
ConQuer-92

Revised report on the conceptual query language LISA-D

Confidential

Asymetrix Report 94-5

H.A. Proper
Asymetrix Research Laboratory

Department of Computer Science
University of Queensland

Australia 4072
E.Proper@acm.org

Version of June 29, 2000 at 14:24

Abstract

In this report the conceptual query language ConQuer-92 is introduced. This
query language serves as the backbone of InfoAssistant’s query facilities. Further-
more, this language can also be used for the specification of derivation rules (e.g.
subtype defining rules) and textual constraints in InfoModeler.

This report is solely concerned with a formal definition, and the explanation
thereof, of ConQuer-92. The implementation of ConQuer-92 in SQL-92 will be
treated in a separate report.

1 Introduction

In this report we introduce the conceptual query language which will serve as the back-
bone of InfoAssistant’s query facilities, and which can also be used in InfoModeler for
the specification of derivation rules and constraints. The definition of this language is
a restriction, and a slight extension at the same time, of the existing language LISA-D
([HPW93], [HPW97], [HPW94]).

In ConQuer, a central role is played by the so-called path-expressions. In its most
elementary form, a path-expression describes a path through the conceptual schema.

1

The most important extension with respect to LISA-D is the ability to deal (and name)
intermediate results of path-expressions. In operational terms this means that we can
select any intermediate result of a path-expression to become part of the final query
result. Later we will see some convincing examples of this.

Furthermore, a few minor changes in the definitions have been made to bridge the gap
between LISA-D and FORML. LISA-D has been restricted in the sense that certain
restrictions had to be made to ensure that the language can be implemented on top
of SQL-92. The proposed name of the new language is therefore ConQuer-92, which
is an acronym for Conceptual Queries. For IA it has been agreed to simply refer to
the language as ConQuer, but for internal purposes it still makes sense to make the
difference between ConQuer-92. The resulting language can later be extended further
when SQL-3 can be used as a target platform, leading to ConQuer-3. Using SQL-3 as
the target platform will in particular allow us to define recursive queries. The definition
of ConQuer-92 as provided in the report also includes many of the aspects that are
present in the FORML ([Hal95]) language for the actual definition of derivation rules,
subtype defining rules, and textual constraints. In the LISA-D articles no special syntax
for this purpose was introduced. This report is solely concerned with a formal definition
of ConQuer-92. The implementation of ConQuer-92 in SQL-92 will be treated in a
separate report.

ConQuer-92

Path

Expression

Queries

Relational

Multiset

Algebra

NULLs

+ Multisets

+ Population

SQL-92

Parsing Verbalisation

Semantics

Semantics

Implementation

Figure 1: Setup of the ConQuer-92 definition

2

ConQuer-92 is introduced using a layered approach. Each layer represents one level of
abstraction. In figure 1 we have illustrated the multi-layered definition of ConQuer-92.
The bottom layer of the specification is formed by NULLs, multisets and populations
of ORM schemas. The difference between a set and a multiset is that elements in a set
can occur only once, whereas a multiset allows for multiple occurrences of the same
element.

The next level of abstraction introduces an extended form of relational algebra which
features some extra operations, and is based on multisets (or bags) rather than tradi-
tional sets. The relational algebra can be regarded as forming the formal foundation of
SQL. A key difference between traditional relational algebra and SQL is, however, that
SQL is multiset based whereas relational algebra is set based. This effectively means
that the result of an SQL query may contain multiple occurrences of the same value.
This deviation between RA and SQL is based on efficiency. Removing multiple occur-
rences in queries is expensive from an implementational point of view, as it involves
ordering the entire result, and searching for multiple occurrences of the same values.

On the next level up are the path-expression queries. This is an abstract language which
will not be seen by a user, but is used for the internal storage of queries, constraints,
and derivation rules, in the fact base. The largest part of this language is formed by the
path-expressions. Therefore, we will simply refer to this level as the path-expression
level in the remainder.

Finally, the highest level of abstraction is formed by ConQuer-92 itself. The difference
between the ConQuer level and the path-expression level is nill with respect to the
expressiveness of the languages. However, the ConQuer level is the language that is
used to communicate path-expression queries to users, and vice versa. While the path-
expression level is not intended for ’human consumption’, the ConQuer level is only
intended for ’human consumption’.

