ConQuer-92

Revised report on the conceptual query language LISA-D

Confidential

Asymetrix Report 94-5

H.A. Proper
Asymetrix Research Laboratory
Department of Computer Science

University of Queensland
Australia 4072
E.Proper@acm.org

Version of June 29, 2000 at 14:24

Abstract

In this report the conceptual query language ConQuer-92 is introduced. This
guery language serves as the backbone of InfoAssistant’s query facilities. Further-
more, this language can also be used for the specification of derivation rules (e.g.
subtype defining rules) and textual constraintsin InfoModeler.

This report is solely concerned with a formal definition, and the explanation
thereof, of ConQuer-92. The implementation of ConQuer-92 in SQL-92 will be
treated in a separate report.

1 Introduction

In this report we introduce the conceptual query language which will serve as the back-
bone of InfoAssistant’s query facilities, and which can also be used in InfoModeler for
the specification of derivation rules and constraints. The definition of this language is
arestriction, and a dight extension at the same time, of the existing language LISA-D
([HPW93], [HPWI7], [HPW94]).

In ConQuer, a central role is played by the so-called path-expressions. In its most
elementary form, a path-expression describes a path through the conceptual schema.

The most important extension with respect to LISA-D isthe ability to deal (and name)
intermediate results of path-expressions. In operational terms this means that we can
select any intermediate result of a path-expression to become part of the final query
result. Later we will see some convincing examples of this.

Furthermore, afew minor changes in the definitions have been made to bridge the gap
between LISA-D and FORML. LISA-D has been restricted in the sense that certain
restrictions had to be made to ensure that the language can be implemented on top
of SQL-92. The proposed name of the new language is therefore ConQuer-92, which
is an acronym for Conceptual Queries. For |A it has been agreed to simply refer to
the language as ConQuer, but for internal purposes it still makes sense to make the
difference between ConQuer-92. The resulting language can later be extended further
when SQL -3 can be used as a target platform, leading to ConQuer-3. Using SQL-3 as
the target platform will in particular allow usto define recursive queries. The definition
of ConQuer-92 as provided in the report also includes many of the aspects that are
present in the FORML ([Hal95]) language for the actual definition of derivation rules,
subtype defining rules, and textual constraints. Inthe LISA-D articles no specia syntax
for this purpose wasintroduced. Thisreport issolely concerned with aformal definition
of ConQuer-92. The implementation of ConQuer-92 in SQL-92 will be treated in a
separate report.

ConQuer-92

Parsing Verbalisation

Path
Expression
Queries

Implementation
Semantics

Multiset
Relational SQL-92
Algebra

Semantics

NULLs
+ Multisets
+ Population

Figure 1: Setup of the ConQuer-92 definition

ConQuer-92 isintroduced using a layered approach. Each layer represents one level of
abstraction. In figure 1 we have illustrated the multi-layered definition of ConQuer-92.
The bottom layer of the specification is formed by NULLs, multisets and populations
of ORM schemas. The difference between a set and a multiset is that elementsin a set
can occur only once, whereas a multiset allows for multiple occurrences of the same
element.

The next level of abstraction introduces an extended form of relational algebra which
features some extra operations, and is based on multisets (or bags) rather than tradi-
tional sets. The relational algebra can be regarded as forming the formal foundation of
SQL. A key difference between traditional relational algebraand SQL is, however, that
SQL is multiset based whereas relational algebrais set based. This effectively means
that the result of an SQL query may contain multiple occurrences of the same value.
This deviation between RA and SQL is based on efficiency. Removing multiple occur-
rences in queries is expensive from an implementational point of view, asit involves
ordering the entire result, and searching for multiple occurrences of the same values.

Onthenext level up are the path-expression queries. Thisisan abstract language which
will not be seen by a user, but is used for the internal storage of queries, constraints,
and derivation rules, in the fact base. The largest part of thislanguage isformed by the
path-expressions. Therefore, we will simply refer to this level as the path-expression
level in the remainder.

Finally, the highest level of abstraction isformed by ConQuer-92 itself. The difference
between the ConQuer level and the path-expression level is nill with respect to the
expressiveness of the languages. However, the ConQuer level is the language that is
used to communicate path-expression queries to users, and vice versa. While the path-
expression level is not intended for "human consumption’, the ConQuer level is only
intended for "human consumption’.

In a next report, a mapping from path-expressions to SQL-92 will be provided. The
definition of the semantics of path-expressionsin terms of relational algebra can thus
be regarded as a specification for this mapping to SQL. With this mapping, the relation
between ConQuer-92, path-expression queries, and SQL-92 can be illustrated using
the diagram depicted in figure 2. The path-expression query is the query that is ac-
tually manipulated (and stored) by the IA tool. ConQuer can be seen as an externa
representation of apath-expression. When we change the verbalisation of object types,
predicates, etc. inthe conceptual schema, then the path-expression does not change, but
the verbalisation of the path-expression may change. Conversely, when we change the
mapping from a conceptual schemato alogical schema, the SQL statement generated
from a given path-expression will have to change as well.

The existing query formulation techniques: Query by Navigation (QBN), Query by
Construction (QBC), Query by Outline (QBO), Spider Queries (SQ), Point to Point
Queries (PPQ), and natural-languages based query formulation using NUQL, all use
path-expression queries as a common format for storing (partial) queries. Thisisillus-
trated in figure 3.

ConQuer-92 Externa Level

Parsing Verbalisation

Path
Expression Conceptua Level
Queries
Mapping
SQL-92 Interna Level

Figure 2: The relation between SQL , path-expressions queries, and ConQuer

Path

Expression

Queries

Figure 3: Interplay between query formulation tools

The structure of the report is as follows. In section 2 we provide a brief formal defini-
tion of an ORM schema. In section 3 we briefly discuss some of the problems concern-
ing the treatment of NULL values. A brief overview of the definition of multisets is
provided in section 4. To make the mapping to SQL-92 easier to define, the semantics
of the path-expressions have been defined in an extended version of therelational alge-
bra. Thisrelational algebraisintroduced in section 5. The definition of path-expression
queries is provided in section 6. Finaly, that part of ConQuer-92 that will be visible
for ordinary usersis discussed in section 7 and section 8. The BNF grammars of both
the path expression level and the ConQuer level are discussed in separate appendices.

2 ORM Models

In this section we provide abrief discussion of the formalisation of ORM we usein this
report. We have setup the formalisation in such away that it does not rely to much on
the details of the ORM meta-model which isin use for InfoModeler. So any changes,
in particular the addition of new modelling concepts, will not lead to dramatic changes
in the formalisation presented here.

A conceptua schemais presumed to consist of a set of types 7P. This set of typesis
split into two pairs of two subsets; based on two dichotomies. Firstly, a distinction is
made based on the underlying structure of types. This results in the set of relationship
types RL, and the set of ordinary object types OB. Note that thisis not a disunctive
dichotomy as nested relationship types are in both classes.

The second dichotomy is based on the denotability of instances of types. Typeswhich
are directly denotable are referred to as value types VL, and correspond to the types
whose instances have a direct denotation such as strings, numbers, etc. The types
which cannot be directly denoted are the non-value types. This double dichotomy is
discussed in more detail in [HP95].

Relationship types are build from roles. Let RO be the set of all such roles in the
conceptual schema. The fabric of the conceptual schemais then captured by two func-
tions and two predicates. The set of roles associated to a relationship type are pro-
vided by the partition: Roles : RL — ¢2(RO). Using this partition, we can define the
function Rel which returns for each role the relationship type in which it is involved:
Rel(r) = f <= r € Roles(f). Every role has an object type at its base called
the player of the role, which is provided by the function: Player : RO — OB. Asan
example, consider the schema depicted in figure 4. In this schema we have marked
each role of the relationship type f with a letter (p,g,r). In this schema we have:
Roles(f) = {p, q,r} and Player(p) = A, Player(q) = B, Player(r) = C.

We presume the existence of arelation ~C OB x OB providing us with the types that
are type related, i.e. types that may share instances. Typical examples of type related
object types are subtypes. In the currently used version of ORM for InfoModeler,

Figure 4: An example conceptual schema

two types are type related if they are in the same subtype hierarchy, and it does not
follow from a disjunction constraint that they are disjunctive. For a definition of this
relationship in more basic concepts of an ORM schema, please refer to [HPW93] or
[HP95].

In ORM some object types may be specialised or be polymorphic (in the current version
of InfoModeler only specialisation applies). Sometimes we need to accessthe so-called
root types of agiven object type. A root type of an object type z isatypey which itself
is not a specialisation or polymorphic type, such that x is a specialisation or polymor-
phism of y. The roots of a type are formally provided by: RootsOf : TP — (TP).
Due to possible multi-rooted specialisation hierarchies and the use of polymorphism,
this function yields a set of types. In the current version of ORM supported by In-
foModeler, al subtyping hierarchies have only one root. Therefore this function will
always lead to singleton sets (sets with one element only) for ORM models developed
in InfoModeler. Again, for a more detailed definition of such a function in terms of
more basic concepts of an ORM schema, please refer to [HPW93] or [HPO5].

Finally, since al instances of the population of a type must be identifiable in terms
of a combination of values, we presume that each non value type has associated an
identification scheme (or reference scheme). Thisidentification schema either consists
of a sequence of either role pairs or single roles (relationship types). It is provided
by: Idf : (TP — VL) —=(RO x RO)* URO™. Note that when dealing with digunctive
identification schemes this becomes: Idf : (TP — VL) —((RO x RO)t UROT)*.
This is, however, beyond the currently supported version of ORM. These are dl the
assumptions we have to make on the underlying ORM data model.

3 NULL Values

In the new definition of the path-expression level, it has become essential to be able to
deal with NULL values, since we now want to deal with intermediate results as well.
In this report we do not explicitly concern ourselves with a proper definition of the

semantics of NULL values as there are various ways of dealing with NULL values.
The basic idea of this section is to identify this as a couse of possible problems. In
practice we will stick as much as possible to the standards dictated by SQL-92. In the
remainder of this report wewill, wherever appropriate, return to the NULL value issue.

The central issues are the behaviour of NULLs in arithmetic operations, logic expres-
sions, and equality. Asan illustration of the choices involved, we provide some exam-
ples of different choices:

|AU{NULL}| = |A|+1 if NULL ¢ A
|AU{NULL}| = |Al+0
|AU{NULL}| = NULL
NULL € {NULL} <= true
NULL € {NULL} <= false
NULL € {NULL} <= unknown
a + NULL = a
a + NULL = NULL
NULL =NULL <= true
NULL =NULL <= false
NULL =NULL <= unknown

4 Multisets

In this section, which is completely based on a section in [HPW93], the concept of
multiset is introduced formally. Multisets ([Lew85]), also known as multiple member-
ship sets ([Lev79]), or bags ([Par90]), differ from ordinary sets in that a multiset may
contain an element more than once.

As an example, to illustrate the difference between sets and multisets, consider the
set {a,b,c,c}. Thisis aset with only three elements. These elements are: a, b, c.
Although the element ¢ was written twice within the set enumeration: {a,b,c,c}, it
only occurs oncein the set. So for setswe have: {a,b,¢,c} = {a,c,b} = {a,b,a,c},
etc. In amultiset, elements can occur multiple times. However, in amultiset, just like
sets, elements do not have an order. We will denote a multiset in the following format:
{la, b, ¢, c]}. Inthis multiset, the elements a and b occur once, and ¢ occurs twice. For
multisets we have: {[a, b, ¢, c[} # {[a, b, c]}, but we do have: {a, b, ¢, c]} = {a,c, b,]},
etc. The relation between lists (or sequences), bags, and sets can be summarised as
follows:

| List | Bag | Set
Order Yes | No | No
Frequency | Yes | Yes | No

Multisets over an underlying domain X are elegantly introduced asfunctions: X — NN,
assigning to each z € X itsfrequency. So if we use as underlying domain al letters
in the alphabet, an example of such afunctionis: f = {a:2,b: 3,2 :1} (ignoring
all 0 occurring elements). The f is now afunction where f(a) = 2, f(b) = 3, and
f(z) = 1. This f corresponds to the multiset: {a,a,b, b, b, 2]}.

In the definitions of the operations on multisets, the A-cal culus notation provided by [Bar84],
will be employed. This notation is nothing more than a mathematical equivalence of
afunction declaration. For instance Az.2? is the polynomial function assigning =2 to
each z-value. The statement Sqr = Az.z? corresponds to the following definition in
Modula-2:

FUNCTION Sor (z :REAL) :REAL
BEGIN
RETURN(z * x);
END;

The lambda calculus allows us to reason about anonymous functions. For example
Mz.z? isthe function yielding the square of the parameter to the function. This would
correspond to:

FUNCTION (z :REAL) :REAL
BEGIN
RETURN(z * z);
END:;

This is an anonymous function. Some more advanced programming languages, like
Algol-68 allow for anonymous functions.

In the theory of multisets, like in set theory, @ denotes the empty multiset. The def-
inition of the empty multiset is: Az.0. As a last example of what this looks like in
Modula-2:

FUNCTION (z :REAL) :REAL
BEGIN
RETURN(0);
END;

Sets can be defined in avariety of ways. One way which we shall use very often isthe
set comprehension schema. For example {z € IN | z > 10 } denotesthe set of natural
numbers z € IN such that they are larger than 10 (z > 10). This could be illustrated
using the following piece of pseudo code:

FOR EACH z € N DO
IF z > 10 THEN
Add z to the result;
END IF;
END FOR;

Quite often we will omit the € IN part if from the condition part it is clear what the
domain of z is. If < would only be defined for natural numbers, then we would write:
{z |2 >10}. Another aternative is to lift the € IN part over the middle bar '—
(which is pronounced as 'such that'), leading to: {z | z €N Az >10}. Thislatter
format is actually the preferred format for the comprehension schema for multisets.

The comprehension schema for a multiset has the format: {fet” | C(e,n)]. The C
is some kind of condition where e is the element and n is the frequency in which the
element should occur in the resulting multiset. So C'(e, n) should be abinary predicate
such that C(e,n1) A C(e,n2) = m1 = mo. The notation e 1™ is used to indicate
that e should indeed occur n-times in the resulting multiset. Sometimes we will alow
us to write e1*+™ or more general et/ ("1-+™) aslong asn + m and f(ni,...,n)
return positive natural numbers. For example {13 | z € {1,2,3}]} leadsto amultiset:
1,1,1,2,2,2,3,3,3].

With respect to NULL values, special care has to be taken when C(e,n) evaluates to
unknown. Without NULL values, C(e,n) will evaluate to true or false, but allowing
for NULL values means that it might lead to unknown as well. In the case of SQL the
unknown is treated as 'insufficient proof’, so the element e will not occur in the result
Set.

The traditional union, intersection, and difference operations from set theory are de-
fined for multisets as follows:

NUM £ \z.N(z)+ M(z)
NNM £ Xz.min(N(z), M(z))
N—M 2 Xz.max(N(z) — M(z),0)

Some examples are:

{[a, b, a]} u {[b, c, c]} = {[a, a,b,b,c, c]}

{[a,b,a]} N {[b, b,a,c]} = {[a, b]}

{a,b,b,a,c}} — {a,b,b,b | =] {a,c]}
Bag comprehension can be used for intentional denotations of multisets. Extentional
denotationsaredefined by: {al} £ {at? | ¢ =1} and {las,...,an]} £ {ar U...U {a.].

In the case of setswe writee € E to say e isan element of the set E’. For multisets
wewritee €™ M, with the formal meaning M (e) = n. Sometimes, when we are not
interested in the frequency, we will writee € M for M (e) > 0.

The comparison operator N C M for multisetsis defined as: V, [N (z) < M (x)]. For
example {a,b,c,c} C {a,b,b,c,c,c]}, but not {a,b,c,c}} C {a,b,c]}. From this
operator, the C comparison is derived in the usual way: N C M AN # M. This
allows for the definition of the powerset of amultiset: M(X) = {Y1* |Y C X]. For
example, the powerset of {[a, b, b]} is:

{=. {(al}, {o}, {la, b}, b, b}, {[a, b, b1} }
Coercions from multiset to set and vice versa are defined by the following functions:

Set(IV)
Multi(.S)

{z |zeN}

fott |z € 5]

For example: Set({a, a, b, b, b[}) = {a, b}, and Multi({a, b}) = {[a, b]}. The number of
elementsin amultiset is counted by [N| 23 N(z), 0| {a,b,c,c,alt| = 5. With

respect to NULL values, the exact result of this expression depends on the way the >
(the +) operation handles NULLSs.

Y
-y

By making assumptions on the underlying domains X we can introduce some morein-
teresting operations. If IV isamultiset over an arithmetic domain X, then the following
operations can be defined:

max(N) 2 max(Set(N))
min(N) £ min(Set(N))
sum(N) £ 3 .y x N(z)

These operations return the maximum, minimum and sum of the values in the mul-
tiset. Some examples are; max({[1,3,9,9,1}) = 9, min({1,3,9,9,1]})) = 1, and
sum({1,3,9,9,1]}) = 23. Again the exact result of sum(XN) in the case of NULL
values depends on the treatment of NULLsin arithmetic operations.

5 Relational Algebra

As stated before, the semantics of path-expressions is defined in terms of relational
algebra expressions. However, since path-expressions are based on multisets, the re-
lational algebra we use here needs to be defined in such a way that it can deal with
multisets (and NULL values). The style of relational algebrawe use here is one which
is widely used in academic papers. We could have chosen a style which would make
some definitions simpler, but the used algebra is certainly closer to what is needed for
amapping to SQL than any of the other relational algebra styles.

10

5.1 Preliminaries

A relational algebraexpression effectively defines aderived relationship type. For such
expressionstwo functions play a central role. Thefirst function (Sch) is concerned with
the set of columns (attribute names) in this derived relationship. Thisfunction provides
the underlying structure (c.f. a sequence of rolesin anormal relationship type) of the
derived relationship type resulting from the relational algebra expression. The second
function (Val) with the actual population of the derived relationship type. The formal
signatures of these functions are:

Sch : RA — (O(Attrs)
Val : RA x POP X (Attrs —) — (0 (Attrs — Q)

In these definitions, RA is the set of relational agebra expressions, Attrs the set of at-
tributes names (column names) that can be used in the relational algebra expressions,
and 2 the set of al instances that are allowed in the result of arelational algebra ex-
pression. Note that we presume the existence of an explicit NULL element in (2.

