example 45: Derived Structural Relationship

For the two dynamic relationships, the following rules apply:

 The begin and/or end point of a triggering or flow relationship between behavioral

elements (e.g., processes or functions) may be transferred to active structural elements

(e.g., business actors or application components) that are assigned to them.

 The begin and/or end point of a triggering or flow relationship between behavior elements

may be transferred to services that they realize.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

70 Technical Standard (2013)

Example 46: Derived Dynamic Relationship

It is important to note that all these derived relationships are also valid in ArchiMate. These are

not shown in the “barebones” metamodel illustrations shown in the previous sections, because

this would clutter up the diagrams. However, the table in Section A.2 shows all permitted

relationships between two elements in the language.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 71

8 Architecture Viewpoints

8.1 Introduction

Establishing and maintaining a coherent enterprise architecture is clearly a complex task,

because it involves many different people with differing backgrounds using various notations. In

order to get a handle on this complexity, researchers have initially focused on the definition of

architectural frameworks for classifying and positioning the various architectural descriptions

with respect to each other (e.g., the Zachman framework [5], [8]). A problem with looking at

enterprise architecture through the lens of an architectural framework is that it categorizes and

divides architectural descriptions rather than providing insight into their coherence.

ArchiMate advocates a more flexible approach in which architects and other stakeholders can

define their own views on the enterprise architecture. In this approach, views are specified by

viewpoints. Viewpoints define abstractions on the set of models representing the enterprise

architecture, each aimed at a particular type of stakeholder and addressing a particular set of

concerns. Viewpoints can be used to view certain aspects in isolation, and to relate two or more

aspects.

The notion of viewpoint-oriented architecture has been around for a while in requirements and

software engineering. In the 1990s, a substantial number of researchers worked on what was

phrased as “the multiple perspectives problem” [14], [15]. By this term they referred to the

problem of how to organize and guide (software) development in a setting with many actors,

using diverse representation schemes, having diverse domain knowledge and different

development strategies. A general framework has been developed in order to address the diverse

issues related to this problem [14], [15]. In this framework, a viewpoint combines the notion of

“actor”, “role”, or “agent” in the development process with the idea of a “perspective” or “view”

which an actor maintains. More precisely, viewpoints are defined as loosely coupled, locally

managed, distributable objects; thus containing identity, state, and behavior. A viewpoint is more

than a “partial specification”; in addition, it contains partial knowledge of how to develop that

partial specification. These early ideas on viewpoint-oriented software engineering have found

their way into ISO/IEC 42010:2007 [1] on which we have based our definitions below.

As a result of these ideas, several architecture frameworks can be found in the field of literature,

which are essentially viewpoint classification schemes. For example, the Zachman framework

[5], [8] divides the enterprise architecture into 36 different enterprise-wide “architectures” (i.e.,

viewpoints). Tapscott and Caston’s framework [16] distinguishes five different and

complementing viewpoints: business, work, information, application, and technology. Kruchten

[17] introduces the “4+1” method, in which four views (logic, process, development, and

physical), each having its own notation, are coupled through a fifth view: the scenario view

illustrating the collaboration between the other four views.

Viewpoints are also prominently present in the ISO standardized Reference Model for Open

Distributed Processing (RM-ODP) [6]. The RM-ODP identifies five viewpoints from which to

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

72 Technical Standard (2013)

specify ODP systems, each focusing on a particular area of concern; i.e., enterprise, information,

computational, engineering, and technology. It is claimed that the ODP viewpoints form a

necessary and sufficient set to meet the needs of ODP standards. More recently, the term

“viewpoint” is also used in OMG’s Model Driven Architecture (MDA) initiative to refer to the

different model types; i.e., Platform-Independent Model (PIM) and Platform-Specific Model

(PSM) [18]. Hence, we conclude that the use of viewpoints and architectural views are well-

established concepts in software architecture.

In the domain of enterprise architecture, the TOGAF framework describes a taxonomy of views

for different categories of stakeholders. Next to this description of views, TOGAF also provides

guidelines for the development and use of viewpoints and views in enterprise architecture

models.

The views and viewpoints proposed by any of the above mentioned frameworks should not be

considered in isolation: views are inter-related and, often, it is exactly a combination of views

together with their underlying inter-dependency relationships that is the best way to describe and

communicate a piece of architecture. It should, however, be noted that views and viewpoints

have a limiting character. They are eventually a restriction of the whole system (and

architecture) to a partial number of aspects – a view is just a partial incomplete depiction of the

system.

8.2 Views, Viewpoints, and Stakeholders

Views are an ideal mechanism to purposefully convey information about architecture areas. In

general, a view is defined as a part of an architecture description that addresses a set of related

concerns and is addressed to a set of stakeholders. A view is specified by means of a viewpoint,

which prescribes the concepts, models, analysis techniques, and visualizations that are provided

by the view. Simply put, a view is what you see and a viewpoint is where you are looking from.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 73

Figure 58: Conceptual Model of Architectural Description (from [1])

Viewpoints are a means to focus on particular aspects of the architecture. These aspects are

determined by the concerns of a stakeholder with whom communication takes place. What

should and should not be visible from a specific viewpoint is therefore entirely dependent on the

argumentation with respect to a stakeholder’s concerns.

Viewpoints are designed for the purpose of communicating certain aspects of an architecture.

The communication enabled by a viewpoint can be strictly informative, but in general is bi-

directional. The architect informs stakeholders, and stakeholders give their feedback (critique or

consent) on the presented aspects. What is and what is not shown in a view depends on the scope

of the viewpoint and on what is relevant to the concerns of the stakeholder. Ideally, these are the

same; i.e., the viewpoint is designed with specific concerns of a stakeholder in mind. Relevance

to a stakeholder’s concern, therefore, is the selection criterion that is used to determine which

objects and relationships are to appear in a view.

The following are examples of stakeholders and concerns as a basis for the specification of

viewpoints:

 End user: For example, what are the consequences for his work and workplace?

 Architect: What is the consequence for the maintainability of a system, with respect to

corrective, preventive, and adaptive maintenance?

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

74 Technical Standard (2013)

 Upper-level management: How can we ensure our policies are followed in the

development and operation of processes and systems? What is the impact of decisions (on

personnel, finance, ICT, etc.)?

 Operational manager: Responsible for exploitation or maintenance: For example, what

new technologies are there to prepare for? Is there a need to adapt maintenance processes?

What is the impact of changes to existing applications? How secure are my systems?

 Project manager: Responsible for the development of new applications: What are the

relevant domains and their relationships? What is the dependence of business processes on

the applications to be built? What is their expected performance?

 Developer: What are the modifications with respect to the current situation that need to be

done?

8.3 Viewpoint Classification

An architect is confronted with many different types of stakeholders and concerns. To help him

in selecting the right viewpoints for the task at hand, we introduce a framework for the definition

and classification of viewpoints and views. The framework is based on two dimensions: purpose

and content. The following three types of architecture support the purpose dimension of

architecture views:

 Designing: Design viewpoints support architects and designers in the design process from

initial sketch to detailed design. Typically, design viewpoints consist of diagrams, like

those used in, for example, UML.

 Deciding: Decision support viewpoints assist managers in the process of decision-making

by offering insight into cross-domain architecture relationships, typically through

projections and intersections of underlying models, but also by means of analytical

techniques. Typical examples are cross-reference tables, landscape maps, lists, and

reports.

 Informing: Informing viewpoints help to inform any stakeholder about the enterprise

architecture, in order to achieve understanding, obtain commitment, and convince

adversaries. Typical examples are illustrations, animations, cartoons, flyers, etc.

The goal of this classification is to assist architects and others find suitable viewpoints given

their task at hand; i.e., the purpose that a view must serve and the content it should display. With

the help of this framework, it is easier to find typical viewpoints that might be useful in a given

situation. This implies that we do not provide an orthogonal categorization of each viewpoint

into one of three classes; these categories are not exclusive in the sense that a viewpoint in one

category cannot be applied to achieve another type of support. For instance, some decision

support viewpoints may be used to communicate to any other stakeholders as well.

For characterizing the content of a view we define the following abstraction levels:

 Details: Views on the detailed level typically consider one layer and one aspect from the

ArchiMate Framework. Typical stakeholders are a software engineer responsible for

design and implementation of a software component or a process owner responsible for

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 75

effective and efficient process execution. Examples of views are a BPMN process diagram

and a UML class diagram.

 Coherence: At the coherence abstraction level, multiple layers or multiple aspects are

spanned. Extending the view to more than one layer or aspect enables the stakeholder to

focus on architecture relationships like process-uses-system (multiple layer) or

application-uses-object (multiple aspect). Typical stakeholders are operational managers

responsible for a collection of IT services or business processes.

 Overview: The overview abstraction level addresses both multiple layers and multiple

aspects. Typically, such overviews are addressed to enterprise architects and decision-

makers, such as CEOs and CIOs.

In Figure 59, the dimensions of purpose and abstraction level are visualized in a single picture,

together with examples of typical stakeholders that are addressed by these viewpoints. The top

half of this figure shows the purpose dimension, while the bottom half shows the level of

abstraction (or detail). Table 5 and Table 6 summarize the different purposes and abstraction

levels.

architect,

software

developer,

business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

product manager,

CIO, CEO

customer,

employee,

others

architect,

software

developer,

business process

designer

Deciding

Designing Informing

Details

Coherence

Overview

Deciding

Designing Informing

Details

Coherence

Overview

product manager,

CIO, CEO

customer,

employee,

others

Figure 59: Classification of Enterprise Architecture Viewpoints

Table 5: Viewpoint Purpose

 Typical Stakeholders Purpose Examples

Designing architect, software

developer, business

process designer

navigate, design, support

design decisions, compare

alternatives

UML diagram, BPMN

diagram, flowchart, ER

diagram

Deciding manager, CIO, CEO decision-making cross-reference table,

landscape map, list, report

Informing employee, customer,

others

explain, convince, obtain

commitment

animation, cartoon,

process illustration, chart

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

76 Technical Standard (2013)

Table 6: Viewpoint Abstraction Levels

 Typical Stakeholders Purpose Examples

Details software engineer,

process owner

design, manage UML class diagram,

BPMN process diagram

Coherence operational managers analyze dependencies,

impact of-change

views expressing

relationships like “use”,

“realize”, and “assign”

Overview enterprise architect, CIO,

CEO

change management landscape map

8.4 Standard Viewpoints in ArchiMate

A viewpoint in ArchiMate is a selection of a relevant subset of the ArchiMate concepts (and

their relationships) and the representation of that part of an architecture that is expressed in

different diagrams. A set of such viewpoints was developed based on practical experience. Some

of these viewpoints have a scope that is limited to a single layer or aspect. Thus, the Business

Function and Business Process viewpoints show the two main perspectives on the business

behavior; the Organization viewpoint depicts the structure of the enterprise in terms of its

departments, roles, etc.; the Information Structure viewpoint describes the information and data

used; the Application Structure, Behavior, and Co-operation viewpoints contain the applications

and components and their mutual relationships; and the Infrastructure viewpoint shows the

infrastructure and platforms underlying the enterprise’s information systems in terms of

networks, devices, and system software. Other viewpoints link multiple layers and/or aspects:

the Actor Co-operation and Product viewpoints relate the enterprise to its environment; the

Application Usage viewpoint relates applications to their use in, for example, business

processes; and the Deployment viewpoint shows how applications are mapped onto the

underlying infrastructure.