In a next report, a mapping from path-expressions to SQL-92 will be provided. The
definition of the semantics of path-expressions in terms of relational algebra can thus
be regarded as a specification for this mapping to SQL. With this mapping, the relation
between ConQuer-92, path-expression queries, and SQL-92 can be illustrated using
the diagram depicted in figure 2. The path-expression query is the query that is ac-
tually manipulated (and stored) by the IA tool. ConQuer can be seen as an external
representation of a path-expression. When we change the verbalisation of object types,
predicates, etc. in the conceptual schema, then the path-expression does not change, but
the verbalisation of the path-expression may change. Conversely, when we change the
mapping from a conceptual schema to a logical schema, the SQL statement generated
from a given path-expression will have to change as well.

The existing query formulation techniques: Query by Navigation (QBN), Query by
Construction (QBC), Query by Outline (QBO), Spider Queries (SQ), Point to Point
Queries (PPQ), and natural-languages based query formulation using NUQL, all use
path-expression queries as a common format for storing (partial) queries. This is illus-
trated in figure 3.

3

ConQuer-92

Path

Expression

Queries

SQL-92

VerbalisationParsing

Mapping

External Level

Conceptual Level

Internal Level

Figure 2: The relation between SQL, path-expressions queries, and ConQuer

Path

Expression

Queries

QBO

QBN NUQL

QBC

PPQ

SQ

Figure 3: Interplay between query formulation tools

4

The structure of the report is as follows. In section 2 we provide a brief formal defini-
tion of an ORM schema. In section 3 we briefly discuss some of the problems concern-
ing the treatment of NULL values. A brief overview of the definition of multisets is
provided in section 4. To make the mapping to SQL-92 easier to define, the semantics
of the path-expressions have been defined in an extended version of the relational alge-
bra. This relational algebra is introduced in section 5. The definition of path-expression
queries is provided in section 6. Finally, that part of ConQuer-92 that will be visible
for ordinary users is discussed in section 7 and section 8. The BNF grammars of both
the path expression level and the ConQuer level are discussed in separate appendices.

2 ORM Models

In this section we provide a brief discussion of the formalisation of ORM we use in this
report. We have setup the formalisation in such a way that it does not rely to much on
the details of the ORM meta-model which is in use for InfoModeler. So any changes,
in particular the addition of new modelling concepts, will not lead to dramatic changes
in the formalisation presented here.

A conceptual schema is presumed to consist of a set of types . This set of types is
split into two pairs of two subsets; based on two dichotomies. Firstly, a distinction is
made based on the underlying structure of types. This results in the set of relationship
types , and the set of ordinary object types . Note that this is not a disjunctive
dichotomy as nested relationship types are in both classes.

The second dichotomy is based on the denotability of instances of types. Types which
are directly denotable are referred to as value types , and correspond to the types
whose instances have a direct denotation such as strings, numbers, etc. The types
which cannot be directly denoted are the non-value types. This double dichotomy is
discussed in more detail in [HP95].

Relationship types are build from roles. Let be the set of all such roles in the
conceptual schema. The fabric of the conceptual schema is then captured by two func-
tions and two predicates. The set of roles associated to a relationship type are pro-
vided by the partition: . Using this partition, we can define the
function which returns for each role the relationship type in which it is involved:

. Every role has an object type at its base called
the player of the role, which is provided by the function: . As an
example, consider the schema depicted in figure 4. In this schema we have marked
each role of the relationship type with a letter (). In this schema we have:

and , , .

We presume the existence of a relation providing us with the types that
are type related, i.e. types that may share instances. Typical examples of type related
object types are subtypes. In the currently used version of ORM for InfoModeler,

5

A B

C

p q r

"f"

Figure 4: An example conceptual schema

two types are type related if they are in the same subtype hierarchy, and it does not
follow from a disjunction constraint that they are disjunctive. For a definition of this
relationship in more basic concepts of an ORM schema, please refer to [HPW93] or
[HP95].

In ORM some object types may be specialised or be polymorphic (in the current version
of InfoModeler only specialisation applies). Sometimes we need to access the so-called
root types of a given object type. A root type of an object type is a type which itself
is not a specialisation or polymorphic type, such that is a specialisation or polymor-
phism of . The roots of a type are formally provided by: .
Due to possible multi-rooted specialisation hierarchies and the use of polymorphism,
this function yields a set of types. In the current version of ORM supported by In-
foModeler, all subtyping hierarchies have only one root. Therefore this function will
always lead to singleton sets (sets with one element only) for ORM models developed
in InfoModeler. Again, for a more detailed definition of such a function in terms of
more basic concepts of an ORM schema, please refer to [HPW93] or [HP95].