The signature of the first function (Sch) tells us that this function takes a relationa
algebra expression as a parameter and returns a set of attribute names. These attribute
names are the column names of the resulting table. From a theoretical point of view
it is more elegant and more conceptual to see this as a set of attribute names rather
than a sequence. If we would model thisas alist of attribute names, than the relational
schemas [a, b, ¢] would not be the same as the relational schema [b, ¢, a]! In general,
however, we want to regard these to be the same! Therefore we model the header of a
relational algebratable as a set of attribute names.

The signature of the second function (Val) is abit more complex. This function should
return the population of the table that can be associated to arelational algebra expres-
sion. The relationa algebra expression derives this population from the population
of the underlying conceptual schema. Therefore it needs a relational algebra expres-
sion and the current database population (an element from POP) as input parameters.
However, athird parameter is required. We allow for the use of correlated subqueries.
These correlated subqueries, like in SQL, need to be evaluated in the context of one
tuple from the surrounding query. For example, consider the SQL query:

SELECT department, name, pay
FROM employees x
WHERE pay >

(SELECT AVG(pay)

FROM employees

WHERE department = x.department)

When evaluating the subquery, the reference to x.department refers to a tuple in the
result from the surrounding query, i.c. atuple from employees. The third parameter to

11

the Val function allows us to pass on such a tuple to the evaluation of a subquery. In
our formalisation a tuple from arelationa algebratable is sees asapartia(!) function
from the set of attribute names to the possible instances.

In the relational algebra expressions we use in the context of ConQuer-92, we allowed
the roles from the underlying ORM schema to be used as attribute names. Thisis not
just allowed because we are trying to befriendly, but it is highly essential aswe need to
be able to refer to the population of the conceptual schema! When generating an SQL
statement, these roles should be replaced by proper attribute names that are derived
from the names of the roles and object types. These names will indeed correspond to
the attribute names used for in the logical representation of the conceptual schema. For
the relational algebralevel we effectively have: RO C Attrs (but it does not mean that
all attributes are roles).

5.2 Denotational semantics

The semantics of relational algebra (and later the semantics of path-expressions and
ConQuer) are defined conform the style of denotational semantics (see e.g. [Sto77]).
In denotational semantics, the semantics of each syntactical construct (of the language
which'’s semantics are being defined) is defined in terms of other syntactical constructs,
and ultimately in terms of isome underlying semantical domain. In our case the under-
lying semantical domain are the multisets and the populations of conceptual schemas.
An important role in denotational semanticsis played by the environment, which can
be seen as representing the state of a program. In our case the environment of the first
semantics function isempty, but the environment of the second semantics function con-
sists of two parts. In the latter case, arelational algebra expression is evaluated in the
context (environment) of a conceptual database population and possibly atuple from a
surrounding query.

Inthe style of denotational semantics, the construct which’s semantics are defined is put
between double brackets: [P] and the environment between the traditional parenthe-
sis. (p, t). Conform this style of defining semantics we write Sch[P] and Val[P] (p, t),
where P is the algebra expression which’'s semantics are to be defined, p is a popula
tion, and t isatuple.

The actual semantics of arelational algebra expression P, which is not a nested sub-
query, can now be expression as: Val[P] (p, @), where p is the conceptual database
population.

5.3 Projection

The first relational algebra operation we introduce is projection. In a projection the
columns of a relation can be (re)defined by means of expressions in terms of other

12

attributes. Therefore, a projection must provideafunction R : Attrs — RAScalarExpr
assigning expressions to attributes. RAScalarExpr is a set of arithmetic-expressions
of which the semantics is supposed to be provided by afunction:

Expr : RAScalarExpr x POP X (Attrs—) — 2

This function takes as input parameters an expression, the current conceptual database
population, and a tuple from any surrounding query. Later on in this section we define
this function in more detail.

The semantics of the projection operator can now be defined formally as:

SChl[ﬂ'R P]]
Val[[ﬂ-R P]] (p7 t)

dom(R)

-y
Y

{[(’\aedom(R)- Expr[[R(a)]] (p7 tx u))Tn]}

u€" Val[P] (p,t)

In this definition we can see the tuple ¢ for subqueriesin actual use. The tuple passing
mechanism is needed since the expressions in R could quite well contain entire sub-
queries! The expression ¢t x u isthe updated tuple ¢ in the context of relational algebra
expression P. The original tuple ¢ was passed on by the surrounding query (if any)
of T P. Since P may contain attribute names that are the same as in the surround-
ing query, these local names must overwrite the global names (simple scoping rules).
Therefore we passthe tuple ¢ x u parameter on to the evaluation of the expression. The
formal definition of the overwrite (x) functionis:

fxg2 {(z,y) € f|zgdom(g)}Ug

Before we continue, we will give a part for part breakdown of the formal definition of
the projection. For each tuple v in the result of P, we need to evaluate the expressions
contained in R. Therefore we unite these evaluations by

uwE™Val[P] (p,t)

The actual evaluation of the expressionsin R leads to a single tuple, where the values
of the tuples are each evaluated in the context of the population p and tuple ¢ x u:

{(Xacdom(r)- Expr[R(a)] (p, t x)]

As asimple example consider the projection: 7T .=z y:5:=» P Where we presume that
P isthefollowing table (this table will be used as a running example in the remainder
of this section):

This projection would lead to the table:

3|'a
6|'b

Based on the projection operator three derived operators can be defined. An existing
relation can be extended with additional columns by means of the following operation:

where R : Attrs— RAScalarExpr provides the definition of the additional columns,

theexisting columnsof O arecopied by X = DefMap(Sch[P]), and DefMap(A) £ {(a,a) |a € A}.
The DefMap function is used to generate the proper expressions needed to leave the ex-

isting columns in-tact. Existing column definitions in X are overwritten by the ones

provided in T using the x function. For example Olg. =g y;z:=y— 5 P Would lead to:

[z]a]

3
6

&
<

N -
AN
N -

Renaming existing attributes can be done by the following operation:

PrP £ TxxpP

where R : Attrs — Attrs provides the renaming, and X = DefMap(Sch[P]) — ran(R).
Anexampleisp, . ;.. P leadsto:

12
214 |'b

Sometimes a set of existing attributes A of a relation need to be removed. For this
purpose, the) A operation can be employed. The operation isidentified by:

(SA.Pé Tx P

where X = DefMap(Sch[P] — A) For instance 0, P resultsin:

2
4)by

14

54 Expressions

We now define the syntactical category RAScalarExpr in more detail. Let ¢ be a
constant, a an attribute, p arole, P be an existing relational algebra expression, f an

arithmetic operation, and E1, ..., E, be arithmetic-expressions, than the arithmetic-
expressions that can be used in the projection operations are;
Expr[] (p,t) 2 ¢
Expr[a] (p,t) £ #(a)
Exprlap] (p,t) = t(a)(p)
Expr[Count(P)] (p,t) = |Val[P] (p,t)|
Expr[Sum(P,a)] (p,t) £ ienval[P] (p,t) (t(a) x n)
Expr[Min(P,a)] (p,t) 2 min {t(a) | t € Val[P] (p,t) }
Expr[Max(P,a)] (p,t) £ max {t(a) | t € Val[P] (p,t) }
Expr[f(Er,...,E,)] (p,t) 2 f(Expr[EL] (p,1),...,Expr[Ey] (p,1))

Furthermore, as an abbreviation we can define: Avg(P,a) = Sum(P,a)/ Count(P).
Notethat Expr[a] (p, t) only hasameaning if tuplet isdefined for a, while Expr[a.p] (p, t)
is defined only if tuple ¢ is defined for @ and the result is a tuple (i.e. arelationship
instance) which is defined for role p. As an example, T 4.—sum(P,z),b:=sum(P,z)+y L
yields:

3[5
3|7

Note that the expressions with the functions such as Min, etc, are only allowed if the
underlying domains allow for this.

The above defined expressions can be directly (without using a projection operation
like in the example above) coerced into arelational algebra expression by:

{z}
{(=, Expr[E] (p, 1))]t

Schl€, E]
Val[€, E] (p,)

> >

55 Sdlection

The selection operation 0 ¢ P operates like afilter. It takes the tuples from the result

of P, and returns them when condition C' is satisfied. The operation can be defined
formally by:

Sch[Uc P]]

VaI[[O'C P]] (p,t)

Sch[P]
{utn | u €™ Val[P] (p, t) A Cond[C] (p, t x u) |}

Ay
A

15

In this definition we can, again, see the tuple ¢ for the subqueries in actual use. The

t x u isthe updated tuple ¢ in the context of relational algebra expression P. The con-

dition C isan element of syntactic category of conditions: RAConditions. Thisisaset

of conditions whose semanticsisdefined by thefunction: Cond : RAConditions x POP X (Attrs —) — 1B
Each condition is evaluated in the context of a conceptual database population and a

tuple passed on from any surrounding query.

5.6 Conditions

Using the above defined expressions we can define the syntactic category of condi-
tions in more detail. Let R be a binary relation over the underlying domains such
asR e {<,<,=,#,>,>}, let S be a binary relation on multisets such as S €
{C,C,=,#,2,D} letL € {A,V,V,=}, let By, E be arithmetic-expressions, and
let C, Cy, Cy be conditions, then we have the following rules:

Expr[E1] (p,t) R Expr[EL] (p,t)
Val[[Pl]] (p7 t) S Val[[Pn]] (p7 t)
JuerP] (») [u(a) = Expr[E] (p,)]
= Cond[C] (p, t)

Cond[C4] (p,t) L Cond[C5] (p,?)

Cond[E1 R E3] (p, t)
Cond[P; S P2] (p,t)
Cond[E € P(a)] (p,t)
Cond[-CT] (p, t)
Cond[C1 L C2] (p, t)

> > > > >

5.7 Connection to the Conceptual Schema

The careful reader might observe that we do not yet have a connection between the re-
lational algebra expressions and the underlying conceptual schema. This connectionis
provided by the following operator, which allows usto introduce atypeinto arelational
algebraexpression. Let z be an object type, and a be an attribute name, then:

Sch[Tq x] {a}
Val[T, z] (p, t) {[(a,i)Tl | i€ Pop(a:)]}

All this operation doesis create a one-column table with column name a. Each element
from the population of z occurs only (and exactly) once in this table.

-y
-y

5.8 Advanced operations

As we are using multisets, the following operation is intended to ignore multiple oc-
currences when desired. It isthe algebraic version of the SQL DISTINCT command.

Sch[[Ds P]
Val[Ds P] (p, t)

Sch[P]
Multi(Set(Val[P] (p, t)))

Y
A

16

The algebraic equivalent of the SQL GROUP BY statement is the following grouping
operator:

Sch[x P] Sch[P]
Valpx P1p) 2 {exs)t [FE€VPAs = daey. U ful@t” [ulX] =X}]}

ue™ VP

where VP = Val[P] (p) andY = Sch[P] — X. Thisoperation doesasimilar grouping
asin SQL on the attribute names provided in X. As an example, let R be:

)by

1b|

NFE NP

For ¥ x R, thiswould lead to:

Ial,l cl]}

L
2 {[Ibl ’I bl]}

In our relational algebra we have the normal inner-join, as well as the left-join The
inner-join isformally identified by:

Sch[PX Q] = Sch[P]USch[Q]
VallP X Q] (p) £ {t™™|t: X —Q A t[P] €™ Val[P] (p) At[Q] €™ Val[Q] (¢) |}

where ¢[P] is an abbreviation for ¢[Sch[P]] and X = Sch[P X Q]. Theleft-join is
defined as:

Sch[P X Q] Sch[P] U Sch[@]
Val[P X Q] (p) {trm>m |t : X - Q A t[P] € Val[P] (p) A t[Q¢] €™ Val[Q:] (q) |
where X = Sch[P X Q], Q: = Ty Q and Y = DefMap(Sch[@] N dom(t)).

Finaly, for relational algebra expressions P and (), where Sch[P] = Sch[Q], we can
define the following three operations which should be familiar from set theory:

Y
4

Sch[PUQ]
Val[PU Q] (p)

Sch[[P]
Val[P] (p) UVal[Q] (p)

> 1>

Sch[PN Q]
Val[P N Q] (p)

Sch[P]
Vai[P] () VallQ] (7)

> 1>

17

Sch[P—Q] £ Sch[P]
Val[P - Q] (p) 2 Val[P] (p) — Val[Q] (p)

For this latter class of operationsit is essential to have Sch[P] = Sch[Q] because for
these operations the tuples must 'fit’ together with each other.

5.9 Non-valuetypeinstances

In the relational algebra definition as given in this section, instances of entity types (or
objectified relationship types) are treated like instances of value types. However, when
we tranglate the path expressions to SQL we should realise that we have to replace the
references to the abstract entity instances to concrete references to value types based
on the reference schemes.

For example, if Person is an object type with reference scheme (Surname, Firstname),
then whenever we use instances of Person to make comparisons, we have to replace
them by comparisons of the proper value types. Let Student and Co-Worker be overlap-
ping subtypes of Person, and let s be a student and w be a co-worker. In the relational
algebra we might write in a selection statement: —(s = w). In SQL we should re-
alise that we have to split the s and w attribute names in two. This would lead to:
NOT (s-Surname = w-Surname AND s-Firstname = w-Firstname).

6 Path Expressions

Path-expressions are formal constructs for expressing derived relationship types by
closely following the underlying information structure. Path-expressions can be con-
structed from elements of the information structure (roles, object types), constants and
anumber of operators. They are evaluated with respect to the current population of the
information structure. In its elementary form, a path-expression corresponds to a path
through the information structure, starting and ending in an object type.

In this section we discuss the abstract syntax of path expressions, the concrete seman-
ticsis provided in the appendix. The difference between abstract syntax and concrete
syntax isthat abstract syntax describes rules by which parse treesfor the expressionsin
the defined language can be build. This necessarily means that issues like ambiguities
in the parsing of the languages (an ambiguous grammar) are not relevant. A concrete
syntax on the other hand, is also concerned with parsing issues. As aresult, an abstract
syntax will usually not contain disambiguating constructslike’(’,")’.

The set of path-expressionsfor agiveninformation structure ZS, isdenoted asPathExpr.
The semantics for the path-expressions does not directly refer to a population itself.
This is exactly what we want since we need to generate SQL without already evalu-
ating the query! The semantics of path-expressions is therefore defined by trandlating

18

the path-expressionsto relational algebra. The final query result of apath-expressionis
then obtained by 'executing’ the resulting relational algebra expression (or SQL state-
ments) in the context of the current database population. The trandation is done by the
function:

P : PathExpr X (Attrs X TP) x §(Attrs) & RA

We define this semantics, again, using the style of denotational semantics. The envi-
ronment of the semantics function is atyping relationship (7' C Attrs x TP) and a set
B € ¢(Attrs) indicating which attributes (variables on the ConQuer-92 level) have
aready been bound to an underlying type.

The relational algebra expressions used to express the semantics of path-expressions
aways have at least two columns. These are the hd and ¢/ column. The first column
represents the head (start) of the path-expression, and the second column represents
the tail (end) of the path-expression. Intermediate results of a path-expression can be
represented in a separate column by providing an explicit attribute name. Later in this
section we see a construct to introduce such extra columns.

In aConQuer-92 expression, al variables must be of sometype. Just asin thefollowing
Pascal fragment the type of i iSINTEGER, and j is of type REAL, variablesin ConQuer-
92 expressions are types as well:

VAR
i: INTEGER,;
j: REAL;
BEGIN
i:=1;
ji=14+1;
END

The reason for using a typing relationship rather than a typing function, which means
that a variable may be of more than one type, will become clear in the remainder of
this section.

Obvioudly, the typing function has to be determined before the actual trandation of a
path-expression to a relational algebra expression can be done. The typing is derived
by using the function:

T : PathExpr — {J(Attrs X TP)

This function is defined more formally in subsection 6.10. There it shall also become
clear why the typing is provided as arelationship over Attrs x 7P. An obvious require-
ment on path-expressions with respect to typing is:

(a,m),(a,y) ETl[P]] =T~y

19

requiring attributes to be in one type relatedness class only. This means that we do
alow variablesto be of more than one type, but they must be of related types. Further-
more, al attributes occurring in a path should indeed be typed:

711 T[P] isexactly the set of attributesin P

Asof now we use Attr[P] as an abbreviation for 77, T[P].

During the evaluation of a path-expression, an attribute must always be bound to its
associated type. The notion of a bound variable stems from logic. For example, in
the formula ¢(z) the variable z is not bound to any domain. It can range over al
individualsknown in our universe. If D isaset of individuals, then inV,¢p [p(z)] the
z is said to be bound to the domain D. To make certain that all variablesin ConQuer-
92 are bound, we sometimes need to explicitly bind an attribute to its proper type.
If T is atyping, then this can converted into a function providing proper bindings of
attributes/variables to their types by the function:

Bind : (0(Attrs x TP) —(Attrs & RA)
Bind(T) £ Xeemr- U U Taz
(a,z)€T yERootsOf(x)

The expression:
TaZ
{a,z)€T yERootsOf(z)
isarelational algebra expression which forces the attribute a to be limited to instances
of the root types of the types of a.

Finally, we a so introduce a function:
LL : PathExpr x (Attrs — TP) — (TP x TP)

which isintended to administer the possible combinations of typesfor the start and end
of a path-expression. As stated before, a path-expression basically corresponds to a
path in the conceptual schema connecting types. More complex path expressions will
correspond to sets of paths through the conceptual schema. As such, complex path ex-
pressions can have multiple start and end type combinations. The I functions provides
us with these combinations. This function will alows us to make optimisations and
remove ambiguities in verbalisations. For example, if for a certain path expression P
we have L[P] (T') = @, it means that P[P] (T, B) evaluates to the empty set in any
population.