In the following sections, the ArchiMate viewpoints are described in detail. For each viewpoint

the comprised concepts and relationships, the guidelines for the viewpoint use, and the goal and

target group and of the viewpoint are indicated. Furthermore, each viewpoint description

contains example models. For more details on the goal and use of viewpoints, refer to [2],

Chapter 8. The diagrams illustrating the permitted concepts and relationships for each viewpoint

do not show all permitted relationships: every element in a given viewpoint can have

composition, aggregation, and specialization relationships with elements of the same type;

furthermore, there are indirect relationships that can be derived as explained in Section 7.5.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 77

8.4.1 Introductory Viewpoint

The Introductory viewpoint forms a subset of the full ArchiMate language using a simplified

notation. It is typically used at the start of a design trajectory, when not everything needs to be

detailed yet, or to explain the essence of an architecture model to non-architects that require a

simpler, more intuitive notation. Another use of this basic, less formal viewpoint is that it tries to

avoid the impression that the architectural design is already fixed, an idea that may easily arise

when using a more formal, highly structured or detailed visualization.

We use a simplified notation for the concepts (e.g., a cloud to represent a network, as is common

in informal diagrams of the technical infrastructure), and for the relationships. All relationships

except “triggering” and “realization” are denoted by simple lines; “realization” has an arrow in

the direction of the realized service; “triggering” is also represented by an arrow. The concepts

are denoted with slightly thicker lines and rounded corners, which give a less formal impression.

The example below illustrates this notation. On purpose, the layout of this example is not as

“straight” as an ordinary architecture diagram; this serves to avoid the idea that the design is

already fixed.

Table 7: Introductory Viewpoint Description

Introductory Viewpoint

Stakeholders Enterprise architects, managers

Concerns Make design choices visible, convince stakeholders

Purpose Designing, deciding, informing

Abstraction Level Coherence, Overview, Detail

Layer Business, Application, and Technology layers (see also Figure 4)

Aspects Active structure, behavior, passive structure (see also Figure 4)

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

78 Technical Standard (2013)

Concepts and Relationships

Example

 Damage claiming process

Customer
information

Claims
payment

 CRM
 application

 Policy
 administration

 Financial
 application

Claim
registration

Client
ArchiSurance

MainframeUNIX
servers

Network

 Register Accept Valuate Pay

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 79

8.4.2 Organization Viewpoint

The Organization viewpoint focuses on the (internal) organization of a company, a department, a

network of companies, or of another organizational entity. It is possible to present models in this

viewpoint as nested block diagrams, but also in a more traditional way, such as organizational

charts. The Organization viewpoint is very useful in identifying competencies, authority, and

responsibilities in an organization.

Table 8: Organization Viewpoint Description

Organization Viewpoint

Stakeholders Enterprise, process and domain architects, managers, employees,

shareholders

Concerns Identification of competencies, authority, and responsibilities

Purpose Designing, deciding, informing

Abstraction Level Coherence

Layer Business layer (see also Figure 4)

Aspects Active structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

80 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 81

8.4.3 Actor Co-operation Viewpoint

The Actor Co-operation viewpoint focuses on the relationships of actors with each other and

their environment. A common example of this is the “context diagram”, which puts an

organization into its environment, consisting of external parties such as customers, suppliers, and

other business partners. It is very useful in determining external dependencies and collaborations

and shows the value chain or network in which the actor operates.

Another important use of the Actor Co-operation viewpoint is in showing how a number of co-

operating business actors and/or application components together realize a business process.

Hence, in this view, both business actors or roles and application components may occur.

Table 9: Actor Co-operation Viewpoint Description

Actor Co-operation Viewpoint

Stakeholders Enterprise, process, and domain architects

Concerns Relationships of actors with their environment

Purpose Designing, deciding, informing

Abstraction Level Detail

Layer Business layer (application layer) (see also Figure 4)

Aspects Active structure, behavior (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

82 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 83

8.4.4 Business Function Viewpoint

The Business Function viewpoint shows the main business functions of an organization and their

relationships in terms of the flows of information, value, or goods between them. Business

functions are used to represent the most stable aspects of a company in terms of the primary

activities it performs, regardless of organizational changes or technological developments.

Therefore, the business function architecture of companies that operate in the same market often

exhibit close similarities. The business function viewpoint thus provides high-level insight in the

general operations of the company, and can be used to identify necessary competencies, or to

structure an organization according to its main activities.

Table 10: Business Function Viewpoint Description

Business Function Viewpoint

Stakeholders Enterprise, process, and domain architects

Concerns Identification of competencies, identification of main activities, reduction

of complexity

Purpose Designing

Abstraction Level Coherence

Layer Business layer (see also Figure 4)

Aspects Behavior, active structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

84 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 85

8.4.5 Business Process Viewpoint

The Business Process viewpoint is used to show the high-level structure and composition of one

or more business processes. Next to the processes themselves, this viewpoint contains other

directly related concepts, such as:

 The services that a business process offers to the outside world, showing how a process

contributes to the realization of the company’s products

 The assignment of business processes to roles, which gives insight into the responsibilities

of the associated actors

 The information used by the business process

Each of these can be regarded as a “sub-view” of the business process view.

Table 11: Business Process Viewpoint Description

Business Process Viewpoint

Stakeholders Process and domain architects, operational managers

Concerns Structure of business processes, consistency and completeness,

responsibilities

Purpose Designing

Abstraction Level Detail

Layer Business layer (see also Figure 4)

Aspects Behavior (see also Figure 4)

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

86 Technical Standard (2013)

Concepts and Relationships

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 87

8.4.6 Business Process Co-operation Viewpoint

The Business Process Co-operation viewpoint is used to show the relationships of one or more

business processes with each other and/or with their environment. It can both be used to create a

high-level design of business processes within their context and to provide an operational

manager responsible for one or more such processes with insight into their dependencies.

Important aspects of business process co-operation are:

 Causal relationships between the main business processes of the enterprise

 Mapping of business processes onto business functions

 Realization of services by business processes

 Use of shared data

Each of these can be regarded as a “sub-view” of the business process co-operation view.

Table 12: Business Process Co-operation Viewpoint Description

Business Process Co-operation Viewpoint

Stakeholders Process and domain architects, operational managers

Concerns Dependencies between business processes, consistency and completeness,

responsibilities

Purpose Designing, deciding

Abstraction Level Coherence

Layer Business layer, application layer (see also Figure 4)

Aspects Behavior (see also Figure 4)

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

88 Technical Standard (2013)

Concepts and Relationships

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 89

8.4.7 Product Viewpoint

The Product viewpoint depicts the value that these products offer to the customers or other

external parties involved and shows the composition of one or more products in terms of the

constituting (business or application) services, and the associated contract(s) or other

agreements. It may also be used to show the interfaces (channels) through which this product is

offered, and the events associated with the product. A Product viewpoint is typically used in

product development to design a product by composing existing services or by identifying which

new services have to be created for this product, given the value a customer expects from it. It

may then serve as input for business process architects and others that need to design the

processes and ICT realizing these products.

Table 13: Product Viewpoint Description

Product Viewpoint

Stakeholders Product developers, product managers, process and domain architects

Concerns Product development, value offered by the products of the enterprise

Purpose Designing, deciding

Abstraction Level Coherence

Layer Business layer, application layer (see also Figure 4)

Aspects Behavior, passive structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

90 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 91

8.4.8 Application Behavior Viewpoint

The Application Behavior viewpoint describes the internal behavior of an application; e.g., as it

realizes one or more application services. This viewpoint is useful in designing the main

behavior of applications, or in identifying functional overlap between different applications.

Table 14: Application Behavior Viewpoint Description

Application Behavior Viewpoint

Stakeholders Enterprise, process, application, and domain architects

Concerns Structure, relationships and dependencies between applications,

consistency and completeness, reduction of complexity

Purpose Designing

Abstraction Level Coherence, details

Layer Application layer (see also Figure 4)

Aspects Passive structure, behavior, active structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

92 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 93

8.4.9 Application Co-operation Viewpoint

The Application Co-operation viewpoint describes the relationships between applications

components in terms of the information flows between them, or in terms of the services they

offer and use. This viewpoint is typically used to create an overview of the application landscape

of an organization. This viewpoint is also used to express the (internal) co-operation or

orchestration of services that together support the execution of a business process.

Table 15: Application Co-operation Viewpoint Description

Application Co-operation Viewpoint

Stakeholders Enterprise , process, application, and domain architects

Concerns Relationships and dependencies between applications,

orchestration/choreography of services, consistency and completeness,

reduction of complexity

Purpose Designing

Abstraction Level Coherence, details

Layer Application layer (see also Figure 4)

Aspects Behavior, active structure, passive structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

94 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 95

8.4.10 Application Structure Viewpoint

The Application Structure viewpoint shows the structure of one or more applications or

components. This viewpoint is useful in designing or understanding the main structure of

applications or components and the associated data; e.g., to break down the structure of the

system under construction, or to identify legacy application components that are suitable for

migration/integration.

Table 16: Application Structure Viewpoint Description

Application Structure Viewpoint

Stakeholders Enterprise, process, application, and domain architects

Concerns Application structure, consistency and completeness, reduction of

complexity

Purpose Designing

Abstraction Level Details

Layer Application layer (see also Figure 4)

Aspects Active structure, passive structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

96 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 97

8.4.11 Application Usage Viewpoint

The Application Usage viewpoint describes how applications are used to support one or more

business processes, and how they are used by other applications. It can be used in designing an

application by identifying the services needed by business processes and other applications, or in

designing business processes by describing the services that are available. Furthermore, since it

identifies the dependencies of business processes upon applications, it may be useful to

operational managers responsible for these processes.

Table 17: Application Usage Viewpoint Description

Application Usage Viewpoint

Stakeholders Enterprise, process, and application architects, operational managers

Concerns Consistency and completeness, reduction of complexity

Purpose Designing, deciding

Abstraction Level Coherence

Layer Business and application layers (see also Figure 4)

Aspects Behavior, active structure, passive structure (see also Figure 4)

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

98 Technical Standard (2013)

Concepts and Relationships

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 99

8.4.12 Infrastructure Viewpoint

The Infrastructure viewpoint contains the software and hardware infrastructure elements

supporting the application layer, such as physical devices, networks, or system software (e.g.,

operating systems, databases, and middleware).