6.1 Linear path-expressions

Thefirst class of path-expressions we introduce are the linear path-expressions. These
are the linear paths as they may result from a point to point query ([Pro94b]) or query

20

by navigation ([Pro94a]). The linear path-expressions are called linear as they always
correspond to a single path through the conceptual schema.

Linear path-expression have two elementary building blocks. Each type and role from
the conceptual schema can be used as a linear path-expression. When arole r used as
a linear path-expression it becomes a so-called role-entry as it provides an entry to a
fact type (Rel(r)) from atype (Player(r)) viaarole (r).

These two basic building blocks lead to the following formal rules. If z isatype, p
arole, P an existing path-expression, and a each time a fresh attribute, then we can
define:

]Pl[(b']] (T’ B) £ 7Thd:a,tl:a Tax
Pl[p]] (Ta B) £ T hd=a.p,ti=a Tq Rel(p)

If z is atype with population Pop(z) = {1, 2, 3}, then the path-expression z leads to:

W N =
W N =

If fisafacttypewith Roles(f) = {p, ¢}, andPop(f) = {{p:1,q:a},{p:2,q:b},{p:3,q:c}},
then for a path-expression p we have:

R [# |
1 | {p:1,q:a}
2 [{p:2,q:b}
3 [{p:3,q:¢c}

Note that while on the relational algebra level attributes and roles could be used in-
terchangeably (as column names), on the path expression level they are to be treated
separately. In path expressions, roles correspond to connections between the player of
the role and the relationship type in which the role is involved, while attributes corre-
spond to variables.

The possible combinations of head and tail types for the basic constructions are given
by:

Lz] (T) £ {(u,v)|u~w/\v~m}
L[p] (T) £ {(u,v)|u~P|ayer(p)/\v~Re|(p)}

The first important complex construction on linear path-expressions allows us to re-
verse a (linear) path-expression. If we have a path from atype z to y, then reversing it

21

will lead to apath from y to z. Let P be a path, then we have:
]P[PF]] (T, B) é phd:tl,tl:hd]P[[P]] (T, B)
LIPI(T) = {{v,u) |{u,v) € L[P](T)}

A special case of areversed path is a reversed role. If r is arole, then r is a path-
expression (role-entry) as well. The reversal of r leadsto v, and is referred to as a
role-exit, as it provides a path from fact type Rel(r) to type Player(r). As an example,
let p bethe role from the fact type f as shown above, then p resultsin:

(hd &2
{p:1l,q:a} |1
{p:2,q:0} |2
{p:3,q:¢} |3

Using concatenation, path-expressions may be combined into yet more complex ex-
pression. Let P and) be (linear) path-expressions and a afresh attribute, then we can
define:

P[PoQI(T,B) 2 04(PuyPX P, pa@)
LIPoQ(T) 2 {(u,w) |(u,v) € L[P](T)A (v,w) € L[Q] (T)}

This operation corresponds to a head/tail concatenation of two existing path expres-
sions. If P and Q) are path-expressions with results:

P: :
|hd|tl|Q | hd |]
1 |a a |k
2 |b c |1
3 |a b l

then the path expression P o) leads to:

1 |k
2 |1
3 |k

The set of linear path-expressionsis exactly defined as the set of path-expressions that
can be build from the above constructions.

6.2 Complex operations
A (linear) path-expression correspondsto a path through the information structure. The

front and tail elements of such paths play a central role in the concatenation of path-
expressions. Sometimes we want to limit our interest to the front elements only. For

22

this purpose we introduce the following operation:
P[FrP](T,B) £ Q=naP[P](T,B)
L[Fr P] (T) {{u,u) | (u,v) € L[P](T) }

As we are working with multisets, the distinct operation must be present on the path-
expression level aswell:

P[Ds P] (T,B) % Ds(P[P](T,B))

> 1l

L[psP(T) 2 LI[P[(T)
If P returnsthe following table:

e oL e
[SURNG UL
B O RN

we have:
FrP: DsP :
(hd []

a

8

SR e
[SAENUI
D =N

W ot W
Q o

a
b
a

The cartesian product of path-expressionsis identified by:
P[P x Q] (T, B) & Tx(0uP[P)(T,B) X Ona Py_,s PIQ) (T, B))
where X = DefMap(Sch -P[P] (T, B) USch -P[Q] (T, B))
L[P x Q)(T) £ {(u,z) | (u,v) € LIP1(T) A (w,z) € L[Q] (T) }
If we have the following results of path expressions:
P arm) @ rhaTa T

1 |2 5 |alc
3 |4 6 |b|d

then we have:

The following operations are taken from [HPW97]. Let P and () be path-expressions,
and a, b be fresh attributes, then:

P[PCQ](T,B) £ Tx O 14— 11(0haea P[P] (T,B))Cmy—na P[Q] (T,B) Xa=ha P
P[P 2Q](T,B) £ Tx Or,_, (0naea FIP](T,B)) I7smna PIQ] (T,B) Xa=hd P
P[P=Q](T,B) £ Tx Ory_, (0nace PIP](T,B))=Ts—na P[Q] (T,B) Xa=ha P
For O € {C,D, =} we have:
LIPOQI(T) £ {{u,w) |(u,v) € LIP](T) A (v,w) € L[Q](T) }

L et the path expressions P and () result in:

P'|hd|tl| Q'|hd|tl|
a |1 1 |f
a |2 2 |g
b |1 3 |h
b |2
b |3
b |4
c |1
c |2
c |3

For this we would for example have:

PCQ: PDOQ: P=qQ:
< marm "2) Y
C

C
C

W N =

SO0 0 8 8
LN DN =

OO 06 oo o o
CONH W

The C operation is used to select those head elements from P such that al the tail
elements associated to that head element occur as head of). An exampleis:

A president who has a hobby WHICH ARE ALL IN hobby of president: " Clinton”
which results in the presidents (and their hobbies) who have only hobbies that are aso

hobbies of president Clinton. The D operation, on the other hand, is used to select the

24

head elements from P which have associated a set of tail elements that includes all
heads from (). As an example consider:

A president who has a hobby THAT INCLUDES ALL hobby of president: " Clinton”

This expression results in those presidents who have at |east all hobbies that president
Clinton has. The C and D operation are combined by the = operation. For instance,

A president who has a hobby MATCHING ALL hobby of president: " Clinton”

|eads to the presidents which have exactly the same set of hobbies as president Clinton.

With the Q) operations we can select the head-tail combinations that are not returned
byo:

PIPQQI(T,B) 2 (8uPX8uQ)—P[Poq](T,B)

where each time X = DefMap(Sch -P[P] (T, B))

LIPQQI(T) = {(uz) |(u,v) € L[P](T) A (w,z) € LIQI(T) }
Asan examplelet P and @ lead to:

P: :
rhaTa @ [haTa]

a |b b 3
c d d |4
then we have:
P : P :
Qe "
a |4 a |3
c 3 c 4

As a result, the @ operation allows us to select the connections between the head
elementsin P and tail elements o f @) that are not connected via Po (). A concrete
exampleis:

A president who has a hobby EXCLUDING hobby of president: " Clinton”

On path-expressions we also have the normal set theoretic operationsliken, U, and —.
However, in the case of path-expressions special care has to be taken for with differing
attributes. In taking the union, intersection and difference of path-expressions, the path-
expressions involved are first coerced such that they have the same set of attributes.
After the union, intersection, or difference, has been calculated the information that

25

was removed during the coercion is added again.

P[PNQ](T,B) £ (mxP[P](T,B)NTxP[Q](T,B)) X Ds(P) X Ds(Q)
T[PNQI(T) £ TPI(T)NTIQ](T)

P[PUQ](T,B) £ (mxP[P](T,B)UTxP[Q](T,B))XDs(P)XDs(Q)
T[PUQI(T) £ T[P](T)UTIQI(T)

P[P —Q](T,B) £ (mxP[P](T,B)—mxP[Q](T,B)) X Ds(P)
T[P-QI(T) £ T[P](T)

where each time X = DefMap(Sch -P[P] (T, B) N Sch-P[Q] (T, B))

Notethe use of theleft-joinin the case of the union. In practice, we will make much use
of anintersection, union, and set difference. Therefore, we also introduce the following
abbreviations:

le P2 é Fr(Pl)UFI’(Pg)
le P2 é Fr(Pl)ﬂFr(Pg)
P+ P, 2 F(P)—Fi(P)

We also introduce the traditional binary operations: <, <,=,#, >, > into the path-
expressions. Let in the following definition R € {<,<,=,#,>,>}, leta, b befresh
attributes, and let P and @ be path-expressions, then:

P[PRQN(T,B) £ TxOany(Py_yPIPI(T,B) X p,_,, PIQI(T, B))
LIPRQI(T) £ {(u,v) |{(u,v) € LIP](T) A (v,w) € L[Q](T) }
where X = DefMap(Sch -P[P] (T, B) U Sch-P[Q] (T, B))

If P and () are path expressionswith results:

P: :
T e A

a 100 50 |50 |k
b 233 101 | 101 |
c 250 200 | 200 | m
d 130
then we have:
P<Q:
¢

a 101 |

a 200 | m

d |200|m

26

The above definition in itself would not allow us to write: Salary < 1000 if Salary is
an entity type identified through a value type Amount. However, on the ConQuer-92
level we introduce an abbreviation mechanism which indeed allows us to write such
path-expressions.

Asthe new generation of path-expressions allows for intermediate results, we now also
introduce a path shuffle operation for path-expressions:

P[Path(P,a1,...,an)] (T, B) 2 Phica, s1—a, Toetap({as, ..., an}) PIP] (T, B —{a1,

(>

L[Path(P, a1, ...,a,)](T) {{(u,v) |u~T(a1) Av~T(an)}

This operation alows usto make projections and operatesin away similar to that of the
SQL SELECT statement (therefore we shall not provide an elaborated example with
tables). As an concrete example of how this may look like in ConQuer-92, inspired by
[Hal95], consider:

THE PATH FROM z TO y OF

ceoyanl})

President £ who is married to a Spouse y AND ALSO is member of the Party: " Republican”

resulting in the presidents and spouses of presidents who are a member of the republi-
can party.

To support the use of mix-fix predicate verbalisations in ConQuer, we introduce the
following construction (although it is basically an abbreviation) on path expressions.
Letps,...,p, berolesof the samefact types, and Ps, ..., P_;

(pr,p2 I[Xo], - o1 I[Xal,p) £ pro () DsFr(p© oI[P]) op
1<ikli

Two special operations are introduced that take care of coercing simply identified en-
tity typesto value types. Thiswill allow usto write MoneyAmount > 1000 rather than
MoneyAmount of AUD > 1000. The coercion operations, which are basically abbrevia-
tions, are identified by:

HdCoerce(P) £ { p otherwise

TICoerce(P) £ { P otherwise

The HdCoerce and TlCoerce functions allow us to write: Salary > 1000, rather than
Salary of $Amount > 1000.

27

HdCoerce(sor* o P) if {t(hd) |t € L[P]} = {z} Adf(X) = [(r, s)]

TiCoerce(Poros®) if {t(tl) |t € L[P]} = {z} A Idf(X) = [(r, 5)]

6.3 Scalar expressions

Scalar-expressions are regarded as a special kind of path-expression. However, we still
do introduce a separate class PEScalarExpr C PathExpr of scalar-expressions. Re-
garding scalar-expressions as a special class of path-expressions|eads to an orthogonal
language. The reason for introducing a special subclass is that this allows us to op-
timise the mapping to relational algebra (and SQL). We return to this issue when we
introduce the semantic coercion rule from scal ar-expressions to path-expressions.

The semantics of scalar-expressions are provided by:

E : PEScalarExpr X (Attrs X TP) x §(Attrs) = RA

Let ¢ be a constant, and P be path-expressions, then this class of path-expressionsis
provided as:

E[](T,B) £ ¢
E[Count(P)] (T, B) £ Count(P[P] (T, B), hd)
E[Sum(P)](T,B) £ Sum(P[P](T,B), hd)
E[Min(P)] (T,B) 2 Min(P[P] (T, B), hd)
E[Max(P)] (T, B) £ Max(P[P](T,B), hd)
E[Avg(P)] (T,B) = Avg(P[P](T,B),hd)

The Count operation counts the number of tuplesin the result of P, whereas Sum, Min,
Max and Avg calcul ate the sum, minimum, maximum, and average of the head elements
of P respectively.

Attributes can be used in scalar-expressions. Even more, the underlying components
of attributes over a nested type (objectified relationship type) may be accessed. So, if b
isan attribute and p arole, we have:

T hd=a,ti=a €a b ifbe B
Ellb]] (T, B) N hd=a,tl=a .a
Ohd=b,t1=p Bind(T') ()
T hd=a.p,ti=a.p €a b ifbe B
]E[bp]] (T, B) N hd=a.p,tl=a.p .a
Qlhd=b.p,t1=b.p Bind(T') (b)
Functions can for obviousreasonsbe used in scalar-expressionsaswell. Let By, ..., E,

be scalar-expressions, then we have:
E[f(En,-..,E)](T,B) 2 f(E[E\](T,B),...,E[E,] (T, B))

For infix functionslike + wealow P+ (@ asan abbreviationfor +(P, @), but we prefer
to do this on the verbalisation level of ConQuer-92 rather than on the path-expression
level.

28

As stated before, scalar-expressions are specia path-expressions, so we have for a
scalar-expression E:

Qly—pq €Ena B if Attr[E] —B =@
P[E](T,B) 2 ti=hd €nd . r[[. 1

Qlyi=ha X pa=r]E] (T,B) (Macaw]E] — B Bind(T)(a)) otherwise
LIE](T) £ {{(a,b) |a~rAb~rAr€R}

where R isthe set of resulting types from scalar-expression E. The latter set R can be
calculated in a conventional way (like in any other programming language), using the
typingin T asabase. Asan example, let P be a path-expression resulting in:

9

10
12
12

Co CO N =

then the result of the expression 1 + Avg(P) would result in 4.75. When interpreted as
a path-expression, thiswould lead to:

The idea of the coercion from scalar-expressions to path-expressionsis to apply it as
late as possible; i.e. evaluate a scalar-expression E on the relationa algebra level as
much as possible as a scalar-expression.

Functions can also be applied on path-expressions. In such a case, the function is
applied to each tuple separately. Let Py, ..., P, be path-expressions (which are not all
scalar-expressions), as, .. . ,a, be fresh attributes, and f a function symbol, then we
have:

Plf(Pi,...,P,)](T,B) A

osin Qs (29 PrcsaOuPIPI(T.B) 4 p, L, PIP](T.)

LIf(P,...,P)](T) £ {{v,w) [v~rAw~TATER}
where R isthe set of resulting types of function f

Notethat this path-expression returnsthetail of P, astail. If thetypesof the parameters
tofunction f are also known, astricter type check of the provided path-expressions can
bedone. For instance, if ¢; isthetypefor the parameter at position ¢, then we must have:
JeemLip](r) [~ t;]. Asanillustration, let P and @ lead to:

(hd [z [#] [hd]y 4]
1 |1 |2 1 s|3
3 |m|b 4 |t |5

29

the P + @ will resultin:

| hd o [y [t

@
Rt

= Ov N
SSNN
»w S »
W Ot W

7 t|5
The limitation in the above definition that not all P; are scalar-expressions avoids an
ambiguity in parsing path-expressions. A scalar-expression of theform f(Py, ..., Py,)
isascalar-expressioniff Py, ..., P, are all scalar-expressions.

In ConQuer-92 we could now write (using the abbreviation for simply identified object
types):
Length of Room z in House y * Width of Room z in House y

which returns the area of aroom z in house y. A more advanced example, taken from
[Hal95], is:
100 * (THE SUM OF(the NrVoters that voted for a Politician who seeks Seat s) +
+ the NrVoters that voted informally for s)

/ the NrVoters that are on roll in s

6.4 Conditions

Conditions are build from path-expressions and can be used as constraints on the
database, for conditions in a select statement (to be introduced below), and for yes-
no queries. Conditions, however, are defined as a special class of path-expressionsin
the same way, and for the same reasons, as path-expressions.

The semantics of conditions are provided by:

C : PEConditions X (Attrs X TP) x ((Attrs) - RA

Let S be a binary relation on multisets suich as S € {C,C,=,D,D}, let L be a
logical connector such as L. € {V,V,A,=}, let R be a relational operator such as
R € {<,<,=,#,>,>}, let P be apath-expression, E;, E, scalar-expressions, and
C, C1, Cy conditions, then:

C[Some(P)](T,B) = P[P](T,B) #2
C[PSQ](T,B) & TMhi=naP[P])(T,B)S T hi=na P[Q] (T, B)
C[Ci L Cs](T,B) £ C[Ci](T,B)L C[C:] (T, B)
C[E:i R Ex](T,B) 2 E[E:](T,B)RE[E:](T,B)
C[-C](T,B) = C[C](T,B)=

30

We also define exclusion of path-expressions Py and P, as. Py Q) P2 = — Some(Fr(P) NFr(Q)).

Using conditions we can also introduce a selection mechanism for path-expressions.
This selection mechanism works similar to the selection mechanism for relational al-
gebra expressions. It is defined as:

PIWhere(P,)| (T,5) 2 Osgerrmumstcy (PIPL(T, BUAC]) aind(T)(0))

X
vEAr[C] — B — 71 T[P]
L[Where(P,C)] (T) = L[P](T)

The extra joins are needed to bind any free attributes in C. Note that even if a at-
tribute in C is bound in C, we still need to do the join as they are needed to evaluate
the condition in the first place. The attributes contained in B are the ones which are
aready bound by the ‘calling’ environment in the case of a subquery. It means that the
path-expression is to be used in a projection expression or a condition, and evaluated
in an environment where the given attribute has already received a value. Note: the
above path-expression only makes sense when: dom(7) C Attr[C] — Attr[P], i.e. all
attributes used in the condition must be typed.

As an example of the semantics of this operation, let P yield:

1 1315
6 |98

the the expression Where(P, ¢l > x) would lead to:
A concrete example of the use of this operation in ConQuer-92 would be;

Person who earns a Salary x AND ALSO works for a Company ¢
WHERE z > THE AVERAGE Salary of a Person who works for ¢

Two abbreviations based on the Where operations are:
Where(Py,C1;...; P1,Ci1; B) N Where(Py,C1)N...NWhere(P,_1,C;_1)

N Where(P,,=Cy A...A=Cy_q)
A

Where(Py, Ch;...; P, CY) Where(Py,C1)N...N Where(P;, C;)

As each condition is a path-expression we aso need an implicit coercion to path-
expressions. Let C' be a condition, then:

P[C](T,B) % P[Where(true,C)] (T, B)
LICI(T) £ {{(u,v) |u~ Bool Av ~ Bool }

31

where Bool denotes the value type for boolean values, and trueis a constant denotation
(and thus a path expression). For example, if P is a path-expression yielding a non-
empty result, then the condition Some(P) istrue. Interpreted as a path expression, this
condition would then lead to the table:

Two other simple forms of these operations are of course IF .. THEN .. ELSE .. and
IF .. THEN ... An example in ConQuer-92 of the use of this operation (taken from
[Hal95]) is:

‘P’ IF b =100 OR r =100 OR y = 100
'T" IFb>0ANDbL>0ANDyYy >0
'S’ OTHERWISE

WHERE SOME Color ¢ includes blue in Portion: b AND
SOME Color ¢ includes red in Portion: 7 AND
y=10-b-r

Note that the colon symbol after Portion signifies that the value of attribute b is an
instance of the value type used to identify Portion. The value of attribute ¢ on the other
hand is an instance of the non-value type Color.

What's needed now is a diagram showing the implicit and explicit transitions between
path-expressions, scalar-expressions and conditions.

6.5 Gatheringinformation

Normally, once a path-expression has been specified one wants a diverse set of infor-
mation to be returned for the resulting instances. For example, one would like to say:

LIST Budget VIA g, Firstname of, Surname given to EACH Person working for Group g part of Department: 'CS’

For this purpose, the confluence operation is used. Since SQL-92 is not able to deal
with nested relations, we have changed the definition slightly as opposed to the one
used in [HPWO93]. If a4,...,a, are atributes, Q1,...,Q, path-expressions, and
Z1,..., Ty € Sch-P[P], then the new definitionis:

HD[[[al :Ql Z.Z’l,.--,(anQnZ.Z'n;P]]](T,B) £
T x (IPl[P]] (T> B) <j>i aaiZhd,miZtl P[Ql]] (T7 B))

1<i<n

L[[a1:Q1:21,...,an : Qn: z,; P]](T) £ L[P] (T)

where

X = DefMap <{a1, .oy an}USch P[P](T,B)U |J Sch-P[Q;] (T, B))
1<i<n

32

Each time no z; is provided, x; = hd will be used as a default. The z;'s are used to
connect the ;' s path-expressionsto the P. The path P isthe main query, whereasthe
QQ;'sareused to ‘gather’ the required information. The gathered information is merged
into the result of the path-expression using attributes a;.

al
o
d P d
x1
an;’
.
an

Figure 5: The anatomy of a confluence operation

We do not provide an elaborated example for the confluence operation, but rather limit
ourselves to the illustration of what happens. This has been depicted in figure 5. The
path-expression P is the base of the query, and the (), to @), are all pieces of informa-
tion we are interested in regarding the basic query P. The @);'s are path expressions
themselves, and the x;’s provide the connection points between the);’s and the query
P. Thefinal result has to be represented in atable, and the attribute names a; provide
the names of the columns containing the extrainformation selected by the ;s

6.6 Group functions

SQL allows for the grouping of relations based on a given set of attribute names by
means of the GROUP BY construction. On the result of such a grouping a number
of scalar operations can be performed. In the path-expression language we allow for
similar constructs. Let a be anew attribute, then:

P[GCount(P, X)] (T, B)
L[GCount(P, X)] (T)

7Thd:a,tl=a Tra:\a\ ()OX P[[P]] (T7 B)
{{u,v) | u ~ Natno A v ~ Natno }

(1>

33

HDH:G DSCOUI‘It(.P7 X)]] (T, B) T hd=a,tl=a ﬂ-a:\Ds(a)\ (pX PH:P]] (T, B)
L[GDsCount(P, X)[(T) £ {(u,v) | u ~ Natno A v ~ Natno }
whereb € Sch-P[P] (T, B) — X isanarbitrarily chosen attribute. Leta € Sch-P[P] (T, B),
then we can also define.
P[GSum(P, X, a
P[GDsSum(P, X, a

()] T hd=a,ti=a T a=am(a) P X P[P] (T, B)
()]
P[GMin(P, X, a)]
()
()]

T hd=a,ti=a T a=am(Ds(a)) P X PIP] (T, B)
T hd=a,ti=a T a=min(a) P X P[P] (T, B)
T hd=a,ti=a T a=max(a) PX P[P] (T, B)
T hd=ati=a T a=sm(a)/la| P X PIP] (T, B)

> [l>

P[GMax(P, X, a
P[GAvg(P, X, a

NSNS
TEEESE
[l>

> >

For each F' € {GSum, GMin, GMax, GAvg} we have:
L[F(P,X,a)](T) £ {{u,v) | u~T(a)Av~T(a)}

The grouping functions in the path-expression language operate in the same way asin
SQL. Therefore we will not provide an elaborated example of their semantics.

6.7 Sub-expressions

Sub-expressions are asimple, yet neat, way of introducing limitations on (linear) path-
expressions. The sub-expression concept is basically an abbreviation which is intro-
duced as:

[Q1,...,Qn] £ Ds(Fr(Qi)N...NFr(Qy))

This alows us to write P o[Q1,...,Q,]oR. Theline of Po R is not disturbed by
the sub-expression. The sub-expression operates like a filter. When verbalising, the
sub-expression corresponds to a limitation that is put between parenthesis in natural
language. As we will be using parenthesis for disambiguation purposes, we suggest
the use of the symbol [and] to designate a sub-expression. As an example consider:

The Person who is a Coworker [during the Year: 1994] of the Company: " Asymetrix”

which corresponds to the intuitive formulation:

Deep thought. O ye smartest of computers. Shiniest machine of all.
Please,

list the person who is a coworker, during the year 1994, of
the company named * Asymetrix’

6.8 Denotations

For denotations we introduce an extra set of abbreviations that allow us to write com-
pact denotations of instances, in particular for compositely identified types. Before
introducing these abbreviations we first need to introduce the syntactic category of
path expression denotations (PEDenotations). The following two rules are al rules
to build these denotations:

1. if p € PathExpr, then p € PEDenotations
Any normal path-expression can be used to identify a simply identified object
type.

2. if a € Attrs, then la € PEDenotations

Sometimes we want to introduce attribute names that represent the abstract in-
stance rather than the concrete values. For example, in Person: !z, the 2 will
be a variable of type Person, whereas in Person: z will be a variable of type
PersonName (presuming a person is identified by a single name).

3. ifdy,...,d; € PEDenotationsthen (di,...,d;) € PEDenotations.
For the compositely identified object types, we can simply combine existing in-
stance denotations by making a list of them. Naturally, the order is dictated by
the order specified by the reference scheme for the type at hand.

We can now formally introduce the denotations into the path-expression language. We
actually do not have to introduce extralanguage constructs; the denotations are ssimply
a standard abbreviation mechanism.

For value types we have the simplest form of denotation. If x € VL A p € InfDiscr,
then we have:

T:p Lg op
For the introduction of abstract attributes we have the following abbreviation. If z €
TP A a € Attrs then:

z:la 2 zoa
Each object type with a reference scheme defined for it (which could be a simple
one:onereference schemafor the simply identified object types), the following abbrevi-
ationisintroduced. For Idf(z) = [(p1,4q1),-- -, {Pi, @)]Ad1, . ..,d; € PEDenotations,
we have:

x:(di,...,dp) £ xzo[proq T oPlayer(q1) : di,...,proq* oPlayer(q) : di]

If I = 1, the parenthesis may be omitted leading to z : d; so for instance to Person: z,
or Person: 'Erik’. Finally for relationship types, we have when Idf(z) = [p1,...,pi] A
di,...,d; € Denotations:

z:(di,...,d) 2 zo[pT oD[di],...,m* oD[d;]]
Again, if [= 0, the parenthesis may be omitted.

35

6.9 Macro mechanism

In ConQuer-92, we allow for macro definitions of path-expressions. Currently, how-
ever, we do not support (mutually) recursive macro definitions. In a next version re-
cursive definitions will be allowed, however, since the SQL-92 standard does not allow
for recursive queries, it does not make sense to support recursive definitions yet. For
recursive macros the advanced concept of transitive closure of fix-point is required,
and most current SQL implementations are not even capable of supporting SQL-92, let
aone SQL-3.

The macros are presumed to be provided by a function:
Macros : Names x Attrst — PathExpr
A macro definition is denoted as:
alal,...,ay) == E
where a;'s are attributes. An example macro definition in ConQuer-92 would be:
SubTotal(inv, itm) ::=

(Quantity of InvoiceLine: inv, itm) * (Unitprice of InvoiceLine: inv, itm)

Macros are integrated into the language by the three rules below. Three rules are
needed as we allow for macro definitions of conditions, scalar-expressions, and path-
expressions in genera. Let Macros(a, [a1,-..,a,]) = @ be amacro definition, then
the path-expression language can be extended according to the following three rules:

1. If Q € PEScalarExpr and Attr[Q] = {a1,...,an}, then we have for scalar-
expressions By, ..., Ey,:

a(Br,....By) £ Qg%

2. If @ € PEConditionsand Attr[Q] = {a4, .. ., a, }, thenwehavefor conditions
Ci,...,Cp

a(Cy,...,C,) = Qle G,

3. If Q € (PathExpr — PEScalarExpr — PEConditions) (in other words, Q) isa
"normal’ path-expression), and Attr[Q] = {a1,-..,an},andby,.. ., b, arefresh
attributes, and P4, . . ., P, are path-expressions, then we have:

a(Py,...,P,) 2 QI

whereY; = (b; 0 P;).

36

Asan example, SubTotal(L;, L) would lead to:
(Quantity of InvoiceLine: by o Ly, by o L) * (Unitprice of Invoiceline: by o Ly, by 0 Ly)

This example also illustrates why, in the case of a’'normal’ path-expression, we need
to introduce the fresh attribute names b;’s. If an instance of L; is selected as an invoice
number, then it is now enforced that this number is the same for the quantity and unit
price parts of the path-expression.

QA1yeeeyQn

An expression of the form Q'bl,...,bn results in an expressions ' in which al oc-
curences of a; have been replaced by b; (for each 1 < i < n). If therearei < j such
thet a; = a;, then a; isreplaced by b; only!

6.10 Thetyping function

At the beginning of this section we discussed the importance of the typing relation,
which determines of which type(s) theinstances of attributes may be. In this subsection
we look at how we can derive this typing information by examining the parse tree of a
path-expression.

Given a path-expression P, the typing function T[P] should search the parse tree of P
for the following patterns:

Pattern | Typing

zoa {a, z)

aox {(a,x)

poa | {a,Rel(p))
aop {a, Player(p))
pT oa | {a,Player(p))
aop™ | {a,Rel(p))

wherep € RO, x € TP and a € Attrs. These patterns are typical ways to bind
attributes in path-expressions to an underlying domain. In the right hand side of the
column we have provided the derived typing for the attribute.

Sinceit is not hard to write an algorithm to search a parse tree of a path expression for
the above patterns, we do not provide a more detailed formalisation.

6.11 Derivation Rules

In InfoModeler there is a clear need for the ability to define formalised derivation rules
which can be trandated to an SQL statement. In this subsection we introduce two
classes of derivation rules.

37

Thefirst classdealswith the definition of derived relationship types. If f isa(derivable)
relationship type with Roles(f) = {p1,...,pn}, P apath-expression and ay,...,a,
are attributes, then:

flpr:a1,...,pn:an) =P

isaderivation rulefor relationship type f with semantics (in the context of apopulation
Pop):
Pop'(f) £ Val[Tp,=a,.....0.=a, PIP] (T, 2)] (Pop, @)

where typing T' is defined by:
T = T[P]U {{a;,Player(p;)) |1 <i<n}
For obvious reasons, the typing requirement:
(a,z) ,{a,y) ET =>x~y

should hold.

The population Pop is the existing population of the database, whereas Pop’ is the
updated population after applying the derivation rule. An example of what this will
look like in ConQuer-92 is:

A Product p has a taxed price of MoneyAmt a IFF
MoneyAmt a = 1.5 * the MoneyAmt that is the ex tax price of a Product p

The second class of derivation rules are concerned with ordinary (non relationship type)
derivable object types. If t € TP — RL isatype, and P apath-expression, then:

tu=P
isaderivation rule for type ¢t with semantics:
Pop'(t) £ {i(hd) |i € Val[P[P] (T, B)] (Pop, @) }
where typing 7 is derived by:
T =T[P]U{{a, 1)}
with the typing requirement:

(b,a:),(b,y) €T=>m~y

In ConQuer-92 this would for instance lead to:
EACH Town-or-village IS a Community that has a Population <= 100000

A special use of these derivation rulesis of course for subtype definitions.

38

6.12 Constraints

Path-expressions, in particular that subset of the path-expressions that allows us to
formulate conditions, can be used to denote textual constraints. If P € PathExpr
is a path expression and Pop a population, then it can be evaluated as a constraint by
requiring:

Val[P[P] (T[P], 2)] (Pop, @) # &

The condition P can now be interpreted as a constraint on population P, which neces-
sarily needs to return a non-empty result.

6.13 Orderingtheresult of a path expression

The final aspect of the path-expression language we need to discuss is the ability to
order results. Ordering is not a part of the path-expressions themselves, as ordering
resultsin merely a presentation issue from a query language point of view. Therefore
we provide a small extension of the path-expressions language, which is not a path-
expression itself. In the next section, where we introduce ConQuer-92 itself, we will
discuss thisin some more detail.

The result of a path-expression P can be sorted by the following operation:
Q(P,a; : 015---5ap : 0p)

where a; € Attrs and o; € {Asc,Desc}. The semantics of these functions will not be
provided in full detail here, but their definition is rather obvious

7 Syntax and Semantics of ConQuer-92

We have now finally reached the stage where we can start working on more readable
versions of path-expressions. To this end we first introduce naming functions for the
concepts from the conceptual schema used to build path-expressions. These functions
are the additional requirements on the meta-model with respect to verbalisations. This
means that the factbase structure must be extended accordingly.

Similarly to the path-expression level, the ConQuer level is initially specified using
abstract syntax. In appendix B the actual concrete syntax of ConQuer-92 is given. The
relation between the ConQuer level and the path-expressionslevel isthat ConQuer pro-
vides the textual surface structure of the path-expressions while the path-expressions
represent the deeper structures.

39

7.1 Named concepts

Most of the concepts used to build ORM schemas will receive a name of some form.
The well known ones are types and roles. With respect to the conceptual schema,
path-expressions only require names for these two concepts and combinations thereof .

It should be noted that a role name is not the same as the predicate. A role name
described the role played by the player in the relationship type. For the types and roles
we introduce: TNm : OB — X+ giving the names of types, and PNm : RO — X+
giving the names of roles. The type names must be unique, so we should have:

TNm(z) = TNm(y) =z =1y

However, this does not have to hold for role names. Nevertheless, their names must be
unique within one relationship type:

PNm(z) = PNm(y) = (z =y V Rel(z) # Rel(y))

Note that not every role must necessarily receive a name. Roles have two additional
ways of receiving aname. Especially when dealing with objectified relationship types,
it turns out to be useful to have reversed role names, i.e. connecting the relationship
type to the player rather than the other way around. These reverse names are provided
by: RNm : RO — 3+, We will use the role names for the verbalisation of arole entry,
while areversed role nameis used for arole exit. These reverse names must be unique
within one fact type as well:

RNm(z) = RNm(y) = (z =y V Rel(z) # Rel(y))

Figure 6: Providing names for schema concepts

As an example, consider the schema depicted in figure 6. For this schema we could
have:

TNm(A) = President PNm(p) = has RNm(p) = are of
TNm(B) = Result PNm(q) = arein RNm(g) = has as
TNm(C) = Election PNm(r) = has RNm(r) =is for

TNm(F') = Election-result

40

Thiswill alow ustoverbalise Ao po F o g o B as: President has Election-result has as Result.
Thisisaready much better readable than an SQL version would be. However, we will
add extra names to improve further on such verbalisations.

To alow for more elegant verbalisations we allow a user to provide prefixes and post-
fixesto type names. The prefixesand postfixes providethe glue to better connect partial
verbalisations. So an object type Person might receive as a prefix the and as a postfix
who, leading to the Person who However, in some cases one would like to express
the fact that the person is not determined, i.e. one would like to say a Person who ...
To this end we allow for two kinds of prefixes and postfixes. One for the determined
class and one for the undetermined class. In alater stage these classes can be extended
with plural and singular cases as well. For the moment the prefixes and postfixes are
provided by: Pre : TP x {undetermined, determined} — X%, and Post : TP — V.
Notethat in the English language the determined and undetermined postfix will usually
be the same. However, in other languages this might not be the case. For our running
exampl e the prefixes and postfixes could be:

Pre(A,undetermined) = some Post(A) = who
Pre(A,determined) = the

Pre(B,undetermined) = some Post(B) = which
Pre(B, determined) = the

(
(
(
Pre(C,undetermined) = some Post(C') = that
Pre(C,determined) = the

(

Pre(F,undetermined) = some Post(F') = that
Pre(F,determined) = the

For Aopo F og* o Bwecouldnow have: A president who has an Election-result that has as a Result
This verbalisation can be improved even further. Most connections between two object

types will involve two rolesonly. In our case, Aopo F oqg*“ o B object type A and B

are connected viaroles p and ¢ (of relationship type F'). For this frequently occurring

class of connections the mix-fix predicate verbalisations can be used. The binary case

as given above is the most commonly occurring case, but these verbalisations are also

useful for ternaries and quarternaries. Formally, these mix-fix predicates are provided

by the relation:

MFix C RL x (£*)% x Rolest

For this naming function we must have:
MFiX(f, [(11, .. .,Otk], [pl; . ,pl]) = k + 1=1

requiring that the number of ‘gaps’ in the verbalisation corresponds to the number
of roles. Since a relationship type can have multiple mix-fix predicate verbalisations
associated MFix is arelationship.