Table 18: Infrastructure Viewpoint Description

Infrastructure Viewpoint

Stakeholders Infrastructure architects, operational managers

Concerns Stability, security, dependencies, costs of the infrastructure

Purpose Designing

Abstraction Level Details

Layer Technology layer (see also Figure 4)

Aspects Behavior, active structure, passive structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

100 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 101

8.4.13 Infrastructure Usage Viewpoint

The Infrastructure Usage viewpoint shows how applications are supported by the software and

hardware infrastructure: the infrastructure services are delivered by the devices; system software

and networks are provided to the applications. This viewpoint plays an important role in the

analysis of performance and scalability, since it relates the physical infrastructure to the logical

world of applications. It is very useful in determining the performance and quality requirements

on the infrastructure based on the demands of the various applications that use it.

Table 19: Infrastructure Usage Viewpoint Description

Infrastructure Usage Viewpoint

Stakeholders Application, infrastructure architects, operational managers

Concerns Dependencies, performance, scalability

Purpose Designing

Abstraction Level Coherence

Layer Application and technology layers (see also Figure 4)

Aspects Behavior, active structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

102 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 103

8.4.14 Implementation and Deployment Viewpoint

The Implementation and Deployment viewpoint shows how one or more applications are

realized on the infrastructure. This comprises the mapping of (logical) applications and

components onto (physical) artifacts, such as Enterprise Java Beans, and the mapping of the

information used by these applications and components onto the underlying storage

infrastructure; e.g., database tables or other files. Deployment views play an important role in the

analysis of performance and scalability, since they relate the physical infrastructure to the logical

world of applications. In security and risk analysis, deployment views are used to identify, for

example, critical dependencies and risks.

Table 20: Implementation and Deployment Viewpoint Description

Implementation and Deployment Viewpoint

Stakeholders Application and infrastructure architects, operational managers

Concerns Dependencies, security, risks

Purpose Designing

Abstraction Level Coherence

Layer Application layer, technology layer (see also Figure 4)

Aspects Passive structure, behavior, active structure (see also Figure 4)

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

104 Technical Standard (2013)

Concepts and Relationships

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 105

8.4.15 Information Structure Viewpoint

The Information Structure viewpoint is comparable to the traditional information models created

in the development of almost any information system. It shows the structure of the information

used in the enterprise or in a specific business process or application, in terms of data types or

(object-oriented) class structures. Furthermore, it may show how the information at the business

level is represented at the application level in the form of the data structures used there, and how

these are then mapped onto the underlying infrastructure; e.g., by means of a database schema.

Table 21: Information Structure Viewpoint Description

Information Structure Viewpoint

Stakeholders Domain and information architects

Concerns Structure and dependencies of the used data and information, consistency

and completeness

Purpose Designing

Abstraction Level Details

Layer Business layer, application layer, technology layer (see also Figure 4)

Aspects Passive structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

106 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 107

8.4.16 Service Realization Viewpoint

The Service Realization viewpoint is used to show how one or more business services are

realized by the underlying processes (and sometimes by application components). Thus, it forms

the bridge between the business products viewpoint and the business process view. It provides a

“view from the outside” on one or more business processes.

Table 22: Service Realization Viewpoint Description

Service Realization Viewpoint

Stakeholders Process and domain architects, product and operational managers

Concerns Added-value of business processes, consistency and completeness,

responsibilities

Purpose Designing, deciding

Abstraction Level Coherence

Layer Business layer (application layer) (see also Figure 4)

Aspects Behavior, active structure, passive structure (see also Figure 4)

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

108 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 109

8.4.17 Layered Viewpoint

The Layered viewpoint pictures several layers and aspects of an enterprise architecture in one

diagram. There are two categories of layers, namely dedicated layers and service layers. The

layers are the result of the use of the “grouping” relationship for a natural partitioning of the

entire set of objects and relationships that belong to a model. The infrastructure, the application,

the process, and the actors/roles layers belong to the first category. The structural principle

behind a fully layered viewpoint is that each dedicated layer exposes, by means of the

“realization” relationship, a layer of services, which are further on “used by” the next dedicated

layer. Thus, we can easily separate the internal structure and organization of a dedicated layer

from its externally observable behavior expressed as the service layer that the dedicated layer

realizes. The order, number, or nature of these layers are not fixed, but in general a (more or

less) complete and natural layering of an ArchiMate model should contain the succession of

layers depicted in the example given below. However, this example is by no means intended to

be prescriptive. The main goal of the Layered viewpoint is to provide overview in one diagram.

Furthermore, this viewpoint can be used as support for impact of change analysis and

performance analysis or for extending the service portfolio.

Table 23: Layered Viewpoint Description

Layered Viewpoint

Stakeholders Enterprise, process, application, infrastructure, and domain architects

Concerns Consistency, reduction of complexity, impact of change, flexibility

Purpose Designing, deciding, informing

Abstraction Level Overview

Layer Business layer, application layer, technology layer (see also Figure 4)

Aspects Passive structure, behavior, active structure (see also Figure 4)

Concepts and Relationships

All core concepts and all relationships.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

110 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 111

8.4.18 Landscape Map Viewpoint

A landscape map is a matrix that represents a three-dimensional co-ordinate system that

represents architectural relationships. The dimensions of the landscape maps can be freely

chosen from the architecture that is being modeled. In practice, often dimensions are chosen

from different architectural domains; for instance, business functions, application components,

and products. Note that a landscape map uses the ArchiMate concepts, but not the standard

notation of these concepts.

In most cases, the vertical axis represents behavior like business processes or functions; the

horizontal axis represents “cases” for which those functions or processes must be executed, such

as different products, services market segments, or scenarios; the third dimension represented by

the cells of the matrix is used for assigning resources like information systems, infrastructure, or

human resources. The value of cells can be visualized by means of colored rectangles with text

labels. Obviously, landscape maps are a more powerful and expressive representation of

relationships than traditional cross tables. They provide a practical manner for the generation and

publication of overview tables for managers, process, and system owners. Furthermore,

architects may use landscape maps as a resource allocation instrument and as an analysis tool for

the detection of patterns and changes in this allocation.

Table 24: Landscape Map Viewpoint Description

Landscape Map Viewpoint

Stakeholders Enterprise architects, top managers: CEO, CIO

Concerns Readability, management and reduction of complexity, comparison of

alternatives

Purpose Deciding

Abstraction Level Overview

Layer Business layer, application layer, technology layer (see also Figure 4)

Aspects Passive structure, behavior, active structure (see also Figure 4)

Concepts and Relationships

All concepts and relationships.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

112 Technical Standard (2013)

Example

Maintaining
Customer &

Intermediary
Relations

Claim
Handling

Contracting

Document
Processing

Liability
Insurance

Car
Insurance

Travel
Insurance

Home
Insurance

Legal Aid
Insurance

Web portal

Call center application

Customer relationship management system

Home & Away
Policy administration

Legal Aid
back

office
system

Legal Aid
CRM

Document management system

Home & Away
Financial application

Business
Functions

Products

Financial
Handling

Car insurance
application

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 113

9 Language Extension Mechanisms

Every specific purpose and usage of an architecture modeling language brings about its own

specific demands on the language. Yet, it should be possible to use a language for only a limited,

though non-specific, modeling purpose. Therefore, the ArchiMate core language, embedded in

the ArchiMate metamodel, as described in Chapters 2 to 7, contains only the basic concepts and

relationships that serve general enterprise architecture modeling purposes. However, the

language should also be able to facilitate, through extension mechanisms, specialized, or

domain-specific purposes, such as:

 Support for specific types of model analysis

 Support the communication of architectures

 Capture the specifics of a certain application domain (e.g., the financial sector)

The argument behind this statement is to provide a means to allow extensions of the core

language that are tailored towards such specific domains or applications, without burdening the

core with a lot of additional concepts and notations which most people would barely use. The

remainder of this section is devoted to a number of possible extension mechanisms that, in

addition to the core, are or can become part of the ArchiMate language.

9.1 Adding Attributes to ArchiMate Concepts and Relationships

As said before, the core of ArchiMate contains only the concepts and relationships that are

necessary for general architecture modeling. However, users might want to be able to, for

example, perform model-based performance or cost calculations, or to attach supplementary

information (textual, numerical, etc.) to the model elements. A simple way to enrich ArchiMate

concepts and relationships in a generic way is to add supplementary information by means of a

“profiling” specialization mechanism (see also [11]). A profile is a data structure which can be

defined separately from the ArchiMate language, but can be dynamically coupled with concepts

or relationships; i.e., the user of the language is free to decide whether and when the assignment

of a profile to a model element is necessary. Profiles can be specified as sets of typed attributes,

by means of a profile definition language. Each of these attributes may have a default value that

can be changed by the user.

We can distinguish two types of profiles:

 Pre-defined profiles: These are profiles that have a predefined attribute structure and can

be implemented beforehand in any tool supporting the ArchiMate language. Examples of

such profiles are sets of attributes for ArchiMate concepts and relationships that have to

be specified in order to execute common types of analysis.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

114 Technical Standard (2013)

 User-defined profiles: Through a profile definition language, the user is able to define

new profiles, thus extending the definition of ArchiMate concepts or relationships with

supplementary attribute sets.

Example

Table 25 below shows possible profiles with input attributes needed for certain types of cost and

performance analysis of architecture models [19]. Each “used by” relationship may have a

weight (indicating the average number of uses); each (business, application, or infrastructure)

“service” may have fixed and variable costs and an (average) service time; and each structure

element (e.g., business role, business actor, application component, device) may have fixed and

variable costs and a capacity.

Table 25: Profile Example

“Used By” Profile “Service” Profile “Structure Element” Profile

Attribute Type Attribute Type Attribute Type

Weight Real Fixed cost Currency Fixed cost Currency

 Variable cost Currency Variable cost Currency

 Service time Time Capacity Integer

9.2 Specialization of Concepts and Relationships

Specialization is a simple and powerful way to define new concepts based on the existing ones.

Specialized concepts inherit the properties of their “parent” concepts, but additional restrictions

with respect to their use may apply. For example, some of the relationships that apply to the

“parent” concept need not be allowed for the specialization.

Specialization of relationships is also allowed. Similar to specialization of concepts, a

specialized relationship inherits all properties of its “parent” relationship, with possible

additional restrictions. For example, two specializations of the assignment relationship may be

used to model responsibility versus accountability. Another example is a specialization of the

flow relationship to model material flow in a supply chain. Specialization of the specialization

relationship itself is not allowed.

A specialized concept or relationship strongly resembles a stereotype as it is used in UML.

Specialization of concepts and relationships provides extra flexibility, as it allows organizations

or individual users to customize the language to their own preferences and needs, while the

underlying precise definition of the concepts is conserved. This also implies that analysis and

visualization techniques developed for the ArchiMate language still apply when the specialized

concepts or relationships are used.