In the case of arelationship with an arity of higher than one we can aso have mix-fix
predicates spanning only part of the relationship type. It is obvious that these names

4

allow usto formulate elegant paths through rel ationship types, including ones of higher
arity.

For our running example we could have the following mix-fix predicate verbalisations:

MPFix(F, [has participated in, leading to], [p, ¢,7])
MPFix(F, [has received a, from the participation in], [p, , q])
MPFix(F, [of the participation by, in], [, p,7])

MFix(F, [of the participation in, by], [q, T, D])

MPFix(F, [has participation of, leading to], [, D, q])
MPFix(F, [has lead to, for the participation of], [r, ¢, p])
MPFix(F, [has participated in an election leading in], [p, q])
MFix(F, [has participated in], [p, 7])

MFix(F, [of the participation in an election by], [¢, p])
MPFix(F, [of the participation in], [g,7])

MFix(F, [has participation of], [r, p])

MPFix(F, [has lead to], [r, p])

It goes without saying that not all combinations of roles within one relationship type
have to be named by the users. Only for role-sequences that are used frequently amix-
fix predicate verbalisation makes sense. Our running example could now be verbalised
as

Some person has participated in an election leading to some Result

which isin our opinion reasonably readable.

7.2 Basicinformation descriptors

In this subsection we define the syntactic category of information descriptors. The
information descriptors in ConQuer-92 correspond directly to the path-expressions on
the path-expression level. The semantics of ConQuer-92 information descriptors is
defined by a function:

I: InfDiscr — PathExpr

This function does not take any extra parameters besides the ConQuer information
descriptor since this tranglation isjust a matter of syntactic re-writing.

The names for types, and their prefixeslead to:

[P1] TNm(z)=n F I[n]==

[P2] Pre(z,c) =rATNm(z) =n F I[rn]==z

In the example we have TNm(A) = President, SO we have I[President] = A. Fur-
thermore, since Pre(A, undetermined) = some and Pre(A, determined) = the, we

have
I[some Person] = I[the Person] =

42

Note that in parsing we do not care at all about the determined or undetermined cases
for pre- and post-fixes (hence the free variable ¢). In section 8, where we consider
verbalisations, we will indeed take this into consideration.

Attributes which are used as variables in ConQuer-92 information descriptors receive
aname viathe function VNm : Attrs — Y. Named attributes must have a unique name,
so this function must adhere to:

VNm(:L') = VNm(y) >xr=y

Since ConQuer does have alimited form of scoping (the Path function isthe only oper-
ation leading to scoping of variables), we could reduce this claim that for all attributes
within a scope the above uniqueness of variable names must hold.

For using variablesin the context of types we have the following rules:
[P3] TNm(z) =nAVNm(a)=m F I[nm]=zo0a
[P4] Pre(z,c) =r ATNm(z) =nAVNm(a) =m + I[rnm]=zoca

If a isan attribute with name p, then for our running example we have:
I[some Person] = I[the Person] = I[Person p] = Aoca

The names given to roles and reversed roles lead to the following four rules:
[P5] PNm(p)=n F In]=p

[P6] PNm(p) = n A Post(Player(p)) =0 F TJon]=p

[P7] RNm(p) =n F In] =p=

[P8] RNm(p) =n A Post(Rel(p)) =0 + IJon] =p*

For the running example we therefore have:

I[has] = I[who has] = p and T[that are of] = Iare of] = p*~

7.3 Complex information descriptors

In this section we introduce the operations that can be used to build more complex
information descriptors. The most important construct is concatenation:;

43

[P9] I,J € InfDiscr + I[I J]=1[I]oI[J]

This construct allows us to concatenate:

Ifa Person] = A
I[who has] = p
I[an Election-result] = F
I[that has as] = ¢%
Ifa Result] = B

to: Ifa Person who has an Election-result that has as a Result] = Aopo F og* oB.

To explicitly cater for subtypes and their sel ective effects on the result of a path expres-
sion, we introduce the IS construct:

[P10] I[I] =PozEAI[J]=yFoQAz~y + I[IISJ]=PozEoyFoQ

where E and F' may be denotations or empty. As an example, let object type Person
have two (overlapping) subtypes: Employee and Student. For Employees we store their
salary, and for Persons we store their hobbies. Then we could for instance have:

Some Salary earned by some Employee who IS a Student who has as Hobby: " Cycling”
This expression has a differing semantics from:
Some Salary earned by some Employee who has as Hobby

asit does not limit the EmployeeS to Persons.

The mix-fix predicate verbalisations are integrated into ConQuer-92 by the following
definition:

[P11] I,...,I;_1 € InfDiscr A MFix(r, [041,...,Oq_l],[pl,...,pl]) F
]I[[Oel 12 .. 11_1 al_l]] = <p1,p2 :]I[[IQ]], ey PI—-1 H[[-n—l]];pl)

to cater for any post-fix for the player of role p;, we also introduce:

[P12] I»,...,I;—1 € InfDiscr A MFix(r, [, ..., a1—1],[p1,..-,p1]) APost(p) =0 +
]I[[O (651 I2 . Il—l Oél_l]] = (pl,pQ :]Il[]g]], ey Pl—1t]I[[Il—l]];pl)

The path resulting from a mix-fix predicate verbalisation always leads from the head
of p; tothetail of p;<, so from Player(p;) to Rel(p;).

Path reversal on the information descriptor level is verbalised as:

44

[P13] I € InfDiscr F I[THE REVERSE OF I] =I[I]
The front elements of an information descriptor result from:
[P14] I € InfDiscr F TI[ONLY I] = FrI[I]

A multiset result can be coerced to a set by:

[P15] I € InfDiscr F I[DISTINCT I] = DsI[I]

All binary operations of the path-expression level are present on the information de-
scriptor level. To this end we first define the relation SetOper as:

ConQuer-92 Operation | Path Expression Operator
UNITED WITH
INTERSECTED WITH
MINUS

WHICH ARE ALL IN
THAT INCLUDES ALL
MATCHING ALL
MISSING

WITH

x|@IIuIN | D C

These operations are now integrated in ConQuer-92 by:
[P16] I,J € InfDiscr A SetOper(o,0) F I[I o J] =I[p] O I[q]

The union, intersection, and set difference operations will usually beto restrictive since
the intersection is applied to at least the head and tail combinations. So if P and @
result in:

P: :
[hd [1] Q|hd|t||

1|2 1|2
2 |3 2 19
2 |4 8 |3
1|8 3 |1
3 |4

would lead for P INTERSECTED WITH (@ to:

45

In general we want such operations to be applied to the head elements of paths only.
Therefore we introduce the FrSetOper operations:

ConQuer-92 Operation | Path Expression Operator

OR OTHERWISE)
AND ALSO A
BUT NOT +

For these operations we have:
[P17] I,J € InfDiscr A FrSetOper(o,0) + 1[I o JJ] =I[I] O I[J]

For P AND ALSO () we would have:

wWN P
wWN B

The values in the result of information descriptors can be compared to each other us-
ing relational operators like <, <,>. For this purpose we introduce the ValueComp
operations, which isidentified as:

ConQuer-92 Operation Path Expression Operator

IS EQUAL TO

<>

IS NOT EQUAL TO

<

IS LESS THAN

<=

IS LESS THAN OR EQUAL TO
>

IS GREATER THAN

>=

IS GREATER THAN OR EQUAL TO

IVIVV VIAIANA AR

For this class of operations we have:
[P18] I,J € InfDiscr A ValueComp(o,0) + 1[I o J] = (TICoerceI[I]) O (HdCoerceI[J])
We are now able to write:

a Person who earns a Salary > Salary that is earned by Person: 'Erik’

46

Finally, we introduce an inline projection operation on information descriptors that
alows us to do projections of existing information descriptor, while still treating the
result as an information descriptor.

[Plg] I € InfDiscr A vlsigl [VNm(ai) = ni] [
]I[[THE PATH FROMn; VIAns,...,n;—1 TOn; OF I]] = Path(I[l[I]], Aly- .y an)

Note that n must be larger than 1, and that if n» = 2 the VIA subclause should be
dropped. Examples are;

THE PATH FROM c VIA s TO p OF
Person p
(who works for a Company c that is based in the Country: "USA’
AND ALSO

who earns a Salary s)

leading to an information descriptor (with an underlying path-expression) that has as
head column ¢ and tail column p.

7.4 Scalar expressions

On this level we obviously also have scalar-expressions. They are provided by the set
Expressions, and thesemanticsare provided as: X : Expressions — PEScalarExpr.
Again, thisisjust asyntactic re-write function.

Thefirst class of functions on expressionsis contained in Function, which is defined by:

ConQuer-92 Function | Function
THE COUNT OF Count
THE SUM OF Sum
THE MINIMUM Min
THE MAXIMUM Max
THE AVERAGE Avg

[P20] I € InfDiscr A Function(f,F) F X[f I] = F(HdCoerceI[I])

An example would be:

THE SUM OF Salary earned by a Person working for the Company: 'Asymetrix’

[P21] ceuUD F X]]=c

47

Formally there should be a difference between a constant of the path-expression level,
which is an abstract mathematical object, and its verbalisation on the information de-
scriptor level. It is only for pragmatic reasons that we ignore this distinction in our
current formalisation.

[P22] VNm(a)=m F+ X[m]=a
[P23] VNm(a) =m ARNm(p) =r F X[m.r] =a.p

Note that these last two rules only make sense when the variable m is properly bound
to atype aready.

Functions and operations are introduced for ConQuer-92 expressions as:

[P24] E,...,E; € Expressions A fisafunctionsymbol F
X[f(Er,....E)] = f(X[EA], ..., X[E])

[P25] E;,E-> € Expressions A fisaninfix operator symbol
X[E: f Eo] = f(X[E1], X[E2])

Similarly to the path expression level, each expression isal so an information descriptor:
[P26] FE € Expressions F I[E] =X[E]

Functions can be applied to path-expressions. On the information descriptor level this
leads to the following verbalisation.

[P27] IL,...,I; € InfDiscr A{I[L1],...,I[];]} € Expressions A f isafunctionsymbol
Mf(hL..... I;)] = f(HdCoerceI[I1], .. .,HdCoerce I[I;])

[P28] f(I,I>) € InfDiscr A fisaninfix operator symbol + I[I; f L] = I[f(]1, I2)]

Some simple examples are:

(Salary which is earned by a Person who works for the Company: 'Asymetrix’)
* (the ExchangeRate for Currency: 'AUD’)

Cosinus(Distance from the Planet: 'Earth’ to the Planet: 'Venus’)

48

7.5 Conditions

We now define the set of condition: Conditions for ConQuer-92. Its semantics are
provided by the relation C : Conditions — PEConditions. We start with compari-
son operations of expressions. The value comparison operations we used on informa:
tion descriptors (ValueComp) can be used in conditions as well to compare the values
of expressions:

[P29] Ei, E» € Expressions A ValueComp(r,R) + B[E; r E2] = X[E1] R X[E2]
An example would be:

(THE MAXIMUM Salary of a Person who works for the Company: Asymetrix) > 100000

For building information descriptors can be compared as well using a variety of set
comparison operators. Let SetComp befilled by:

ConQuer-92 Operator Path Expression Operator
EQUALS =
DOES NOT EQUAL
<>
IS DISJOINT FROM
IS A SUBSET OF
<
IS A SUBSET OF OR EQUAL TO
<=
IS A SUPERSET OF
>
IS A SUPERSET OF OR EQUAL TO
>=

iU uiNninnN Nk i

For information descriptors we now have:
[P30] I1,I € InfDiscr A SetComp(r,R) + B[L r L] =1[L1] R I[I;]

Asanillustration consider:

Person who has watched the Movie: 'Star Trek Generations’
IS A SUBSET OF
Person who works for the Department: 'Computer Science’
Conditions themselves can be combined in a number of ways. For obvious reasons,

these combining operations are based on the operations from logic. Let LogicConn be
defined as:

49

ConQuer-92 Operator | Condition Operator
AND

&

OR

EXCLUSIVE OR

IMPLIES
=>
IFF

<=>

HHUHI<|<<<>>

We now have:

[P31] (1,C € Conditions A LogicConn(r, R) F B[Cy r Cy] = B[C1] R B[Cs]
[P32] C € Conditions F B[NOT C]=-B[C]

[P33] C € Conditions F C[C]=-B[C]

Conditions can be used, similarly asin SQL, be used for selections (restrictions). Inthe
case of ConQuer-92 selections can be used on information descriptors. The selection
operation is verbalised as:

[P34] C € ConditionsAI € InfDiscr F I[I WHERE C] = Where(I[I], B[CT)

Besides the simple WHERE clause, we have a number of other verbalisations based on
this operation. Other verbalisations of the selection statement are:

[P35] C € Conditions Al € InfDiscr F I[IF C THEN I] = Where(I[I],I[C])

[P36] C € ConditionsAI,J € InfDiscr F
I[IF ¢ THEN p ELSE q] = Where(I[Z], B[C]; I[J])

[P37] Ci,...,C; € ConditionsAIy,...,I; € InfDiscr A F
I[IFCy ;... ;1 IFCi_y; I, OTHERWISE] =

Where(I[[1], B[C1]; - - - ; I[Li=1], B[Ci—1]; I[&i])

[P38] Ci,...,Cp € ConditionsAlL,...,I; € InfDiscr A F
I[p1IFer;...pIF¢] = Where(I[I1], B[C1]; - - - ; I[11], B[Ci])

50

[P39] C € Conditions A Vlfifl [VNm(ai) = ni] F
]I[[SELECT Ny, eees n; WHERE C]] = Path(]I[[C]], ai,.--,ay)

Someillustrative examples of the use of the WHERE operations were already provided
in the previous section.

Sinceon the path-expression level every condition isapath-expression, on the ConQuer-
92 level every condition is an information descriptor:

[P40] C € Conditions + I[C] = B[C]
Conversely, information descriptors can be coerced to conditions by:

[P41] P € InfDiscr F B[SOME P] = Some(I[P])

7.6 Gathering information

The verbalisation of the confluence operation is not abeauty. In practice we shall prefer
to use agraphical representation on screen. Furthermore, we also provide a version of
the confluence operation that is integrated with the to be introduced LIST statement.

[P42] I,...,I;,J € InfDiscr A vlfifl [VNm(ai) =n; N\ VNm(bi) = mz] (e
I[I; as(n1) via(ma),...,I; as(ng) via(m;) EACH J] =
[a1 : I[L4] = b1, - - yaq I[L] = by T[]

where:
as(n) = if n = e then € else ASn fi

ethen e else VIAn fi

via(n) = if n

7.7 Group functions

We introduce the grouping related operations in two groups. Thefirst two are intended
for counting the entire result of a grouped information descriptor, and the second group
is used to perform arithmetic operations on the grouping results.

The functions on groupings are verbalised as follows:

[P43] I € InfDiscrA vlfifl [VNm(ai) = n,] F
]I|ITHE COUNT OF I GROUPED BYn,,..., nl]] = GCount(]I[[I]], {al, .. ,al})

51

[P44] I € InfDiscr A vlfifl [VNm(ai) = nz] F
I[THE DISTINCT COUNT OF I GROUPED BYnq, ...,] =
GDsCount(I[I],{a1,-.-,a;})

For the other grouping functions we introduce the relation GroupFunction as.

ConQuer-92 Operator | Condition Operator

THE SUM OF GSum
THE DISTINCT SUM OF | GDsSum
THE MIMIMUM OF GMin
THE MAXIMUM OF GMax
THE AVERAGE OF GAvg

These operations are integrated in the language by:

[P45] I € InfDiscr A GroupFunction(f, F)Vi<i<; [VNm(a;) =n;] +
]Il[f I GROUPED BYni,..., nl]] :F(]I[[I]],{al,...,al},hd)

[P46] I € InfDiscr A GroupFunction(f, F)Vi<i<i [VNm(a;) = n;] AVNm(b) =m
I[f mINIGROUPED BYn, , ..., n] = FA[I],{a1,...,a}, hd)

7.8 Sub-expressions

The sub-expression concept is introduced on the information descriptor level as:

[P47) I,...I € InfDiscr + I[[Iy,..., L] =[TI[L],-..,0[L]]

Aswewill be using parenthesis for disambiguation purposes, we suggest the use of the

symbol [and] to designate a sub-expression, even on the information descriptor level.
An example was aready given in the previous section.

7.9 Denotations

Now it istimeto define a special class of constructs that can be used to denote instances
of types. The mechanics of the denotations has already been discussed on the path-
expression level. This classis represented as the set Denotations, and its semantics
areprovided by: D : TP x Denotations — PathExpr. The semantics defining rules

are:

[P48] I € InfDiscr F D[I] =1[I]

52

I_

[P49] VNm(a)=n F D[n]=la

[P50] D:,...,D; € Denotations + D[(D1...., D))] = (D[D1],-..,D[D,])
The denotations are now integrated in the class of information descriptors by:

[P51] TNm(z) =n A D € Denotations F I[n:D] =z :D[D]

[P52] Pre(z,¢) =r ATNm(z) =n A D € Denotations + Ifrn:D]=z:D[D]

7.10 Macros

Each macro definition results in extension of the ConQuer-92 language. On the path-
expression level, macros where introduced by the Macros function. On the ConQuer
level, the language extensions resulting from these definitions are provided as:

[P53] Macros(f,[as,...,a;]) € PEScalarExpr + X[f(e1,...,e)] = fX[ei],--.,X[e])
[P54] Macros(f,[a1,...,a;]) € PEConditions + B[f(ci,...,a)] = fBlal,...,X[a])

[P55] Macros(f,[a1,...,a]) € PathExpr F I[f(p1,.-..2)] = FB[p1],-- ., X[»])

These definitions imply that macros are, from a syntactical point of view, treated as if
they were function symbols. As aresult, in the grammar for ConQuer as provided in
the appendix we will not see any explicit notions for the macros; they are part of the
possible functions that are defined on ConQuer expressions.

In this section we do not revisit the derivation rules. Derivable types can be used in
path-expressions and ConQuer expressions just as any other type. When a ConQuer
query (and its underlying path-expressions) needs to be evaluated, then the derivation
rule for the derivable type needs to be substituted in the existing expression.

7.11 Parsing and ambiguities

Since this section defined the semantics of ConQuer-92 in terms of an abstract syntax,
we will not be confronted with ambiguities. However, one ConQuer-92 expression
might have more than one possible parse tree in terms of the syntax provided in the
appendix (ignoring issues of commutative or associative operations like AND ALSO).
These ambiguities will usually result from multiply used role names (like has, of, €tc).
The different parse trees for one ConQuer expression correspond to different path-
expressions, which have a different semantics.

53

At the moment it is not certain whether users of the InfoAssistant tool will actually
type in complete ConQuer expressions themselves. If thisis not going to be the case,
then we will never have to actualy parse ConQuer expressions, which would avoid
any of these ambiguities all together. Nonetheless, when a further integration is made
between NUQL and ConQuer, the notion of ambiguities due to alternative parse trees
will become even larger. In the remainder of this subsection we discuss away in which
our knowledge about the schema combined with the typing within the resulting path-
expressions can help usin deciding between alternative parse trees.

If pisaConQuer-92 expression (or a NUQL expression for that matter), and 7} isa
parse tree for p and T is a different parse tree for p, then to p we can either associate
path expression I[7;] or I[T>]. If tree Ty and T are different, than this means that
we have an ambiguity on our hands! Using I. we can sometimes dismiss one (or both)
of the alternatives. If L[I[T1]] = @ then T is the likely alternative, and vice versa.
Thereason for dismissing 73 when L[I[T1]] = @ liesin thefact that the interpretation
of expression p as parse tree T} would lead to a path-expression which is structurally
empty. In other words, by looking at the schema (the rel atedness of types), and looking
at how the types are connected in the path-expressions (using L), it can be proven that
the path-expression I 77] will always lead to an empty result for any population of the
underlying schema.

If al aternativeslead to a structurally empty result, then ConQuer (or NUQL) expres-
sion p isa structurally empty query formulation, and should be marked by the system
as an incorrect query. If a parsing ambiguity cannot be solved this way, the aterna
tive interpretations need to re-verbalised and shown to the user. This latter process
is particularly useful as a feedback mechanism for translation of NUQL expressions
to path-expressions, as it alows us to show the possible interpretations of a NUQL
expressionsin terms that are still close to natural language (the ConQuer expressions).

7.12 Normalisation

Let I be an information descriptor. In the path expression I[I] certain patterns will
occur that can be optimised with respect to their verbalisation (to be discussed in the
next section), as well as the mapping to SQL. Let P be a path expression (resulting
from parsing an information descriptor), and T be its typing (so T' = T[P]). In the
parse tree of P we would now like to replace the following patterns:

1. replacepo f o g whereRel(p) = Rel(q) = f by {p,q)
Note: (p, g) isthe notation for a binary mix-fix predicate!

2. replace po g where Rel(p) = Rel(q) = f by (p, q)
3. replacez o Ewherex € VL A E € PEScalarExprby z : E.

Note: if 2 o E occurs while z is not a value type, then this is not a semanti-
caly sensible path expression. E will always return a value type instances, so
concatenating an expression to a non-value type always returns empty.

4. Replaceforeachpair (0,) € {(U,J),{(N,[A),(—, F)} theexpression Fr(Q1)O Fr(Q2)
by the expression (1 ¢Q)-.

Note that po A o ¢~ where Rel(p) = Rel(q) ~ A isnot replaced. The A could be a
subtype of Rel(q), and removal of A from the path-expression would change its seman-
tics.

7.13 Listing results

The result of an information descriptor (viathe path-expression and relational algebra
expression) isabag. In most real life applications some order on this bag is required.
Therefore we should allow for sorting on top of ConQuer-92 information descriptors.
Note: projection of the results is an integrated part of the information descriptors.
These filters should be added on top of ConQuer expressions, and should not be a part
of it.

Thelast syntactic category weintroduce istherefore thelist specification (Li st Spec)
class. Its semantics are expressed by the function Q. We do not provide a formal
semantics, as all what these operations do is take the bag resulting from an information
descriptor and order the results. If I € InfDiscr, then we have the following possible
list specifications:

[P56] Q[LIST I] =I[I]

listing the results without enforcing an order

[P57] Q[LIST I ORDERED ASCENDING] = Q(I[I], hd : Asc)

listing the resultsin I ordered in ascending order for the heads of I,

[P58] Q[LIST I ORDERED DESCENDING] = Q(I[I], hd : Desc)

listing the resultsin I ordered in descending order for the heads of 1. However, some-
times users may want to order on other columnsin the result than the head column. Let
01,...,0;, € {ASCENDING, DESCENDING}, and I € InfDiscr and vy,...,v; each

be avariablesin I where V;<;<; [VNm(a;) = v;], then the general format of the LIST
statement is:

[P59] Q[LIST I ORDERED WITH 01 v1,...,0; v;] = QI[I], ord(01) : ax;...; ord(or) : ai)

55

where ord (o) = if o = Asc then Desc fi. Note: we presume that there are two stan-
dard variables: VNm(hd) = HEAD and VNm(tl) = TAIL.

The columns that are actually printed by the list statement could still be non-value
types. For instance, LIST Costumers of Company: 'Asymetrix’ would lead to a list of
the abstract instances of costumers rather than their costumer nr (presuming they are
identified through such a number). It should be clear that the LIST statement must
replace the abstract costumer instances by the concretised costumer nrs. It will also be
these last nrs that would be used in the ordering operations.

Formally we presume that we have a function Denote : Q x POP —(UD)* which
expresses each instance in terms of some set of values. We should of course have:

i € UD = Denote(i, p) = [i]

The exact definition of this function depends on the conceptual schema, the reference
schemas, and the current population. This function can then be used to denote the
instances resulting from the list statement. When mapping path expressions to SQL,
this function becomes implicit since the abstract instances are never stored, but rather
their denotations in terms of concrete values.

Finally, one may sometimes like to do a final projection on the columns in the table
resulting from an information descriptor. Therefore we extend the LIST statement with
an optional projection clause. Thiswould allow usto formulate:

LIST HEAD, s/1000 OF Person who works for the Company: 'Asymetrix’ AND ALSO earns a Salary: s
In this case, the table resulting from
Person who works for the Company: 'Asymetrix’ AND ALSO earns a Salary: s

is projected on Person and s/1000 using a normal projection operation as introduced in
section 5. In the projection list, we are allowed to use any scalar expression, where the
variablesHEAD and TAIL are used as standard variable names for the head (hd) and tail
(t1) columns of the table resulting from the information descriptor.

8 Verbalisation Rules

This section discusses verbalisation rules for path-expressions. These rules should be
interpreted as a standardised verbalisation format for information descriptors.

Sometimes path-expressions will be generated automatically, e.g. when doing a point
to point query. In such a case, a verbalisation of the path-expression needs to be build
from scratch.

When a user enters an information descriptor manually then the user may have used
a verbalisation that can be improved upon. In that case, the information descriptor

56

specified by the user needsto beinterpreted as a path-expression, and then re-verbalised
by the system.

When entering queries using NUQL, we may be confronted with a situation where one
NUQL query may have more than one interpretation in terms of a path-expression. |If
this occurs, the different interpretations have to be verbalised using the rules stated in
this section, and shown to the user as alternatives.

For the verbalisation of path-expression weintroduce thefunction: PVerb : PathExpr X
©(TP) x (Attr xTP) — X+, Again, we use the style of denotational semantics, so
we write: PVerb[P] (T, L).

The parameters congtituting the environment of the verbalisation function, L and T'
provide some extrainformation used to make better verbalisations. The L providesthe
maximum set of types of the path expression (if any) directly to the left of the current
path expression. With to the left we mean here, with respect to concatenation o. Soiif x
and y aretypes, inQ o z o P thismeansthat {xz} isthe set of typesdirectly to theleft of
P andinthecase of ((Qoxz)U(Roy))o P thisis{z,y}. Below we will seethat this
information is required to prevent ambiguitiesin the verbalisations. We do not provide
aformalisation of away to obtain L; it issimply a matter of analysing the parse tree of
tha path-expression and find it's direct neighbours. Note, and this is a very important
case, that when we consider a path-expression without a left context, then L = TP
must be used. For example, if p isarole-entry and p is the complete path expression
we want to verbalise, then the |eft context is empty while L = TP.

The T issimply the typing function for the attributes (variables) as we have seen before
when defining the semantics of ConQuer. Note that we presume that the input of this
is a path-expression (or rather a parse tree thereof) that has been normalised conform
the rulesintroduced in subsection 7.12.

8.1 Empty path expressions

Empty path expressions will only occur in the context of query by navigation. They
are verbalised as follows:

[V1] F PVerb[e] (T, L) = start

8.2 Typesand denotations
For simple occurrences of typesin path expressions we have:

[V2] TNm(z) = n A Pre(z,undetermined) =r + PVerb[z] (T,L) =rn

57

From this rule followsthat in general we will prefer to use the articles for the undeter-
mined case. For example: A Human or Ein Mensch rather than The Human Dieser Mensch.
However, when a concrete instance of the type is given, our preference changes to the
determined case: The Person: 'T.A. Halpin’. Therefore, instance denotations are ver-
balised by:

[V3] TNm(z) = n A Pre(z,determined) = r A d € PEDenotations F
PVerb[z : d] (T, L) = r n : DenVerb[D] (T, L)

The denotations themselves are verbalised by the function DenVerb[P] (T', L) which
has a similar signature as the PVerb function.

[V4] P €PathExpr t DenVerb[P] (T, L) = PVerb[P] (T, L)
[VE] @€ AttrsAVNm(a) =n + DenVerb[la] (T, L) = n

[V6] di,...,d; € PEDenotationsAl >0
DenVerb[(dy, . ..,d;)] (T, L) = (DenVerb[d1] (T, L), ..., DenVerb[d;] (T, L))

[V7] d € PEDenotations + DenVerb[(d)] (T, L) = DenVerb[d] (T, L)

Note due to the normalisation rules specified in subsection 7.12 we know that a pattern
xzoe where z is a (value) type and e a scalar-expression will have been changed to
xX . e.

8.3 Concatenation

For o there are six separate verbalisation rules. When verbalising a path-expression,
we should try to apply them in the order given here.

Thefirst rule is concerned with the verbalisation of arole-entry.

[V8] PNm(p) =n A —34%, [PNm(p) = PNm(q) A Player(q) € L ARel(q) € ™ L[Y](T)] F
PVerb[po Y] (T, L) = n PVerb[Y] (T, ToL[p] (T))

The difficulty with arole entry is that arole name PNm(p) does not have to be unique
within a schema. For example, involved in is by far the most popular role name. (Note:
has is not a role name but a binary mix-fix predicate verbalisation; they will be dealt
with in the next subsection.) When verbalising a path-expression, however, we must
make sure that we refer to aunique role. Thisiswhy we need to check the uniqueness

58

of the role name within the context of the role-entry in the path-expression. Thisis
done by:

—=342p [PNm(p) = PNm(q) A Player(q) € L ARel(q) € T L[Y] (T)]

This clause checks whether there is another role with the same name (PNm(p) =
PNm(q)) such that the context of the role entry cannot distinguish between them.

For arole-exit, the same considerations apply:

[VI] RNm(p) = n A —Jguep [PNm(p) = PNm(q) A Rel(q) € L A Player(q) € T1L[Y](T)] +
PVerb[p* o Y] (T, L) = n PVerb[Y] (T, 5 L[p*] (T))

If arole name, or areverserole name, are not unique within their context, we are forced
to make these names unique in some way. We know that role names and reverse role
names are unigque within the context of one fact type. So if arole name, or reversed
role name, is not unique we are forced to suffix this name with the fact type name. This
leadsto therules:

[VI0] PNm(p) =nATNm(Rel(p) =m +
PVerb[p] (T, L) = n.m

[V11] RNm(p) =n ATNm(Rel(p) =m F
PVerb[p*] (T,L) = n.m

As the above verbalisations are independent of their context in a path-expression, they
are not defined in the context of a concatenation (o Y). In this case, the last rule for
concatenation (see below) can be used.

When verbalising a concatenation of two types directly following each other we need
to introduce the connecting word 1S. Thisis captured by the rule:

[V12] z,ye TPAx~y F PVerb[zEoyF](T,L) = PVerb[zE] (T, L) =n IS PVerb[yF] (T, {x})

where E and F' may be denotations or empty.

Finally, the most generic ruleis given bel ow, which simply concatenates verbalisations:

[V13] X,Y € PathExpr F
PVerb[X o Y] (T, L) = PVerb[X] (T, L) PVerb[Y] (T, L[X] (T))

59

8.4 Mix-fix predicate verbalisations

The next class of verbalisation rules we introduce deal with mix fix predicates. Three
rules are introduced which should, again, be applied in the order in which they are
introduced. If a mix-fix predicate verbalisation is unique within its path-expression
context, then the following rule can be applied:

[V14] P,...,P_1 € PathExpr A MFix(r,[a1,...,Q—1], [P1,---,21]) A 0 = Post(Player(p1))A
_'a[ql a)#[Pp1s-e-- pil,s [VISiSI [Player(qi) € Tz] A MFiX(S, [ala ceey al—l]; [qla sy ql])] F

PVerb[{p1,p2 : Po,...,p11: P1,p)] (T, L) =
o ay PVerb[P] (T, {Player(p2)}) s ...az—1 PVerb[P] (T, {Player(p;)})

where Ty = T, T, = L[] (T),...T; = T L[F](T). The uniqueness require-
ment in this case is provided as:
_'El[lh ----- q]#[p1,---.p1],8 [vlﬁiﬁl [Player(qi) € Ti] A MFiX(sa [041, v ,041,1], [QI;) (]l])]

When a mix-fix predicate verbalisation is not unique within its context, we are forced
to make the verbalisation unique by adding a suffix to the verbalisation. For this case
we have:

[V15] Ps,...,P_1 € PathExpr A MFix(r, [a1,...,@—1],[P1,---,P1]) A 0 = Post(Player(p;)) A TNm(r) =n F
PVerb[(p1,p2 : Ps,...,pi—1: P—1,p)] (T, L) =
o ai.n PVerb[P2] (T, {Player(p2)}) s ...a;_1 PVerb[P] (T, {Player(p;)})

which suffixes the first part of the verbalisation («;) with the name of the fact type
(a1.n). Usually, this latter rule will not be needed. Even for the most commonly used
verbalisation has, the context will usually provide a good disambiguation.

If I = 2, then (p, ¢} may be the result of a normalisation of po ¢*~. For these combi-
nations no mix-fix predicate might have been defined. For these (hopefully rare) cases
we introduce:

[V16] PNm(p) =n ARNm(q) = m A TNm(Rel(p)) = f A Post(Player(p)) =0 +
PVerb[(p,)] (T, L) =on fm

Notethat n f m isaways unique by itself.

8.5 Unary operations

The remaining verbalisation rules are now simple straightforward ruleswhich basically
definetheinverse of the semantics function for ConQuer as defined in the previous sec-
tion. We will not encounter any additional complications due to possible ambiguities.

For path reversal we have:

60

[V17] P €PathExpr F PVerb[P*](T,L) = THE REVERSE OF PVerb[P] (T, L)
The verbalisation of the unary operationsis provided by UnOp:

Verbalisation | Path Expression
DISTINCT Ds

ONLY Fr
€ HdCoerce
€ TlICoerce

The verbalisation rule is then:

[V18] P € PathExpr A UnOp(o,0) F PVerb[O P](T,L) = o PVerb[P] (T, L)

8.6 Binary operations

For the set based operations we defined two classes. The first class operates only on
the front elements. These are the FrSetOper operations:

Verbalisation | Path Expression Operator
OR OTHERWISE lﬂ
AND ALSO fil
BUT NOT +

For these operations we have:

[V19] P,Q € PathExpr A FrSetOper(o,0)
PVerb[P O Q] (T, L) = PVerb[P] (T, L) o PVerb[Q] (T, L)

Note that the above rule has presidence to the one below. This prevents us from getting
ONLY P UNITED WITH ONLY @

as averbalisation where P OR OTHERWISE () would have been more appropriate.
The set of set operations operating on the entire path was SetOper:

Verbalisation Path Expression Operator
UNITED WITH
INTERSECTED WITH
MINUS

WHICH ARE ALL IN
THAT INCLUDES ALL
MATCHING ALL
MISSING

WITH

x|@II Ui | D C

with verbalisation rule:

[V20] P, Q € PathExpr A BinOp(0,0)
PVerb[P O Q] (T, L) = PVerb[P] (T, L) o PVerb][Q] (T, L)

The value comparison ValueComp were defined as:

Verbalisation Path Expression Operator
IS EQUAL TO

<>

IS NOT EQUAL TO

<

IS LESS THAN

<=

IS LESS THAN OR EQUAL TO

>

IS GREATER THAN

>=

IS GREATER THAN OR EQUAL TO

VIV V VIAIANAN AR

The verbalisation ruleis then:
[V21] P,Q € PathExpr A ValueComp(0,0) +
PVerb[P O Q] (T, L) = PVerb[P] (T, L) o PVerb[Q] (T, L)
8.7 Path re-shuffling
The path-reshuffler is verbalised by:

[V22] P € PEScalarExpr /\VlSiSl [VNm(a,’) = ’I’L,’] F
PVerb[Path(P, a1, . .., an)] (T, L) =
THE PATH FROM 11 VIA no, ..., ny_1 TO n; OF PVerbl[P]] (T, L)
8.8 Functions

For functions and operators we simply have:

[V23] P,...,P, € PathExpr A f isafunction symbol
PVerb[f(P1,...,P)](T,L) = f (PVerb[E1] (T, L). ..., PVerb[E;] (T, L))

[V24] P, P, € PathExpr A fisaninfix operator symbol
PVerb[f(P1, P2)] (T, L) = PVerb[P]| (T, L) f PVerb[P2] (T, L)

62

8.9 Selection

For the selection statements we have four rules. They should be tried to be applied
in the order of specification. The four rules will deal with selection statements of
increasing complexity.