Figure 60 shows a number of examples of concept and relationship specializations that have

proven to be useful in several practical cases.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 115

Figure 60: Examples of Specialized Concepts and Relationships

Also, the concepts in the layer-specific metamodels can be considered specializations of the

concepts in the generic metamodel of Chapter 2.

As the above examples indicate, we may introduce a new graphical notation for a specialized

concept, but usually with a resemblance to the notation of the parent concept; e.g., by adding or

changing the icon. It is also possible to use a <<stereotype>>-notation as in UML. Finally, for a

specialized concept, certain attributes may be predefined, as described in the previous section.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

116 Technical Standard (2013)

10 Motivation Extension

10.1 Motivation Aspect Metamodel

Figure 61 shows the metamodel of motivational concepts. It includes the actual motivations or

intentions – i.e., goals, principles, requirements, and constraints – and the sources of these

intentions; i.e., stakeholders, drivers, and assessments.

Motivational elements are related to the core elements via the requirement or constraint concept.

Figure 61: Motivation Extension Metamodel

Note: This figure does not show all permitted relationships: every non-abstract element in the

Motivation extension can have aggregation and specialization relationships with

elements of the same type.

10.2 Motivational Concepts

Motivational concepts are used to model the motivations, or reasons, that underlie the design or

change of some enterprise architecture. These motivations influence, guide, and constrain the

design.

It is essential to understand the factors, often referred to as drivers, which influence the

motivational elements. They can originate from either inside or outside the enterprise. Internal

drivers, also called concerns, are associated with stakeholders, which can be some individual

human being or some group of human beings, such as a project team, enterprise, or society.

Examples of such internal drivers are customer satisfaction, compliance to legislation, or

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 117

profitability. It is common for enterprises to undertake an assessment of these drivers; e.g., using

a SWOT analysis, in order to respond in the best way.

The actual motivations are represented by goals, principles, requirements, and constraints. Goals

represent some desired result – or end – that a stakeholder wants to achieve; e.g., increasing

customer satisfaction by 10%. Principles and requirements represent desired properties of

solutions – or means – to realize the goals. Principles are normative guidelines that guide the

design of all possible solutions in a given context. For example, the principle “Data should be

stored only once” represents a means to achieve the goal of “Data consistency” and applies to all

possible designs of the organization’s architecture. Requirements represent formal statements of

need, expressed by stakeholders, which must be met by the architecture or solutions. For

example, the requirement “Use a single CRM system” conforms to the aforementioned principle

by applying it to the current organization’s architecture in the context of the management of

customer data.

10.2.1 Stakeholder

A stakeholder is defined as the role of an individual, team, or organization (or classes thereof)

that represents their interests in, or concerns relative to, the outcome of the architecture.

This definition is based on the definition in TOGAF [4]. A stakeholder has one or more interests

in, or concerns about, the organization and its enterprise architecture. In order to direct efforts to

these interests and concerns, stakeholders change, set, and emphasize goals. Examples of

stakeholders are the CEO, the board of directors, shareholders, customers, business, and

application architects, but also legislative authorities. The name of a stakeholder should

preferably be a noun.

Figure 62: Stakeholder Notation

Example

The model below illustrates the modeling of stakeholders. Two main stakeholders are modeled:

the Board of ArchiSurance and Customer. The Board is composed of three other stakeholders: the

CIO, the CEO, and the CFO.

Example 47: Stakeholder

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

118 Technical Standard (2013)

10.2.2 Driver

A driver is defined as something that creates, motivates, and fuels the change in an organization.

Drivers may be internal, in which case they are usually associated with a stakeholder. Examples

of internal drivers (or “concerns”) are “Customer satisfaction”, “Compliance to legislation”, and

“Profitability”. Drivers of change may also be external; e.g., economic changes or changing

legislation. The name of a driver should preferably be a noun.

Figure 63: Driver Notation

Example

The model below illustrates the modeling of internal and external drivers of change.

Stakeholders CEO and Customer share a common concern Customer satisfaction, which is an

internal driver of change. The stakeholder CEO also has the satisfaction of the company’s

shareholders as a concern. This driver can be decomposed into two sub-drivers: Profit and Stock

value. In addition to these internal drivers, there is an external driver Economic changes, which

influences the stock value.

Example 48: Driver

10.2.3 Assessment

An assessment is defined as the outcome of some analysis of some driver.

An assessment may reveal strengths, weaknesses, opportunities, or threats for some area of

interest. These outcomes need to be addressed by adjusting existing goals or setting new ones,

which may trigger changes to the enterprise architecture.

Strengths and weaknesses are internal to the organization. Opportunities and threats are external

to the organization. Weaknesses and threats can be considered as problems that need to be

addressed by goals that “negate” the weaknesses and threats. Strengths and opportunities may be

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 119

translated directly into goals. For example, the weakness “customers complain about the

helpdesk” can be addressed by defining the goal “improve helpdesk”. Or, the opportunity

“customers favor insurances that can be managed on-line” can be addressed by the goal

“introduce on-line portfolio management”. The name of an assessment should preferably be a

noun or a (very) short sentence.

Figure 64: Assessment Notation

Example

The model below describes the assessments of driver Customer satisfaction and the sub-concern

Helpdesk support. In this case, all assessments represent weaknesses. Concerning Customer

satisfaction in general, customers complain and even leave ArchiSurance. The assessment

Complaining customers is further detailed and divided into four complaints: the lack of insight into

the status of a claim, the inconvenient way of submitting claims, the lack of insight into the

customer’s portfolio, and the inconsistency and incompleteness of customer information.

Concerning Helpdesk support in particular, customers experience long waiting queues and high

service times.

Example 49: Assessment

10.2.4 Goal

A goal is defined as an end state that a stakeholder intends to achieve.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

120 Technical Standard (2013)

In principle, an end can represent anything a stakeholder may desire, such as a state of affairs, or

a produced value. Examples of goals are: to increase profit, to reduce waiting times at the

helpdesk, or to introduce on-line portfolio management.

Goals are generally expressed using qualitative words; e.g., “increase”, “improve”, or “easier”.

Goals can also be decomposed; e.g., “increase profit” can be decomposed into the goals “reduce

cost” and “increase sales”. However, it is also very common to associate concrete objectives

with goals, which can be used to describe both the quantitative and time-related measures which

are essential to describe the desired state, and when it should be achieved.

Figure 65: Goal Notation

Example

The model below illustrates the modeling of goals to address the assessments of the driver Costs:

the applications costs and the costs of employees are too high. The former assessment is

addressed by the goals Reduce maintenance costs and Reduce direct application costs (of usage). The

latter assessment is addressed by the goal Reduce workload employees, which is decomposed into

Reduce manual work and Reduce interaction with customer.

Example 50: Goal

10.2.5 Requirement

A requirement is defined as a statement of need that must be realized by a system.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 121

In the end, a business goal must be realized by a plan or concrete change goal, which may or

may not require a new system or changes to an existing system.

The term “system” is used in its general meaning; i.e., as a group of (functionally) related

elements, where each element may be considered as a system again. Therefore, a system may

refer to any active structural element, behavioral element, or passive structural element of some

organization, such as a business actor, application component, business process, application

service, business object, or data object.

Requirements model the properties of these elements that are needed to achieve the “ends” that

are modeled by the goals. In this respect, requirements represent the “means” to realize goals.

During the design process, goals may be decomposed until the resulting sub-goals are

sufficiently detailed to enable their realization by properties that can be exhibited by systems. At

this point, goals can be realized by requirements that assign these properties to the systems.

For example, one may identify two alternative requirements to realize the goal to improve

portfolio management: (i) by assigning a personal assistant to each customer, or (ii) by

introducing on-line portfolio management. The former requirement can be realized by a human

actor and the latter by a software application. These requirements can be decomposed further to

define the requirements on the human actor and the software application in more detail.

Figure 66: Requirement Notation

Example

The model below illustrates the decomposition of goals towards requirements. The goals

Facilitate self-service and Make customer interaction more effective result from the successive

decomposition of the goals Reduce workload employees and Reduce interaction with customer. The

goal Facilitate self-service can be realized by the alternative requirements Provide on-line portfolio

service and Provide on-line information service. Both requirements are realized by some software

application. In addition, the requirement Provide on-line portfolio service may realize the goal

Improve portfolio management. Alternatively, this goal can be realized by assigning a personal

assistant to each customer.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

122 Technical Standard (2013)

Example 51: Requirement

10.2.6 Constraint

A constraint is defined as a restriction on the way in which a system is realized.

In contrast to a requirement, a constraint does not prescribe some intended functionality of the

system to be realized, but imposes a restriction on the way in which the system may be realized.

This may be a restriction on the implementation of the system (e.g., specific technology that is to

be used), or a restriction on the implementation process (e.g., time or budget constraints).

Figure 67: Constraint Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 123

Example

For the realization of a new portfolio management application, two constraints are imposed, as

shown in the model below: for the realization of the application, Java should be used, and the

budget of the implementation project is limited to 500k Euro.

Example 52: Constraint

10.2.7 Principle

A principle is defined as a normative property of all systems in a given context, or the way in

which they are realized.

Principles are strongly related to goals and requirements. Similar to requirements, principles

define intended properties of systems. However, in contrast to requirements, principles are

broader in scope and more abstract than requirements. A principle defines a general property that

applies to any system in a certain context. A requirement defines a property that applies to a

specific system.

A principle needs to be made specific for a given system by means of one or more requirements,

in order to enforce that the system conforms to the principle. For example, the principle

“Information management processes comply with all relevant laws, policies, and regulations” is

realized by the requirements that are imposed by the actual laws, policies, and regulations that

apply to the specific system under design.

A principle is motivated by some goal. For example, the aforementioned principle may be

motivated by the goal to maintain a good reputation and/or the goal to avoid penalties. The

principle provides a means to realize its motivating goal, which is generally formulated as a

guideline. This guideline constrains the design of all systems in a given context by stating the

general properties that are required from any system in this context to realize the goal. Principles

are intended to be more stable than requirements in the sense that they do not change as quickly

as requirements may do. Organizational values, best practices, and design knowledge may be

reflected and made applicable in terms of principles.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

124 Technical Standard (2013)

Figure 68: Principle Notation

Example

The model below illustrates the use of principles. Principle Systems should be customer facing is

modeled as a means to realize the goals Reduce interaction with customer and Reduce manual work.

The principle is further specialized into the requirements Provide on-line portfolio service and

Provide on-line information service to apply the principle to the actual systems (architecture) under

design.

Example 53: Principle

10.2.8 Summary of Motivational Concepts

Table 26 gives an overview of the motivational concepts, with their definitions.

Table 26: Motivational Concepts

Concept Definition Notation

Stakeholder The role of an individual, team, or

organization (or classes thereof) that

represents their interests in, or concerns

relative to, the outcome of the architecture.

Driver Something that creates, motivates, and fuels

the change in an organization.

Assessment The outcome of some analysis of some

driver.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 125

Concept Definition Notation

Goal An end state that a stakeholder intends to

achieve.

Requirement A statement of need that must be realized by

a system.

Constraint A restriction on the way in which a system is

realized.

Principle A normative property of all systems in a

given context, or the way in which they are

realized.

10.3 Relationships

The metamodels and examples from the previous sections show the different types of

relationships that can be used between two motivational elements and between one motivational

element and one core element. This section provides a more precise description of these

relationships.

10.3.1 Association Relationship

The association relationship models that some intention is related to a source of that intention.

The association relationship is used, for example, to model that a stakeholder has certain drivers,

that an assessment is related to a driver, or that a goal is based on an assessment.

Figure 69: Association Notation

Example

The model below shows that Costs are a concern of the CFO, that Application costs are too high,

and that the organization wants to Reduce maintenance costs and Reduce direct application

costs.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

126 Technical Standard (2013)

Example 54: Association Example for the Motivation Extension

10.3.2 Aggregation Relationship

The aggregation relationship models that some intention is divided into multiple intentions.

The aggregation relationship is generally used to describe an intention in more detail by

decomposing the intention into multiple, more concrete intentions.

Figure 70: Aggregation Notation

Alternatively, an aggregation can be expressed by nesting the model elements.

Example

The models below show the two ways to express the decomposition of goal Reduce workload

employees into the sub goals Reduce interaction with customer and Reduce manual work.

Example 55: Aggregation (Decomposition)

10.3.3 Realization Relationship

The realization relationship models that some end is realized by some means.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 127

The realization relationship is used to represent the following means-end relationships:

1. A goal (the end) is realized by a principle, constraint, or requirement (the means).

2. A principle (the end) is realized by a constraint or requirement (the means).

3. A requirement (the end) is realized by a system (the means), which can be represented by

an active structure element, a behavior element, or a passive structure element.

Figure 71: Realization Notation

Example

The model below illustrates several ways to use the realization relationship. Principle Systems

should be customer facing is a means to realize the goal Reduce interaction with customer.

Requirement Provide on-line portfolio service is a means to realize sub-goal Facilitate self-service, and

to realize the principle Systems should be customer facing. And this requirement can be realized by

the business service On-line portfolio service.

Example 56: Realization (Means-End)

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

128 Technical Standard (2013)

10.3.4 Influence Relationship

The influence relationship models that some motivational element has a positive or negative

influence on another motivational element.

The influence relationship is used to describe that some motivational element may influence (the

realization of) another motivational element. In general, a motivational element is realized to a

certain degree. An influence by some other motivational element may affect this degree

positively or negatively, depending on the degree in which this other motivational element is

satisfied itself. For example, the degree in which the goal to increase customer satisfaction is

realized may be represented by the percentage of satisfied customers that participate in a market

interview. This percentage may be influenced positively by, for example, the goal to improve the

company’s reputation; i.e., a higher degree of improvement results in a higher increase in

customer satisfaction. On the other hand, the goal to lay off employees may influence the

company’s reputation negatively; i.e., more lay-offs could result in a lower increase (or even

decrease) in the company’s reputation. And thus (indirectly), the goal to increase customer

satisfaction may also be influenced negatively.

A positive influence relationship does not imply that the realization of the influenced

motivational element depends on the contributing intention. The necessary means to realize

some motivational element are modeled using the realization relationship.

A negative influence relationship does not imply that the realization of the influenced

motivational element is completely excluded by the contributing motivational element.

The influence relationship re-uses the notation of the flow relationship, signifying a “flow of

influence”. An attribute can be used to indicate the direction and strength of the influence. The

choice of possible attribute values is left to the modeler; e.g., {++, +, 0, -, --} or [0..10].
4

Figure 72: Influence Notation

Example

The model below illustrates the use of the influence relationship for making a trade-off between

the two requirements that realize the goal Improve portfolio management. The goal Increase

customer satisfaction and the principle Systems should be customer facing are used as trade-off

criteria. Both requirements positively influence the intended increase of customer satisfaction.

The requirement of using a personal assistant scores a little better for this criterion. However, the

requirement scores a lot worse for the customer-facing criterion.

The positive score of the requirement Provide on-line portfolio service for the customer-facing

principle is consistent with the description of the requirement realizing the principle in an earlier

example.

4
 This standard abstracts from the specification of the functions that describe the exact relation between the degree of realization of

the related intentions and the strength factor.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 129

Example 57: Influence

10.3.5 Summary of Relationships

Table 27 gives an overview of the relationships, with their definition, that involve one or more

intentional concepts.

Table 27: Relationships

Intentional Relationships Notation

Association Association models that some intention is

related to a source of that intention.

Aggregation Aggregation models that some intentional

element is divided into multiple intentional

elements.

Realization Realization models that some end is

realized by some means.

Influence Influence models that some motivational

element has a positive or negative influence

on the realization of another motivational

element.

10.4 Cross-Aspect Dependencies

The purpose of the motivation extension is to model the motivation behind the core elements in

some enterprise architecture. Therefore, it should be possible to relate motivational elements to

core elements.

As shown in Figure 73, a requirement or constraint can be related directly to a core element by

means of a realization relationship. Other motivational elements cannot be related directly to

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

130 Technical Standard (2013)

core elements, but only indirectly by means of derived relationships via requirements or

constraints.

Figure 73: Relationships between Motivation Extension and the ArchiMate Core Concepts

Also, a business actor may be assigned to a stakeholder, which can be seen as a motivational role

(as opposed to an operational business role) that an actor may fulfill.

10.5 Viewpoints

A number of standard viewpoints for modeling motivational aspects have been defined. Each of

these viewpoints presents a different perspective on modeling the motivation that underlies some

enterprise architecture and allows a modeler to focus on certain aspects. Therefore, each

viewpoint considers only a selection of the concepts and relationships that have been described

in the preceding sections.

The following viewpoints are distinguished:

 The stakeholder viewpoint, which focuses on modeling the stakeholders, drivers, the

assessments of these drivers, and the initial goals to address these drivers and assessments

 The goal realization viewpoint, which focuses on refining the initial, high-level goals into

more concrete (sub-)goals using the aggregation relationship, and finally into

requirements and constraints using the realization relationship

 The goal contribution viewpoint, which focuses on modeling and analyzing the influence

relationships between goals (and requirements)

 The principles viewpoint, which focuses on modeling the relevant principles and the goals

that motivate these principles

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 131

 The requirements realization viewpoint, which focuses on modeling the realization of

requirements and constraints by means of core elements, such as actors, services,

processes, application components, etc.

 The motivation viewpoint, which covers the entire motivational aspect and allows one to

use all motivational elements

All viewpoints are separately described below. For each viewpoint the comprised concepts and

relationships, the guidelines for the viewpoint use, and the goal and target group and of the

viewpoint are indicated. Furthermore, each viewpoint description contains example models. For

more details on the goal and use of viewpoints, refer to [2], Chapter 8.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

132 Technical Standard (2013)

10.5.1 Stakeholder Viewpoint

The stakeholder viewpoint allows the analyst to model the stakeholders, the internal and external

drivers for change, and the assessments (in terms of strengths, weaknesses, opportunities, and

threats) of these drivers. Also, the links to the initial (high-level) goals that address these

concerns and assessments may be described. These goals form the basis for the requirements

engineering process, including goal refinement, contribution and conflict analysis, and the

derivation of requirements that realize the goals.

Table 28: Stakeholder Viewpoint Description

Stakeholder Viewpoint

Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers

Concerns Architecture mission and strategy, motivation

Purpose Designing, deciding, informing

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 133

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

134 Technical Standard (2013)

10.5.2 Goal Realization Viewpoint

The goal realization viewpoint allows a designer to model the refinement of (high-level) goals

into more concrete goals, and the refinement of concrete goals into requirements or constraints

that describe the properties that are needed to realize the goals. The refinement of goals into sub-

goals is modeled using the aggregation relationship. The refinement of goals into requirements is

modeled using the realization relationship.

In addition, the principles may be modeled that guide the refinement of goals into requirements.

Table 29: Goal Realization Viewpoint Description

Goal Realization Viewpoint

Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers

Concerns Architecture mission, strategy and tactics, motivation

Purpose Designing, deciding

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 135

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

136 Technical Standard (2013)

10.5.3 Goal Contribution Viewpoint

The goal contribution viewpoint allows a designer or analyst to model the influence relationships

between goals and requirements. The resulting views can be used to analyze the impact that

goals have on each other or to detect conflicts between stakeholder goals.

Typically, this viewpoint may be used after goals have, to some extent, been refined into sub-

goals and, possibly, into requirements. Therefore, aggregation and realization relationships may

also be shown in this viewpoint.

Table 30: Goal Contribution Description

Goal Contribution Viewpoint

Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers

Concerns Architecture mission, strategy and tactics, motivation

Purpose Designing, deciding

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 137

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

138 Technical Standard (2013)

10.5.4 Principles Viewpoint

The principles viewpoint allows the analyst or designer to model the principles that are relevant

to the design problem at hand, including the goals that motivate these principles. In addition,

relationships between principles, and their goals, can be modeled. For example, principles may

influence each other positively or negatively.

Table 31: Principles Viewpoint Description

Principles Viewpoint

Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers

Concerns Architecture mission and strategy, motivation

Purpose Designing, deciding, informing

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 139

10.5.5 Requirements Realization Viewpoint

The requirements realization viewpoint allows the designer to model the realization of

requirements by the core elements, such as business actors, business services, business

processes, application services, application components, etc. Typically, the requirements result

from the goal refinement viewpoint.

In addition, this viewpoint can be used to refine requirements into more detailed requirements.

The aggregation relationship is used for this purpose.

Table 32: Requirements Realization Viewpoint Description

Requirements Realization Viewpoint

Stakeholders Enterprise and ICT architects, business analysts, requirements managers

Concerns Architecture strategy and tactics, motivation

Purpose Designing, deciding, informing

Abstraction Level Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

140 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 141

10.5.6 Motivation Viewpoint

The motivation viewpoint allows the designer or analyst to model the motivation aspect, without

focusing on certain elements within this aspect. For example, this viewpoint can be used to

present a complete or partial overview of the motivation aspect by relating stakeholders, their

primary goals, the principles that are applied, and the main requirements on services, processes,

applications, and objects.

Table 33: Motivation Viewpoint Description

Motivation Viewpoint

Stakeholders Enterprise and ICT architects, business analysts, requirements managers

Concerns Architecture strategy and tactics, motivation

Purpose Designing, deciding, informing

Abstraction Level Overview, Coherence, Details

Layer Business, Application, and Technology layers

Aspects Motivation

Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

142 Technical Standard (2013)

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 143

11 Implementation and Migration Extension

11.1 Implementation and Migration Extension Metamodel

Figure 74 shows the metamodel of implementation and migration concepts.