[V25] P € PathExpr A C € PEConditions
PVerb[Where(P, C)] (T, L) = PVerb[P] (T, L) WHERE CondVerb[C] (T, L)

[V26] P,Q € PathExpr A C € PEConditions F
PVerb[Where(P, C; Q)] (T, L) =
IF CondVerb[C] (T, L) THEN PVerb[P] (T, L) ELSE PVerb[Q] (T, L)

[V27] Py,...,P,Q € PathExpr A (,...,C; € PEConditions F
PVerb[Where(Py,Cy;...; P, Ci; Q)] (T, L) =
PVerb[P1] (T, L) IFPVerb[Cy] (T, L); .. .;
PVerb[F,] (T, L) IF PVerb[Ci] (T, L); PVerb[Q] (T, L)

[V28] Pi,...,P,Q € PathExpr A C1,...,C; € PEConditions I
PVerb[Where(Py,Cy;...; P, Ci] (T, L) =
PVerb[P1] (T, L) IFPVerb[C4] (T, L);. . .;
PVerb[F] (T, L) IF PVerb[Ci] (T, L)

Note that when a user enters an information descriptor they may choose to use any
of the above given verbalisations. The system should then normalise this when re-
displaying the path-expression on the screen.

8.10 Group functions

Grouping functions are again simply theinverse of the semantics function for ConQuer.
So we have:

[V29] P € PathExpr AVi<i<i[VNm(a;) =n;] +
PVerb[GCount(P, {a1,...,a;})] (T, L) =
THE COUNT OF PVerb[P | (T, L) GROUPED BY ny,...,m

[V30] P € PathExpr AVi<i<i[VNm(a;) =n;] +

PVerb[GDsCount(P, {a1,...,a;})] (T,L) =
THE DISTINCT COUNT OF PVerb[P] (T', L) GROUPED BY ng,...,n;

63

For the other grouping functions we introduce the relation GroupFunction as:

Verbalisation Condition Operator
THE SUM OF GSum

THE DISTINCT SUM OF | GDsSum

THE MIMIMUM OF GMin

THE MAXIMUM OF GMax

THE AVERAGE OF GAvg

For this class of operations we have the following two verbalisation rules:

[V31] P € PathExpr A GroupFunction(f, F') A Vi<i<i [VNm(a;) =n;] F
PVerb[F (P, {a1,-..,a1},hd)] (T, L) =
£ PVerb[P] (T, L) GROUPED BY n, ..., m

[V32] P € PathExpr A GroupFunction(f, F') AVNm(z) = m A Vi<i<i [VNm(a;) =n;] F
PVerb[F (P, {a1,...,a;},z)] (T, L) =
m INPVerb[P] (T, L) GROUPED BY n1,...,m

8.11 Gathering information

The confluence operation is verbalised as:

[V33] Pi,...,P,(Q € PathExpr A vlfifl [VNm(ai) =n; A VNm(b,‘) = mz] F
PVerb[[as : Py : by,...,a;: P : b;; Q) (T, L) =
PVerb[P,] (T, L) as(ny) via(my)
,- -, PVerb[P] (T, L) as(n;) via(m;) EACH PVerb[Q] (T, L)
where:

as(n) = if n = e then ¢ else ASn fi

via(n) = if n = e then e else VIAn fi

8.12 Sub-expressions
Sub-expressions hardly need any verbalisation:

[V34] Pi,...,P, € PathExpr
PVerb[[P1, ..., B]] (T,L) = [PVerb[1] (T, L), ..., PVerb[P] (T, L)]

8.13 Scalar expressions

Scalar expressions are verbalised using ScalVerb[S] (T, L). We define the Function
class of operations by:

Verbalisation Function
THE COUNT OF Count
THE SUM OF Sum

THE MINIMUM OF | Min
THE MAXIMUM OF | Max
THE AVERAGE OF | Avg

The verbalisation rule then becomes:

[V35] P € PathExpr A Function(f, F) F ScalVerb[F'(P)] (T,L) = f PVerb[P] (T, L)
Constants are verbalised as themselves:

[V36] c€eUD F ScalVerb[c] (T,L) =¢

For variables we have:

[V37] VNm(a) =m + ScalVerb[a] (T,L) =m

[V38] VNm(a) =m ARNm(p) =r F ScalVerbfa.p] (T,L) =m.r

For functions and operators we have:

[V39] Eu,...,E; € PEScalarExpr Af isafunction symbol F
ScalVerb[f(E1, ..., E)] (T, L) = f(ScalVerb[E{] (T, L),..., ScalVerb[E;] (T, L))

[V40] Ep, E, € PEScalarExpr A fisaninfix operator symbol +
ScalVerb[f (E1, E2)] (T, L) = ScalVerb[P1] (T, L) f ScalVerb[P] (T, L)

As scalar expressions can be use as path expressions we have:

[V41] FE € PEScalarExpr + PVerb[E] (T, L) = ScalVerb[E] (T, L)

65

8.14 Conditions

The verbalisation of conditions is provided by CondVerb[C] (T, L). The vaue com-
parison operations we used on information descriptors (ValueComp) can be used in
conditions as well:

[V42] Ei,E> € PEScalarExpr A ValueComp(r, R)
CondVerb[Ey R E>] (T, L) = ScalVerb[E1] (T, L) r ScalVerb[E>] (T, L)

Information descriptors can be compared as well using a variety of comparison opera-
tors. Let SetComp befilled by:

Verbalisation Path Expression Operator
EQUALS =
DOES NOT EQUAL
<>
IS DISJOINT FROM
IS A SUBSET OF
<
IS A SUBSET OF OR EQUAL TO
<=
IS A SUPERSET OF
>
IS A SUPERSET OF OR EQUAL TO
>=

iU U uUINin N N @3tk |l

For information descriptors we now have:

[V43] Pi, P, € PathExpr A SetComp(r, R)
CondVerb[P; R P,] (T, L) = PVerb[P,] (T, L) r PVerb[P,] (T, L)

Conditions can be combined in a number of ways. Let LogicConn be defined as:

Verbalisation | Condition Operator
AND
&
OR

EXCLUSIVE OR

IMPLIES
=>
IFF
<=>

ﬁﬁi}l}l<|<<<>>

66

We now have:

[V44] (C4,C> € PEConditionsA LogicConn(r, R)
CondVerb[C} R C5] (T, L) = CondVerb[C] (T, L) r CondVerb[C5] (T, L)

[V45] C € PEConditions F CondVerb[~C] (T, L) = NOT CondVerb[C] (T, L)

[V46] C € PEConditions F CondVerb[~C] (T, L) =" CondVerb[C] (T, L)

9 Miscelaneous

In this section we discuss two remaining issues. Firstly, an example parsing and trans-
lation process is provided. We show for a given ConQuer-92 expression its parse tree,
and the way in which it can be stored (a syntax tree).

Thefinal part of this section discusses nine phases in which ConQuer can be gradually
be introduced in the InfoM odeler product.

9.1 Exampleparsing process

Consider the example we have discussed earlier:

Person who earns Salary x AND ALSO works for a Company ¢
WHERE x ; THE AVERAGE Salary of a Person who works for ¢

The parse tree resulting from this expression is shown in figures 7, 8, and 9.

We could store a ConQuer-92 expression as an entire parse tree, but it is usual to store
parse treesin amore condensed format in theform of asyntax tree. In appendix B were
the ConQuer-92 grammar is provided, we also provide a record structure for each key
syntactical category. If we now presume the following namings of types and mix-fix
predicate namesin the underlying domain:

TNm(z) = Person MFix(F, [earns], [p1,p2])
TNm(y) = Salary MFix(F, [of], [p2,P1])
TNm(z) = Company MFix(G, [works for], [¢1, g2])

where Player(p;) = x, Player(p2) = v, Player(¢g1) = = and Player(g2) = z, then the

67

Person who earns Salary x AND ALSO works for a Company ¢
WHERE x > THE AVERAGE Salary of a Person who works for ¢

<id>
|
<selection>
|
<id>
|
<binopapp> 'WHERE'
—
<id> <binid op>
| |
<binopapp> 'ANDALSO'
‘ "works for aCompany ¢ 'x > THE AVERAGE Salary of
<id> <birid op> Sid> aperson who works for ¢
| |
<tspec> " <mfix>
| | S~
<tname> <post fix> <mfix part> <id>
| L
* Person’ 'who' ‘earns’ <tspec>
e
<prefix> <tname> <iref>
| |
a 'Sal‘ary' <vname>
|
Y

Figure 7:

'works for acompany ¢’

<id>

|
<mfix>

<mfix part> <id>
|

'works for’ <tspec>
>~

<prefix> <tname>
a 'Company’ <iref>
<vname>
e

Figure 8:

68

'x > THE AVERAGE Salary of a Person who works for ¢!

<condition>

<scalexpr> <valuecomp> <soal‘a<pr>
<vname> < <fi unTion>
X 'THE AVERAGE'

<tname> <post fix> <mfix part>

<id>

<mfix>

| S

<id>

<id>
|
<bin op app>
| S
<id> <binidop> <id>
I
<tspec> " <mfix>
| |~
<tname> <mfix part> <id>
| | |
'Salary’ ‘of! <bin op app>
S
<id> <hinidop>
e]
| >
<prefix>
.
a ' Person’

Figure 9:

69

'who' 'worksfor' <scal expr>

<vname>

above parse tree would lead to the following set of records:

00 SELECTION({(01,08)},NULL)

01 BINARY_OP_APPLIC("AND ALSO", 02, 06)
02 BINARY_OP_APPLIC("",03,04)

03 TYPE.SPEC(NULL,"Person”,z, NULL,NULL)
04 MFIX("who",p1, {("earns”, pa,05)})

05 TYPESPEC("a",”Salary”,y,"c",NULL)

06 MFIX(NULL, g1, {{"works for", g2,07)})

07 TYPESPEC("a",” Company”,z,"c",NULL)
08 SCAL_EXPR.COMP(09,10,” <”)

09 VARNAME("x",NULL)

10 COERCE_FUNCTION(" THE AVERAGE", {11})
11 BINARY_OP_APPLIC("",12,13)

12 TYPE_SPEC(NULL,"Salary”,y, NULL, NULL)
13 MFIX(NULL, pa, {("of", p1,14)})

14 BINARY_OP_APPLIC("",15,16)

15 TYPESPEC("a",” Person”,z, NULL, NULL)
16 MFIX("who", g1, {{"works for", g2,17)})

17 VARNAME("c",NULL)

This shows how we can actually store ConQuer-92 expressions. The record structures
have been set up in such away that the ConQuer-92 expressions and their underlying
path-expressions can be stored in one single format.

For example, using the definition of the semantics of ConQuer-92, we can now simply
rewrite to a path-expression. Thisresultsin:

Where(Fr(x o (p1, p2) oy ox) NFr({q1,q2) 0z oc),
x > HdCoerce(Avg(y o (p2,p1) 0oz 0 (q1,92) °¢))

Operationally it means that we do not have to store the path-expressions separately.

9.2 Order of implementation

It is the am of the InfoModeler team to release the first version of InfoModeler as
soon as possible, and then gradually increase the support of the ConQuer-92 language.
Below | have provided a list of phases. In the initial phases some non-terminals are
listed that will not yet be implemented in that phase. It means that in the grammar
for that phase, the mentioned non-terminal (and al other non-terminals solely used to
define it) is removed. | have tried to evenly divide the extra work involved between
each step as much as possible (based on my intuition), while also making sure the
resulting languages are still sensible.

70

Phase 1: Not yetimplemented: shuf f | er ,group accounti ng,sub expres-
si on,sel ecti on,confl uence, denotationsint ype specifications
limited to simple constants and variables only, set comparisons in the condi -
tions.

Phase 2: Not yet implemented: gr oup accounti ng,sel ecti on,confl uence,
denotationsint ype speci fi cati onslimited to simple constants and vari-
ables only, set comparisonsinthecondi ti ons.

Phase 3: Not yet implemented: denotationsintype speci fi cati onslimited to
simple constants and variables only, set comparisonsinthe condi ti ons.

Phase 4: ConQuer-92 is complete.
Phase 5: Tighter integration with NUQL.

Phase 6: Extensions of ConQuer-92.

10 Conclusions

In thisreport we have given acomplete formal definition of the ConQuer-92 conceptual
query language. From a practical (= Asymetrix) point of view, this language is now
ready to be implemented in the InfoAssistant QueryTool. The next step is therefore
providing a compiler from ConQuer-92 to SQL-92.

For the longer term, more should be done to improve the quality of verbalisations
and make a closer integration of ConQuer-92 and NUQL. One could imagine a hon-
ambiguous subset of ConQuer-92 which is used to verbalise path-expressionsin a nor-
malised form (basically what happens aready), and a more liberal ConQuer-92 lan-
guage from a user’s point of view. So a user is alowed to enter more natural lan-
guage like sentences which are then transformed by the system to anormalised format
(while resolving ambiguities). Furthermore, when SQL-3 becomes readily available
ConQuer-92 can be extended with forms of recursion.

From atheoretical (= Universities) point of view, the extensionsto the original LISA-D
provided by ConQuer-92 will have to be incorporated into next versions of the strictly
academic LISA-D language. LISA-D is expected to see more extensions in the next
years. Our list of wishes includes support for uncertainty and relevance making a
closer integration with expert systems and information retrieval systems feasible. For
example:

LIST The Authors of a Book ABOUT {’'Pollution’, 'Rivers’ }
Furthermore, incorporation of morelinguistic principlesinto the LI SA-D language may

lead to better verbalisations.

71

A Grammar of Path Expressions

In this appendix we define the concrete syntax of path expressions. This syntax will
dictate the form and shape of the data structures used to store queries. Although queries
are presented to the user and entered by usersin terms of ConQuer-92 expressions, they
will be stored as acombined form of path-expression parse trees and ConQuer-92 parse
trees.

Aswe are now dealing with concrete syntax as opposed to abstract syntax as defined in
section 6, the definitions given here do include parenthesis to alow for disambiguation
of the expressions.

A.l Atoms

We distinguish a number of elementary parts of path-expression parse tree. The first
ones are concerned with schema elements. For eachz € TP, p € RO, and a € Attrs
we have:

<type> =
<rol e> I=p
<attribute> ::=a

Each constant is also an element of the path-expression language. So, if ¢ isa constant,
then:
<constant> ::= ¢

Any function symbol f can be used in a path-expression, so we have:
<function> ::= f

In the language of path-expressions a number of operators can be used. These opera-
tionsare;

<bi nary path operator> ::= <path concatenator> | <prod-
uct> | <path set conparitor>

| <val ue conparitor> | <set op-

erat or>

<pat h concat enat or > =0

<pat h sel ector> .= 7 Where'

<product > S

<val ue conparitor> sl L | =0 EFE] >
|1>1

<set operator> =Euv =10 m

72

|+

<path set conparitor> ::=

IN

2l

<unary path operator> ::= 'Ds | Fr | ' TlCoerce’ | ' HdCoerce'

Iy

<group function>
| " GMax’ | ’ GAvg’

" GSum’ | ' GDsSum’ | ’ GMin’ | ’ GMin’

<group counter> .= " GCount’ | ' GDsCount’

<l ogi cal connector > VTV AN T

<path function> = "Count’ | 'Sum’ | 'Min’ | ' Max' |
'’ Avg’

<exists quantifier> = ' Some’

<path shuffler> = ' Path’

<path reverser> =

<set conparitor> = | = CAE | C#E
1 2) | 1 D)

<or der operator> =

A.2 Linear Path Expressions
Thefirst real class of path-expressions we introduce are the linear path expressions:

<l i near path expression> ::=
<type>
<rol e>
<linear path expression> <path reverser>
<l i near path expression> <path concatenator> <linear path expression>

A.3 Path Expressions

The path-expressionsin general areintroduced below. Notethat <pat h rever ser >
isre-introduced for path-expressionsin general. Thisisneeded asareversed linear path
expression is still a linear path-expression, and hence needs to be part of definition
of the linear path-expressions. Nonetheless, any path-expression in general can be
reversed.

73

<path expression> ::=
<linear path expression>
<i nstance denotati on>
<pat h expression> <path reverser>
<unary path operator> <path expression>
<pat h expression> <binary path operator> <path expres-

si on>
<path shuffler> ' (' <path expression>',’ <attribute list> ")’
<function> (' <path expression list> ")’
<path selector> ' (' <option sequence> [';’' <option>1] ')’
<group counter> ' (' <path expression> ',’ <attribute set> ")’
<group function> ' (' <path expression>',’ <attribute set>"',’' <at-
tribute> ")’ |
"< <role> ", <role to path list> ',’ <role>"'>

<pat h confl uence>

<sub expressi on>

(' <path expression> ')’
<scal ar expression>
<condi ti on>

Note that any scalar expression or condition can simply be interpreted as a path-
expression, and are therefore part of the path-expressions.

<i nstance denotation> ::=
<type> ':’ <denotation>

<denotation> ::=
<pat h expression>
"1’ <attribute> [
(' <denotation list> ")’

<denotation list> ::=
<denotation> [{',’ <denotation>}...]

<attribute list> ::=
<attribute> [{',’ <attribute>}...]

<attribute set> ::=
"{’ <attribute list> "}’

<role to path list> ::=
<role> ':' <path expression> [{’,
pression>}...]

' <role>"':' <path ex-

74

<path confluence> ::=
"[' <confluence elenent list> "]’

<confluence elenment list> :
<confluence element> [{’,’ <confluence elenment>}...]