Figure 74: Implementation and Migration Extension Metamodel

Conceptually, a work package is similar to a business process, in that it consists of a set of

causally related tasks, aimed at producing a well-defined result. However, a work package is a

unique, “one-off” process. Still, a work package can be described in a way very similar to the

description of a process.

11.2 Implementation and Migration Concepts

11.2.1 Work Package

The central behavioral concept is a work package. A work package has a clearly defined

beginning and end date, and a well-defined set of goals or results. The work package concept can

be used to model projects, but also, e.g., sub-projects or tasks within a project, programs, or

project portfolios.

A work package is defined as a series of actions designed to accomplish a unique goal within a

specified time.

Figure 75: Work Package Notation

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

144 Technical Standard (2013)

Example

The model below illustrates a model of a work package that models a program to rationalize the

application portfolio. This program consists of two projects that are executed sequentially, each

of them also modeled as a work package. First, a project is carried out to integrate the back-

office systems (except for the CRM systems) into a single back-office system. Next, a project is

carried out to integrate the CRM systems.

Example 58: Work Package

11.2.2 Deliverable

Work packages produce deliverables. These may be results of any kind; e.g., reports, papers,

services, software, physical products, etc., or intangible results such as organizational change. A

deliverable may also be the implementation of (a part of) an architecture.

A deliverable is defined as a precisely-defined outcome of a work package.

Figure 76: Deliverable Notation

Example

In PRINCE2, the deliverables (products) of a project are leading. The overall result of a project

is described in a “project product description”; the hierarchical decomposition of this product in

sub-products is shown in a Product Breakdown Structure, an example of which is shown in the

model below.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 145

Example 59: Deliverable

11.2.3 Plateau

An important premise in TOGAF is that the various architectures are described for different

stages in time. In each of the Phases B, C, and D of the ADM, a Baseline Architecture and

Target Architecture are created, describing the current situation and the desired future situation.

In Phase E (Opportunities and Solutions), so-called Transition Architectures are defined,

showing the enterprise at incremental states reflecting periods of transition between the Baseline

and Target Architectures. Transition Architectures are used to allow for individual work

packages and projects to be grouped into managed portfolios and programs, illustrating the

business value at each stage.

In order to support this, we introduce the plateau concept.

A plateau is defined as a relatively stable state of the architecture that exists during a limited

period of time.

Figure 77: Plateau Notation

Example

The model below illustrates the use of the plateau concept to model the migration from Baseline

to Target Architecture, defining a number of intermediate (possibly alternative) Transition

Architectures.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

146 Technical Standard (2013)

Example 60: Plateau

11.2.4 Gap

A gap is an important outcome of a gap analysis in Phases B, C, and D of the TOGAF ADM,

and forms an important input for the subsequent implementation and migration planning. The

gap concept is linked to two plateaus (e.g., Baseline and Target Architecture, or two subsequent

Transition Architectures), and represents the differences between these plateaus.

A gap is defined as an outcome of a gap analysis between two plateaus.

Figure 78: Gap Notation

Example

The model below illustrates the gap between the Baseline and Target infrastructure, showing

which of the elements of the infrastructure are added to or removed from the Baseline.

Example 61: Gap

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 147

11.2.5 Summary of Implementation and Migration Concepts

Table 34 gives an overview of the implementation and migration concepts, with their definitions.

Table 34: Implementation and Migration Concepts

Concept Definition Notation

Work Package A series of actions designed to accomplish

a unique goal within a specified time.

Deliverable A precisely-defined outcome of a work

package.

Plateau A relatively stable state of the architecture

that exists during a limited period of time.

Gap An outcome of a gap analysis between

two plateaus.

11.3 Relationships

The Implementation and Migration extension re-uses the standard ArchiMate relationships.

11.4 Cross-Aspect Dependencies

Figure 79 shows how the implementation and migration concepts can be related to the

ArchiMate core concepts.

Figure 79: Relationships between Implementation & Migration Extension and the ArchiMate Core

Concepts

A business role may be assigned to a work package.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

148 Technical Standard (2013)

A plateau is linked to an architecture that is valid for a certain time span. To indicate which parts

of the architecture belong to a certain plateau, a plateau may aggregate any of the concepts of the

ArchiMate core.

A gap is associated with the core concepts that are unique to one of the plateaus linked by the

gap; i.e., the core concepts that make up the difference between these plateaus.

A deliverable may realize, among others, the implementation of an architecture or a part of an

architecture. Therefore, any of the concepts of the ArchiMate core may be linked to a deliverable

by means of a realization relationship.

Like most of the core concepts, a location may be assigned to a work package or deliverable.

Weaker relationships may also be defined. For example, the association relationship may be

used to show that parts of the architecture are affected in some way by certain work packages.

Strictly speaking, the relationships between the implementation and migration concepts and the

motivation concepts are indirect relationships; e.g., a deliverable realizes a requirement or goal

through the realization of an ArchiMate core element (e.g., an application component, business

process, or service). However, it is still useful to make these relationships explicit, to show

directly that a deliverable is needed to realize certain requirements and goals.

Also, goals and requirements can be associated with a certain plateau; e.g., certain requirements

may only be applicable to the Target Architecture, while others may apply to a certain Transition

Architecture. This can be modeled by means of the aggregation relationship.

Figure 80 summarizes the relationships between the concepts of the Implementation and

Migration extension and the concepts of the Motivation extension.

Figure 80: Relationships between Plateau, Deliverable, and Motivation Concepts

11.5 Viewpoints

The following standard viewpoints for modeling implementation and migration aspects are

distinguished:

 The project viewpoint is primarily used to model the management of architecture change.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 149

 The migration viewpoint is used to model the transition from an existing architecture to a

target architecture.

 The implementation and migration viewpoint is used to model the relationships between

the programs and projects and the parts of the architecture that they implement.

All viewpoints are described separately below. For each viewpoint the comprised concepts and

relationships, the guidelines for the viewpoint use, and the goal and target group and of the

viewpoint are indicated. Furthermore, each viewpoint description contains example models. For

more details on the goal and use of viewpoints, refer to [2], Chapter 8.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

150 Technical Standard (2013)

11.5.1 Project Viewpoint

A project viewpoint is primarily used to model the management of architecture change. The

“architecture” of the migration process from an old situation (current state enterprise

architecture) to a new desired situation (target state enterprise architecture) has significant

consequences on the medium and long-term growth strategy and the subsequent decision-

making process. Some of the issues that should be taken into account by the models designed in

this viewpoint are:

 Developing fully-fledged organization-wide enterprise architecture is a task that may

require several years.

 All systems and services must remain operational regardless all the presumable

modifications and changes of the enterprise architecture during the change process.

 The change process may have to deal with immature technology standards (e.g.,

messaging, security, data, etc.).

 The change has serious consequences for the personnel, the culture, the way of working,

and the organization.

Furthermore, there are several other governance aspects that might constrain the transformation

process, such as internal and external co-operation, project portfolio management, project

management (deliverables, goals, etc.), plateau planning, financial and legal aspects, etc.

Table 35: Description of the Project Viewpoint

Project Viewpoint

Stakeholders (operational) managers, enterprise and ICT architects, employees, shareholders

Concerns Architecture vision and policies, motivation

Purpose Deciding, informing

Abstraction Level Overview

Layers/Extensions Implementation and Migration extension

Aspects Passive structure, behavior, active structure

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 151

Concepts and Relationships

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

152 Technical Standard (2013)

11.5.2 Migration Viewpoint

The migration viewpoint entails models and concepts that can be used for specifying the

transition from an existing architecture to a desired architecture. Since the plateau and gap

concepts have been quite extensively presented in Section 11.2, here the migration viewpoint is

only briefly described and positioned by means of the table below.

Table 36: Description of the Migration Viewpoint

Migration Viewpoint

Stakeholders Enterprise architects, process architects, application architects, infrastructure

architects and domain architects, employees, shareholders

Concerns History of models

Purpose Designing, deciding, informing

Abstraction Level Overview

Layers/Extensions Implementation and Migration extension

Aspects Not applicable.

Concepts and Relationships

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 153

11.5.3 Implementation and Migration Viewpoint

The implementation and migration viewpoint is used to relate programs and projects to the parts

of the architecture that they implement. This view allows modeling of the scope of programs,

projects, project activities in terms of the plateaus that are realized or the individual architecture

elements that are affected. In addition, the way the elements are affected may be indicated by

annotating the relationships.

Furthermore, this viewpoint can be used in combination with the programs and projects

viewpoint to support portfolio management:

 The programs and projects viewpoint is suited to relate business goals to programs and

projects. For example, this makes it possible to analyze at a high level whether all

business goals are covered sufficiently by the current portfolio(s).

 The implementation and migration viewpoint is suited to relate business goals (and

requirements) via programs and projects to (parts of) the architecture. For example, this

makes it possible to analyze potential overlap between project activities or to analyze the

consistency between project dependencies and dependencies among plateaus or

architecture elements.

Table 37: Description of the Architecture Implementation and Migration Viewpoint

Architecture Implementation and Migration Viewpoint

Stakeholders (operational) managers, enterprise and ICT architects, employees, shareholders

Concerns Architecture vision and policies, motivation

Purpose Deciding, informing

Abstraction Level Overview

Layers/Extensions Business layer, application layer, technology layer, implementation & migration

extension

Aspects Passive structure, behavior, active structure

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

154 Technical Standard (2013)

Concepts and Relationships

Example

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 155

12 Future Directions (Informative)

This chapter is informative. It should be used as a guide to current thinking; there is not

necessarily a commitment to implement all of these future directions in their entirety.

The first version of the ArchiMate language as specified in Issue 1.0 of this Technical Standard

has a strong focus on describing the operational aspects of an enterprise. In addition to this, the

current version includes two extensions: the Motivation extension and the Implementation and

Migration extension.

Although the aim is to keep the core of the language relatively small, a number of other

directions for extending the language, as well as more advanced tool support for inherent

features of ArchiMate models, can be envisaged. In this chapter, we identify some likely

extensions for future versions of the language and associated tool support.

12.1 Extending and Refining the Concepts

In the practical use of ArchiMate, a number of areas have been identified in which a future

extension of the language may be considered:

 Business policies and rules

 The design process

 Architecture-level predictions

Furthermore, there are a number of individual concepts that may be considered for future

versions of the language; e.g.:

 Capability, defined as a collection of business and IT resources that together provide the

ability to execute one or more business processes

 Milestone (as part of the Implementation & Migration extension)

12.1.1 Business Policies and Rules

Business policies are sets of general rules followed by a business that define business processes

and practices. Business rules make these policies actionable for specific situations. Business

rules separate business knowledge, based on, for example, legislation and regulations, business

strategy, and business policies, from the business processes and systems that use this knowledge.

At the enterprise architecture level, sets of policies or rules may be modeled and linked to other

elements of the architecture, such as business processes, application components, or services.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

156 Technical Standard (2013)

12.1.2 Design Process

Second, the language could provide additional support for the early stages of the architecture

development process. In these early stages, architects often use informal, sketchy, and

incomplete models that later evolve into formally correct ArchiMate models. Hence, a relaxation

of formal correctness criteria in the early design stages might be in order. Support for this design

evolution is closely related to the concepts from the Motivation extension, since design decisions

are guided by goals, principles, and requirements, and the design process is instrumental to the

evolution of the architecture.

12.1.3 Other Improvements

Next to the extensions in the areas mentioned above, some definitions of language concepts

might also be improved and clarified. For example, the grouping concept could be given more

explicit semantics. In practical use, some concepts have been used to good effect for other

purposes than strictly intended; their future definitions may be updated to account for such

usage.

A more formal specification of the metamodel of the language, expressed in a standard such as

OMG’s MOF or Encore (part of the Eclipse Modeling Framework), would facilitate the

implementation of the language in software tools.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 157

A Summary of Language Notation (Informative)

A.1 Core Concepts and Relationships

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

158 Technical Standard (2013)

A.2 Extensions

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 159

B Relationship Tables

This appendix details the normative requirements for relationships between elements of the

ArchiMate modeling language.

B.1 Core Concepts

From ↓ / To →

B
u

si
n

e
ss

 A
c
to

r

B
u

si
n

e
ss

 R
o
le

B
u

si
n

e
ss

 C
o
ll

a
b

o
ra

ti
o

n

L
o
c
a

ti
o

n

B
u

si
n

e
ss

 I
n

te
r
fa

ce

B
u

si
n

e
ss

 P
ro

c
e
ss

B
u

si
n

e
ss

 F
u

n
c
ti

o
n

B
u

si
n

e
ss

 I
n

te
ra

c
ti

o
n

B
u

si
n

e
ss

 E
v

e
n

t

B
u

si
n

e
ss

 S
e
rv

ic
e

B
u

si
n

e
ss

 O
b

je
c
t

R
e
p

r
e
se

n
ta

ti
o

n

P
r
o

d
u

c
t

C
o

n
tr

a
c
t

M
e
a

n
in

g

V
a

lu
e

Business Actor cfgostu fiotu fiotu o cfiotu fiotu fiotu fiotu ot ioru ao o o ao o o

Business Role fotu cfgostu cfgostu o cfgiotu fiotu fiotu fiotu ot ioru ao o o ao o o

Business

Collaboration
fgotu cfgostu cfgostu o cfgotu fiotu fiotu fiotu ot ioru ao o o ao o o

Location fiotu fiotu fiotu cfgostu fiotu io fiotu io iot io io io o io o o

Business Interface fotu fotu fotu o cfgostu ou ou ou ot iou ao o o ao o o

Business Process fotu fotu fotu o fotu cfgostu cfgostu cfgostu ot fortu ao o o ao o o

Business Function fotu fotu fotu o fotu cfgostu cfgostu cfgostu ot fortu ao o o ao o o

Business Interaction fotu fotu fotu o fotu cfgostu cfgostu cfgostu ot fortu ao o o ao o o

Business Event ot ot ot ot ot ot ot ot cgost o ao o o ao o o

Business Service ou ou ou o ou fotu fotu fotu o cfgostu ao o o ao o o

Business Object o o o o o o o o o o cgos o o cgos o o

Representation o o o o o o o o o o or cgos o or o o

Product ou ou ou o ou ou ou ou o gou ao o cgos ago o o

Contract o o o o o o o o o o cgos o o cgos o o

Meaning o o o o o o o o o o o o o o cgos o

Value o o o o o o o o o o o o o o o cgos

Application

Component
fotu fotu fotu o fotu fiotu fiotu fiotu ot ioru ao o o ao o o

Application

Collaboration
fotu fotu fotu o fotu fiotu fiotu fiotu ot ioru ao o o ao o o

Application

Interface
ou ou ou o fotu fotu fotu ou o iou ao o o ao o o

Application

Function
ou ou ou o fotu fotu ou ou o ou ao o o ao o o

Application

Interaction
ou ou ou o fotu fotu ou ou o ou ao o o ao o o

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

160 Technical Standard (2013)

From ↓ / To →

B
u

si
n

e
ss

 A
c
to

r

B
u

si
n

e
ss

 R
o
le

B
u

si
n

e
ss

 C
o
ll

a
b

o
ra

ti
o

n

L
o
c
a

ti
o

n

B
u

si
n

e
ss

 I
n

te
r
fa

ce

B
u

si
n

e
ss

 P
ro

c
e
ss

B
u

si
n

e
ss

 F
u

n
c
ti

o
n

B
u

si
n

e
ss

 I
n

te
ra

c
ti

o
n

B
u

si
n

e
ss

 E
v

e
n

t

B
u

si
n

e
ss

 S
e
rv

ic
e

B
u

si
n

e
ss

 O
b

je
c
t

R
e
p

r
e
se

n
ta

ti
o

n

P
r
o

d
u

c
t

C
o

n
tr

a
c
t

M
e
a

n
in

g

V
a

lu
e

Application Service ou ou ou o ou ou ou ou o ou ao o o ao o o

Data Object o o o o o o o o o o or o o or o o

Node ou ou ou o ou oru oru oru o oru aoru o o aoru o o

Device ou ou ou o ou oru oru oru o oru aoru o o aoru o o

System Software ou ou ou o ou oru oru oru o oru aoru o o aoru o o

Infrastructure

Interface
aou aou aou o aou aou aou aou o aou aou o o aou o o

Network o o o o o o o o o o o o o o o o

Communication

Path
o o o o o o o o o o o o o o o o

Infrastructure

Function
ou ou ou o ou ou ou ou o ou aou o o aou o o

Infrastructure

Service
ou ou ou o ou ou ou ou o ou aou o o aou o o

Artifact ou ou ou o ou oru oru oru o oru aor o o aor o o

Junction ft ft ft ft ft ft ft ft t ft

Relationships

(a)ccess ass(i)gnment (c)omposition (r)ealization (t)riggering

a(g)gregation ass(o)ciation (f)low (s)pecialization (u)sed by

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 161

From ↓ / To →

A
p

p
li

ca
ti

o
n

 C
o
m

p
o

n
e
n

t

A
p

p
li

ca
ti

o
n

 C
o
ll

a
b

o
ra

ti
o

n

A
p

p
li

ca
ti

o
n

 I
n

te
r
fa

ce

A
p

p
li

ca
ti

o
n

 F
u

n
c
ti

o
n

A
p

p
li

ca
ti

o
n

 I
n

te
ra

c
ti

o
n

A
p

p
li

ca
ti

o
n

 S
er

v
ic

e

D
a

ta
 O

b
je

c
t

N
o

d
e

D
e
v

ic
e

S
y

st
e
m

 S
o

ft
w

a
r
e

In
fr

a
st

r
u

c
tu

r
e
 I

n
te

r
fa

c
e

N
e
tw

o
r
k

C
o

m
m

u
n

ic
a

ti
o

n
 P

a
th

In
fr

a
st

r
u

c
tu

r
e
 F

u
n

c
ti

o
n

In
fr

a
st

r
u

c
tu

r
e
 S

e
rv

ic
e

A
r
ti

fa
c
t

J
u

n
c
ti

o
n

Business Actor fot fot fot fot fot o o o o o o o o o o o ft

Business Role fot fot fot fot fot o o o o o o o o o o o ft

Business Collaboration fot fot o fot fot o o o o o o o o o o o ft

Location io io io io io io io io io io io io io io io io ft

Business Interface o o o o o o o o o o o o o o o o ft

Business Process fot fot o o o o o o o o o o o o o o ft

Business Function fot fot o o o o o o o o o o o o o o ft

Business Interaction fot fot o o o o o o o o o o o o o o ft

Business Event ot ot o o o o o o o o o o o o o o t

Business Service o o o o o o o o o o o o o o o o ft

Business Object o o o o o o o o o o o o o o o o

Representation o o o o o o o o o o o o o o o o

Product ou ou ou ou o gou ao ou ou ou ou o o ou gou ao

Contract o o o o o o o o o o o o o o o o

Meaning o o o o o o o o o o o o o o o o

Value o o o o o o o o o o o o o o o o

Application

Component
cfgostu cfgostu cfgotu iou iou ioru ao o o o o o o o o o ft

Application

Collaboration
cfgostu cfgostu cfgotu iou iou ioru ao o o o o o o o o o ft

Application Interface fotu fotu cfgostu ou ou iou ao o o o o o o o o o ft

Application Function ou ou ou cfgostu fot fortu ao o o o o o o o o o ft

Application Interaction ou ou ou fotu cfgost oru ao o o o o o o o o o ft

Application Service ou ou ou fortu ou cfgostu ao o o o o o o o o o ft

Data Object o o o o o o cgos o o o o o o o o o

Node aoru aoru aoru aoru aoru aoru aoru cfgostu cfgostu cfgostu cfgotu o o iou ioru aiou ft

Device aoru aoru aoru aoru aoru aoru aoru cfgostu cfgostu cfgiostu cfgotu o o iou ioru aiou ft

System Software aoru aoru aoru aoru aoru aoru aoru cfgostu cfgostu cfgostu cfgotu o o iou ioru aiou ft