<confluence elenment> ::=
<attribute> ':’ <path expression> ':’ <attribute>

<sub expression> ::=
"[' <path expression list> "]’

<path expression list> ::=
<path expression> [{',’ <path expression>}...]

<option sequence> ::=

<option> [{';’ <option>}...]
<option> ::=
<path expression> ';’ <condition>

A.4 Scalar expression
The next syntactic category we introduce are the scalar expressions.
<scal ar expression> ::=

<const ant > |
<path function> ' (' <path expression> ")’ |
<attribute>

<attribute>'.’ <role> |
<function> ' (' <scalar expression list>")" |
"(' <scal ar expression> ')’

<scal ar expression list> ::=
<scal ar expression> [{',’ <scalar expression>}...]

A.5 Conditions
The conditions are defined by:

<condition> ::=

75

<exi sts quantifier> <path expression>

<pat h expressi on> <set conpar at or > <pat h expres-
si on> |

<scal ar expressi on> <val ue conparator> <scal ar expres-
sion> |

<condi ti on> <l ogi cal connector> <condition>

<negati on> <condi ti on>

"(' <condition> ')’

A.6 Queries
Finally, the set of path-expression queries are identified by the following definitions:

<pat h expression query> ::=
<pat h expression> |
<order operator> '(’' <path expression> ',’ <order cri-
terion sequence> ')’

<order criterion sequence> ::=
<order criterion> [{';’ <order criterion>}...]

<order criterion> ::=
<attribute nane> ': Asc’ |
<attribute nanme> ': Desc’

B Grammar of ConQuer-92

In this appendix we define the concrete syntax of ConQuer-92. Aswe are now dealing
with concrete syntax as opposed to abstract syntax as defined earlier, the definitions
given here do include parenthesis to alow for disambiguation of the expressions. In
this appendix we shall aso discuss hierarchical record structures which can be used to
store the ConQuer-92 expressions in a hybrid form between ConQuer-92 syntax trees
and path-expression syntax trees.

B.1 Atoms

We distinguish a number of elementary parts of ConQuer-92 parse trees. The first
ones are concerned with schema elements. For each z € ran(TNm), p € ran(PNm),
r € ran(RNm), v € ran(VNm), a € ran(Pre), and b € ran(Post) we have:

<type nane> =

76

<rol e name> I=p

<reverse role name> ::= ¢
<vari abl e name> = w
<prefix> l= a
<postfix> i=b

Each partial mix fix verbalisation leads to a mix fix part. So, if MFix(r, A, R) and
a € Awehave

<m xfix verb part> = a
For each constant ¢ we have:
<const ant > = ¢

For each function name f of an arithmetic function we have:
<function nane> = f

For each binary arithmetic operation (each of which is also a function name!) o we
have:

<bi n operator> i= o
The predefined operators used in ConQuer-92 are divided in the following classes:
<concat > 1T €
<di stinctor> = ' DISTINCT
<fronts sel ector> = ' ONLY’

<functi on> " THE COUNT OF’ | * THE SUM OF’ | ’ THE MINIMUM’

" THE MAXIMUM’ | * THE AVERAGE’

<group function> ;.= <function> | ’THE DISTINCT COUNT OF
| * THE DISTINCT SUM OF’
<l ogi cal connector> ::="AND' | "& | "OR' | ' |' | ' EXCLUSIVE OR’
| "I | PIMPLIES' | * =>" | " IFF" | * <=>"
<path reverser> 1= ' THE REVERSE OF’
<set conparitor> ::= "EQUALS' | ' =" | * DOES NOT EQUAL’
| ’ <>)
| IS DISJOINT FROM' | ' EXCLUDES' |

" IS A PROPER SUBSET OF’

| "< | 'ISASUBSETOF |’ <=’

| 'S A PROPER SUPERSET OF | ' >' |
" IS A SUPERSET OF’

77

| 1 >:)

<set operation> ::= " UNITED WITH’ | * INTERSECTED WITH’
| " MINUS’
|’ WHICH ARE ALL IN’ | * THAT INCLUDES ALL’
| * MATCHING ALL’
| " MISSING' | * WITH' | * OR OTHERWISE’

| AND ALSO’
| ' BUT NOT
<subtype sel ector> =8
<val ue conparitor> i:="="]"ISEQUALTO' | ' <>" | "ISNOT EQUAL TO’
| "<’ | ISLESS THAN' | * <=’ | ' IS LESS THAN OR EQUAL TO’
| > | 'ISGREATER THAN' |’ >=
I

" IS GREATER THAN OR EQUAL TO’

Note the definition of <concat >. In an information descriptor the concatenation
operator is empty. For example, the Person and who works are information descriptors.
When concatenating we get the Person who works, i.€. N0 operation isinserted.

For our convenience we introduce the following aggregate classes:

<bi nary information descriptor operator> ::=
<set operation> |
<val ue conparitor>
<subtype sel ector>
<bi n operator> |
<concat >

<unary information descriptor operator> ::=
<path reverser> |
<fronts selector> |
<di sti nctor>

B.2 Information descriptors

The information descriptors are introduced as one large potpouri of options. Informa-
tion descriptors will be stored in case specific records. So for each of the non-terminals
in the definition of information descriptors we will define one specific record. When
actually implementing these record structures in C++, one might want to introduce a
general superclass for information descriptors with as subclasses the specific records
for each options.

78

<information descriptor> ::=
<type specification>
<rol e reference>
<constant occurrence>
<m xfix predicate verbalisation>
<unary operation application>
<bi nary operation application>
<shuffler>
<function or nacro application>
<sel ection>
<confl uence>
<group accounti ng>
<sub expressi on>
(" <information descriptor> ')’
<scal ar expressi on>
<condi ti on>

Aswe will introduce specialised records for each of the above syntactical classes, the
data structure for information descriptors is adisunction of the records of the options.

INF_DESCR ::=
TYPE_SPEC | ROLE_REF | CONST | MFIX |
UNARY_OP_APPLIC | BINARY_OP_APPLIC|
SHUFFLE | FUNCTION | CONFLUENCE |
GROUP_ACCT | SUB_EXPR | SCALAR_EXPR
CONDITION

Thefirst kind of information descriptors deals with type specifications.

<type specification> ::=
[<prefix>] <type nanme> [<instance reference>]

<i nstance reference> ::=
<vari abl e nanme>
'’ <denotation>

<denotation> ::=
<informati on descriptor>
"1’ <variabl e nane> |
(' <denotation list> ")’

<denotation list> ::=
<denotation> [{ ',’ <denotation> }...]

79

For type specification we have the following record structure:

TYPE_SPEC (PreFix: STRING OP, TypeName: STRING, Type: *TYPE,
InstRefVarName: STRING OP, InstRefDenot: DENOT OP)

In our notation we use OP to indicate an optiona attribute, and REP for a repetitive
attribute. The record refers to a record for denotations. We need to introduce this
separate redord since denotations can be recursively defined. So we have:

DENOT (InfDescr: INF_LDESCR OP, VarName: STRING, Denot: DENOT OP REP)

We can refer to roles in two ways corresponding to role entries, and role exits. This
leads to:

<role reference> ::=
[<postfix>] <role nane> |
<reverse rol e nane>
Role references are stored in the following record:

ROLE_REF (PostFix: STRING OP, RoleKind: KIND, RoleName: STRING, Role: *ROLE)

where KIND = {entry, exit}.

Constant occurrences lead to the following non-terminal and record structure:

<constant occurrence> .=
<const ant >

CONST (Constant: STRING)

A mix-fix predicate verbalisation basically consist of an optional postfix for the pre-
ceding type (if any), followed by a non-empty sequence of mix-fix predicate parts and
information descriptors. The syntax is therefore:

<mi xfix predicate verbalisation> ::=
[<postfix>] [{ <mxfix verb part> <infornmation de-
scriptor>}...]
<m xfix verb part> <information descriptor>
A mix-fix predicate verbalisation can be stored in the following record structure:

MFIX (PostFix: STRING OP, StartRole: ROLE*, (MixFix: STRING, Role: *ROLE, InfDescr: INF_DESCR) REP)

80

Both unary and binary operations for information descriptors lead to the following
relative easy definitions of the syntax and records:

<unary operation application> ::=
<unary information descriptor operator> <inforna-
tion descriptor>

<bi nary operation application> ::=
<information descriptor> <binary infornmation descrip-
tor operator>
<information descriptor>

UNARY_OP_APPLIC (UnaryOp: UNARY_OP, InfDescr: INF_DESCR)
BINARY_OP_APPLIC (BinaryOp: BINARY_OP, LeftInfDescr: INF_DESCR, RightinfDescr: INF_DESCR)

Note: UNARY_OP and BINARY_OP are enumeration types consisting of the bi nary
i nformation descriptor operator andunary informati on descrip-
tor operator respectively.

The Harlem Shuffle operation involves a non empty list of variable names and an in-
formation descriptor; the information descriptor to be re-shuffled. So we have:
<shuffler> ::=
" THE PATH FROM' <vari abl e nanme>
["VIA" <variable nane list>]
"TO' <vari abl e name> <infornmati on descri ptor>

<variable nane list> ::=
<variable nanme> [{’,

<variabl e nane>}...]
We store an occurrence of the shuffle operation as:
SHUFFLE (VarName: STRING REP, InfDescr: INF_DESCR)

We would like to stress here again that macros for information descriptors are treated
as ordinary functions. So as a syntactic category they are treated indistinctively. This
leads to:

<function or nmacro application> ::=
<function nane> ' (° <information descriptor list> ")’

The record structure is now:

81

FUNCTION (FunctionName: STRING, InfDesc: INF_DESCR REP)

Although selections can have different syntactical representations, they are basically a

sequence of conditions and information descriptor together with an optional default (if

none of the conditions yields true). When verbalising a selection, the preferences as

discussed in section 8 should be used. <selection> ::=
"IF" <condition>" THEN' <i nformati on descri ptor> |
"IF" <condi tion>' THEN' <information descri ptor>"ELSE’

<i nformation descri ptor> |

<i nformation descriptor>’WHERE <condition> |
<al ternatives sequence>’ OTHERWISE <i nformation de-

scriptor> |
<alternatives sequence>

<al ternatives sequence> ::=
<alternative> [{'; <alternative>}...]

<alternative> ::=
<infornmation descriptor>’IF <condition>

The selection operation is stored in the following record:
SELECTION ((InfDescr: INF_LDESCR, Cond: CONDITION) REP, Default: INF_LDESCR OP)

In a confluence operation anumber of information descriptorsis provided selecting as-

pects we are interested in starting out from an existing information descriptor. Variable

names needed to be introduced to link the information descriptors yielding the aspects

we are interested in to the existing information descriptor (VIA), and to provide names

for the resulting columns (AS). The syntax of this construct is captured as:
<confluence> ::=

<confluence el ement |ist>"EACH <information descrip-
tor>

<confluence elenent list> ::=
<confluence element> [{’,’ <confluence elenent>}...]

<confluence elenment> ::=
<information descriptor> [’ AS <vari abl e name>]
[" VIA <variable name>] This operation is stored in
the following format:

CONFLUENCE (BaselnfDescr: INF_DESCR, (AspectInfDescr: INF_DESCR, AsVarName: STRING OP,
ViaVarName STRING OP) REP)

82

Group accounting requires evolves around three syntactic classes. Firstly, a variable
selecting which column in the grouped information descriptor the group accounting
function needsto be applied is needed. Secondly, the actual information descriptor that
needs to be grouped is required. Thirdly, the variable names that need to be grouped
are needed. These observationslead to the following definition of the group accounting
operation:
<group accounting> ::=

<group function> [<variable>'IN'"] <information de-

scriptor>
" GROUPED BY’ <vari abl e nanme |i st > Therecord structure for

this operation is:

GROUP_ACCT (GrFuncName: GR_.FUNC_OP, VarName: STRING OP, InfDescr: INF_DESCR,
(GroupingVarName: STRING REP))

Finally, sub expressions are simply alist of information descriptors enclosed by square
brackets:

<sub expression> ::=
"[" <information descriptor list> "]’

<information descriptor list> ::=
<information descriptor> [{, <information descrip-
tor>}...]

We store this as:

SUB_EXPR (InfDescr: STRING REP)

B.3 Scalar expression

The scalar expressions of ConQuer-92 are build from five main classes We will not
introduce specia syntactic categories for these classes of scalar expressions. We will,
however, discuss the record structures needed to store these classes separately.

<scal ar expression> ::=
<const ant > |
<function> ' (' <information descriptor> ")’ |
<variable name> ['.’ <role nane>] |
<function or nacro nane> ' (' <scalar expression list>")" |
<scal ar expressi on> <bin operator> <scal ar expressi on> |
"(’ <scal ar expression> ')’

83

<scal ar expression list> ::=
<scal ar expression> [{’,’ <scalar expression>}...]

The record structure for scalar expressionsis a disjunction of five aternatives:

SCALAR_EXPR ::=
SC_CONST | COERCE_FUNCTION | VAR_.NAME |
SC_FUNCTION | SC_.BINARY_OP_APPLIC

The aternatives are provided as:

SC_CONST (Constant: STRING)

COERCE_FUNCTION (Function: STRING, InfDescr: INF_DESCR)
VAR_NAME (VarName: STRING, RoleName: STRING OP)
SC_FUNCTION (Function: STRING, ScalarExpr: SCALAR_EXP REP)

SC_BINARY_OP_APPLIC (BinaryOp: SC_BIN_OP, LeftScalarExpr: SCALAR_EXP,
RightScalarExpr: SCALAR_EXP)

B.4 Conditions

The conditions consist of six main classes. The syntax is provided as:

<condition> ::=
' SOME’ <i nformati on descri ptor>

<informati on descriptor> <set conparitor> <i nf or -
mati on descriptor> |

<scal ar expressi on> <val ue conparitor> <scal ar ex-
pressi on> |

<condi ti on> <l ogi cal connector> <condi -

tion> [
<function or macro nane> ' (' <condition list> ")’
<negat ed condition>
(' <condition> ")’

<negated condition> ::=
"NOT' <condition> |
'’ <condition>
The record structure for conditionsis identified by:

84

CONDITION :=
CONDITIONER | INF.-DESCR.COMP | SCAL_EXPR.COMP
BIN_.COND_OPER | COND_FUNCTION | NEGATION

The alternatives are defined by:

CONDITIONER (InfDescr: INF_DESCR)

INF_DESCR_COMP (LeftInfDescr: INF_DESCR, RightInfDescr: INF_DESCR, SetComp: SET_COMP)
SCAL_EXPR_COMP (LeftScalExpr: SCALAR_EXPR, RightInfDescr: SCALAR_EXPR, ValueComp: VALUE_COMP)
BIN_COND_COMP (LeftCond: CONDITION, RightCond: CONDITION, LogConn: LOGIC_CONN)
COND_FUNCTION (Function: STRING, Condition: CONDITION REP)

NEGATION (Negation: CONDITION)

Note: SET_COMP, VALUE_.COMP and LOGIC_CONN are enumeration types contain-
ing all set conparitor,value conparitor and| ogi cal connectors
respectively.

B.5 List statement

Thelist statement is defined by the following definitions:

<list statement> ::=
"LIST' [<scal ar expression list>"FROM]
<information descriptor> [<order specification>]

<order specification> ::=
' ORDERED’ <or der> |
" ORDERED WITH' <order |ist>

<order> ::=
" ASCENDING’ | " DESCENDING’

<order list> ::=
<order item> [{’,’ <order itenp}...]

85

<order itemr ::=
<vari abl e name> <order> |
' HEAD' <or der > [
"TAIL' <order>

A list statement can be stored in the following record structure;

LIST (ScalExpr: SCALAR_EXPR REP OP, InfDescr: INF_DESCR,

(VarName: STRING, Ord: ORDER) REP OP)

Even though the list statement allows us to use ASCENDING and DESCENDING as an
ordering specification without referring to a specific variable name, thisabsenceimplic-
itly refersto the head column of the table resulting from the information descriptor.

References

[Bar84]

[Hal95]

[HP95]

[HPWO3]

[HPW94]

[HPWIT7]

[Lev79]
[Lew85]

H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, vol-
ume 103 of Sudies in Logic and the Foundations of Mathematics. North-
Holland, Amsterdam, The Netherlands, Revised Edition, 1984.

T.A. Halpin. Conceptual Schema and Relational Database Design.
Prentice-Hall, Sydney, Australia, 2nd edition, 1995.

T.A. Halpin and H.A. Proper. Subtyping and Polymorphism in Object-Role
Modelling. Data & Knowledge Engineering, 15:251-281, 1995.

A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal def-
inition of a conceptual language for the description and manipulation of
information models. Information Systems, 18(7):489-523, October 1993.

A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. A Concep-
tual Language for the Description and Manipulation of Complex Informa-
tion Models. In G. Gupta, editor, Seventeenth Annual Computer Science
Conference, volume 16 of Australian Computer Science Communications,
pages 157-167, Christchurch, New Zealand, January 1994. University of
Canterbury.

A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Exploiting Fact
Verbalisation in Conceptual Information Modelling. Information Systems,
22(6/7):349-385, September/November 1997.

A. Levy. Basic Set Theory. Springer-Verlag, Berlin, Germany, 1979.
A. Lew. Computer Science: A Mathematical Introduction. Prentice-Hall,

Englewood Cliffs, New Jersey, 1985.

86

[Par90] H. Partsch. Specification and Transformation of Programs - a Formal Ap-
proach to Software Development. Springer-Verlag, Berlin, Germany, 1990.

[Pro94a] H.A. Proper. Generating significant examples for conceptual schema val-
idation. Interactive Query Formulation using Query By Navigation 94-4,
Asymetrix Research Laboratory, University of Queensland, Australia, 1994.

[Pro94b] H.A. Proper. Interactive query formulation using point to point queries.
Confidential Asymetrix Research Report 94-1, Asymetrix Research Labo-
ratory, University of Queensland, Australia, 1994.

[Sto77] JE. Stoy. Denotational Semantics. The Scott-Strachey Approach to Pro-
gramming Language Semantics. MIT Press, Cambridge, Massachusetts,
1977.

87