Infrastructure

Interface
aou aou aou aou aou aou aou fotu fotu fotu cfgostu o o ou iou aou ft

Network o o o o o o o o o o o cgos or o o

Communication Path o o o o o o o o o o o o cgos o o o

Infrastructure

Function
aou aou aou aou aou auo aou ou ou ou ou o o cfgostu oru aou ft

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

162 Technical Standard (2013)

From ↓ / To →

A
p

p
li

ca
ti

o
n

 C
o
m

p
o

n
e
n

t

A
p

p
li

ca
ti

o
n

 C
o
ll

a
b

o
ra

ti
o

n

A
p

p
li

ca
ti

o
n

 I
n

te
r
fa

ce

A
p

p
li

ca
ti

o
n

 F
u

n
c
ti

o
n

A
p

p
li

ca
ti

o
n

 I
n

te
ra

c
ti

o
n

A
p

p
li

ca
ti

o
n

 S
er

v
ic

e

D
a

ta
 O

b
je

c
t

N
o

d
e

D
e
v

ic
e

S
y

st
e
m

 S
o

ft
w

a
r
e

In
fr

a
st

r
u

c
tu

r
e
 I

n
te

r
fa

c
e

N
e
tw

o
r
k

C
o

m
m

u
n

ic
a

ti
o

n
 P

a
th

In
fr

a
st

r
u

c
tu

r
e
 F

u
n

c
ti

o
n

In
fr

a
st

r
u

c
tu

r
e
 S

e
rv

ic
e

A
r
ti

fa
c
t

J
u

n
c
ti

o
n

Infrastructure Service ou ou ou ou ou ou aou ou ou ou ou o o ou cfgostu aou ft

Artifact oru oru oru oru oru oru aor o o or or o o or or cgors

Junction ft ft ft ft ft ft ft ft ft ft ft ft ft

Relationships

(a)ccess ass(i)gnment (c)omposition (r)ealization (t)riggering

a(g)gregation ass(o)ciation (f)low (s)pecialization (u)sed by

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 163

B.2 Extensions

From ↓ / To →

S
ta

k
e
h

o
ld

er

D
r
iv

e
r

A
ss

es
sm

e
n

t

G
o

a
l

R
e
q

u
ir

em
e
n

t

P
r
in

ci
p

le

C
o

n
st

r
a
in

t

W
o

r
k

 P
a

c
k

a
g
e

D
e
li

v
er

a
b

le

P
la

te
a

u

G
a

p

C
o

r
e

E
le

m
e
n

t6

B
u

si
n

e
ss

 A
c
to

r

B
u

si
n

e
ss

 R
o
le

L
o
c
a

ti
o

n

V
a

lu
e

Stakeholder gcso o o o o o o o o o o o o o o

Driver o gcson on on on on on o o o o o o o o o

Assessment o on gcson on on on on o o o o o o o o o

Goal o on on gcson on on on o o o o o o o o o

Requirement o on on ron gcson ron gcson o o o o o o o o o

Principle o on on ron on gcson on o o o o o o o o o

Constraint o on on ron gcson ron gcson o o o o o o o o o

Work Package o o o ro ro ro ro gcsoft ro ro o ro roft roft ro o

Deliverable o o o ro ro ro ro o gcso ro o ro ro ro ro o

Plateau o o o gro gro o gro o o gcsot o go go go go o

Gap o o o o o o o o o o gcso o o o o o

Core Element5 o o o ro ro ro ro o o o o

Business Actor io o o ro ro ro ro ioft ro o o

Business Role o o o ro ro ro ro ioft ro o o

Location io o o ro ro ro ro io io o o

Value o o o o o o o o o o o

Relationships

(c)omposition i(n)fluence ass(i)gnment ass(o)ciation (t)riggering

(f)low a(g)gregation (r)ealization (s)pecialization

 5,6
 Except Value and Meaning.

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

164 Technical Standard (2013)

Index

access relationship 62

actor co-operation view 81

aggregation ... 126

aggregation relationship 59

application behavior view 91

application collaboration 37

application component 36

application co-operation view 93

application function 39

application interaction 40

application interface 38

application layer 5

application service 41

application structure view 95

application-technology alignment 56

ArchiMate Framework 6

artifact .. 53

assessment .. 118

assignment relationship 60

association .. 125

association relationship 63

attributes ... 113

basic viewpoint 76

behavior element 3

business actor 14

business collaboration 16

business event 23

business function 21

business function view 83

business interaction 22

business interface 17

business layer ... 5

business layer alignment 55

Business Layer Metamodel 13

business object 27

business policy 155

business process 20

business process co-operation view 87

business process view 85

business products view 89

business role ... 15

business rule 155

business service 24

collaboration ... 4

communication path 50

composition relationship 58

constraint .. 122

contract ... 32

data object .. 42

decision support viewpoints 74

deliverable .. 144

derived relationships 68

design viewpoints 74

device ... 47

driver .. 118

flow relationship 64

gap .. 146

goal ... 119

goal contribution view........................ 136

goal realization view 134

grouping relationship 65

implementation & deployment view .. 103

implementation & migration extension

 ... 10, 143

implementation and migration view ... 153

influence ... 128

information structure view 105

informing viewpoints 74

infrastructure function 51

infrastructure interface 49

infrastructure service 52

interaction... 5

interface .. 4

introductory view 77

junction .. 65

landscape map 111

layered view 109

layering .. 5

location ... 18

meaning .. 29

migration view 152

motivation extension 8, 116

motivation view 141

motivational concepts......................... 116

motivational element 8

network .. 49

node .. 46

organization structure view 79

passive structure elements 3

plateau .. 145

policy .. 155

principle ... 123

principles view 138

product ... 31

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 2.1 Specification 165

profile ... 113

project viewpoint 150

realization ... 126

realization relationship 60

representation 28

requirement... 120

requirements realization view 139

service .. 3

service realization view 107

specialization of concepts 114

specialization relationship 66

stakeholder ... 117

stakeholder view 132

structure element 3

system software 48

technical infrastructure view 99

technology layer 5

transition architecture 145

triggering relationship 63

used by relationship.............................. 61

value ... 30

viewpoint .. 71

work package 143

© 2012-2013 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

	Title Page
	Contents
	Table of Figures
	Preface
	Trademarks
	Acknowledgements
	Referenced Documents
	1 Introduction
	2 Language Structure
	2.1 Design Approach
	2.2 Core Concepts
	2.3 Collaboration and Interaction
	2.4 Relationships
	2.5 Layering
	2.6 The ArchiMate Framework
	2.7 Motivation Extension
	2.8 Implementation and Migration Extension
	2.9 ArchiMate and TOGAF
	2.10 Use of Colors

	3 Business Layer
	3.1 Business Layer Metamodel
	3.2 Active Structure Concepts
	3.2.1 Business Actor
	3.2.2 Business Role
	3.2.3 Business Collaboration
	3.2.4 Business Interface
	3.2.5 Location

	3.3 Behavioral Concepts
	3.3.1 Business Process
	3.3.2 Business Function
	3.3.3 Business Interaction
	3.3.4 Business Event
	3.3.5 Business Service

	3.4 Passive Structure Concepts
	3.4.1 Business Object
	3.4.2 Representation
	3.4.3 Meaning
	3.4.4 Value
	3.4.5 Product
	3.4.6 Contract

	3.5 Summary of Business Layer Concepts

	4 Application Layer
	4.1 Application Layer Metamodel
	4.2 Active Structure Concepts
	4.2.1 Application Component
	4.2.2 Application Collaboration
	4.2.3 Application Interface

	4.3 Behavioral Concepts
	4.3.1 Application Function
	4.3.2 Application Interaction
	4.3.3 Application Service

	4.4 Passive Structure Concepts
	4.4.1 Data Object

	4.5 Summary of Application Layer Components

	5 Technology Layer
	5.1 Technology Layer Metamodel
	5.2 Active Structure Concepts
	5.2.1 Node
	5.2.2 Device
	5.2.3 System Software
	5.2.4 Infrastructure Interface
	5.2.5 Network
	5.2.6 Communication Path

	5.3 Behavioral Concepts
	5.3.1 Infrastructure Function
	5.3.2 Infrastructure Service

	5.4 Passive Structure Concepts
	5.4.1 Artifact

	5.5 Summary of Technology Layer Concepts

	6 Cross-Layer Dependencies
	6.1 Business Layer and Lower Layers Alignment
	6.2 Application-Technology Alignment

	7 Relationships
	7.1 Structural Relationships
	7.1.1 Composition Relationship
	7.1.2 Aggregation Relationship
	7.1.3 Assignment Relationship
	7.1.4 Realization Relationship
	7.1.5 Used By Relationship
	7.1.6 Access Relationship
	7.1.7 Association Relationship

	7.2 Dynamic Relationships
	7.2.1 Triggering Relationship
	7.2.2 Flow Relationship

	7.3 Other Relationships
	7.3.1 Grouping
	7.3.2 Junction
	7.3.3 Specialization Relationship

	7.4 Summary of Relationships
	7.5 Derived Relationships

	8 Architecture Viewpoints
	8.1 Introduction
	8.2 Views, Viewpoints, and Stakeholders
	8.3 Viewpoint Classification
	8.4 Standard Viewpoints in ArchiMate
	8.4.1 Introductory Viewpoint
	8.4.2 Organization Viewpoint
	8.4.3 Actor Co-operation Viewpoint
	8.4.4 Business Function Viewpoint
	8.4.5 Business Process Viewpoint
	8.4.6 Business Process Co-operation Viewpoint
	8.4.7 Product Viewpoint
	8.4.8 Application Behavior Viewpoint
	8.4.9 Application Co-operation Viewpoint
	8.4.10 Application Structure Viewpoint
	8.4.11 Application Usage Viewpoint
	8.4.12 Infrastructure Viewpoint
	8.4.13 Infrastructure Usage Viewpoint
	8.4.14 Implementation and Deployment Viewpoint
	8.4.15 Information Structure Viewpoint
	8.4.16 Service Realization Viewpoint
	8.4.17 Layered Viewpoint
	8.4.18 Landscape Map Viewpoint

	9 Language Extension Mechanisms
	9.1 Adding Attributes to ArchiMate Concepts and Relationships
	9.2 Specialization of Concepts and Relationships

	10 Motivation Extension
	10.1 Motivation Aspect Metamodel
	10.2 Motivational Concepts
	10.2.1 Stakeholder
	10.2.2 Driver
	10.2.3 Assessment
	10.2.4 Goal
	10.2.5 Requirement
	10.2.6 Constraint
	10.2.7 Principle
	10.2.8 Summary of Motivational Concepts

	10.3 Relationships
	10.3.1 Association Relationship
	10.3.2 Aggregation Relationship
	10.3.3 Realization Relationship
	10.3.4 Influence Relationship
	10.3.5 Summary of Relationships

	10.4 Cross-Aspect Dependencies
	10.5 Viewpoints
	10.5.1 Stakeholder Viewpoint
	10.5.2 Goal Realization Viewpoint
	10.5.3 Goal Contribution Viewpoint
	10.5.4 Principles Viewpoint
	10.5.5 Requirements Realization Viewpoint
	10.5.6 Motivation Viewpoint

	11 Implementation and Migration Extension
	11.1 Implementation and Migration Extension Metamodel
	11.2 Implementation and Migration Concepts
	11.2.1 Work Package
	11.2.2 Deliverable
	11.2.3 Plateau
	11.2.4 Gap
	11.2.5 Summary of Implementation and Migration Concepts

	11.3 Relationships
	11.4 Cross-Aspect Dependencies
	11.5 Viewpoints
	11.5.1 Project Viewpoint
	11.5.2 Migration Viewpoint
	11.5.3 Implementation and Migration Viewpoint

	12 Future Directions (Informative)
	12.1 Extending and Refining the Concepts
	12.1.1 Business Policies and Rules
	12.1.2 Design Process
	12.1.3 Other Improvements

	A Summary of Language Notation (Informative)
	A.1 Core Concepts and Relationships
	A.2 Extensions

	B Relationship Tables
	B.1 Core Concepts
	B.2 Extensions

	Index