Finally, since all instances of the population of a type must be identifiable in terms
of a combination of values, we presume that each non value type has associated an
identification scheme (or reference scheme). This identification schema either consists
of a sequence of either role pairs or single roles (relationship types). It is provided
by: . Note that when dealing with disjunctive
identification schemes this becomes: .
This is, however, beyond the currently supported version of ORM. These are all the
assumptions we have to make on the underlying ORM data model.

3 NULL Values

In the new definition of the path-expression level, it has become essential to be able to
deal with NULL values, since we now want to deal with intermediate results as well.
In this report we do not explicitly concern ourselves with a proper definition of the

6

semantics of NULL values as there are various ways of dealing with NULL values.
The basic idea of this section is to identify this as a couse of possible problems. In
practice we will stick as much as possible to the standards dictated by SQL-92. In the
remainder of this report we will, wherever appropriate, return to the NULL value issue.

The central issues are the behaviour of NULLs in arithmetic operations, logic expres-
sions, and equality. As an illustration of the choices involved, we provide some exam-
ples of different choices:

if NULL

4 Multisets

In this section, which is completely based on a section in [HPW93], the concept of
multiset is introduced formally. Multisets ([Lew85]), also known as multiple member-
ship sets ([Lev79]), or bags ([Par90]), differ from ordinary sets in that a multiset may
contain an element more than once.

As an example, to illustrate the difference between sets and multisets, consider the
set . This is a set with only three elements. These elements are: .
Although the element was written twice within the set enumeration: , it
only occurs once in the set. So for sets we have: ,
etc. In a multiset, elements can occur multiple times. However, in a multiset, just like
sets, elements do not have an order. We will denote a multiset in the following format:

. In this multiset, the elements and occur once, and occurs twice. For
multisets we have: , but we do have: ,
etc. The relation between lists (or sequences), bags, and sets can be summarised as
follows:

List Bag Set
Order Yes No No
Frequency Yes Yes No

7

Multisets over an underlying domain are elegantly introduced as functions: ,
assigning to each its frequency. So if we use as underlying domain all letters
in the alphabet, an example of such a function is: (ignoring
all occurring elements). The is now a function where , , and

. This corresponds to the multiset: .

In the definitions of the operations on multisets, the -calculus notation provided by [Bar84],
will be employed. This notation is nothing more than a mathematical equivalence of
a function declaration. For instance . is the polynomial function assigning to
each -value. The statement . corresponds to the following definition in
Modula-2:

FUNCTION Sqr (:REAL) :REAL

BEGIN

RETURN(*);

END;

The lambda calculus allows us to reason about anonymous functions. For example
. is the function yielding the square of the parameter to the function. This would

correspond to:

FUNCTION (:REAL) :REAL

BEGIN

RETURN(*);

END;

This is an anonymous function. Some more advanced programming languages, like
Algol-68 allow for anonymous functions.

In the theory of multisets, like in set theory, denotes the empty multiset. The def-
inition of the empty multiset is: . . As a last example of what this looks like in
Modula-2:

FUNCTION (:REAL) :REAL

BEGIN

RETURN(0);

END;

Sets can be defined in a variety of ways. One way which we shall use very often is the
set comprehension schema. For example denotes the set of natural
numbers such that they are larger than 10 (). This could be illustrated
using the following piece of pseudo code:

8

FOR EACH DO

IF THEN

Add to the result;

END IF;

END FOR;

Quite often we will omit the part if from the condition part it is clear what the
domain of is. If would only be defined for natural numbers, then we would write:

. Another alternative is to lift the part over the middle bar ’—’
(which is pronounced as ’such that’), leading to: . This latter
format is actually the preferred format for the comprehension schema for multisets.

The comprehension schema for a multiset has the format: . The
is some kind of condition where is the element and is the frequency in which the
element should occur in the resulting multiset. So should be a binary predicate
such that . The notation is used to indicate
that should indeed occur -times in the resulting multiset. Sometimes we will allow
us to write , or more general as long as and
return positive natural numbers. For example leads to a multiset:

.

With respect to NULL values, special care has to be taken when evaluates to
unknown. Without NULL values, will evaluate to true or false, but allowing
for NULL values means that it might lead to unknown as well. In the case of SQL the
unknown is treated as ’insufficient proof’, so the element will not occur in the result
set.

The traditional union, intersection, and difference operations from set theory are de-
fined for multisets as follows:

.

.

.

Some examples are:

Bag comprehension can be used for intentional denotations of multisets. Extentional
denotations are defined by: and .

In the case of sets we write to say ’ is an element of the set ’. For multisets
we write , with the formal meaning . Sometimes, when we are not
interested in the frequency, we will write for .

9

The comparison operator for multisets is defined as: . For
example , but not . From this
operator, the comparison is derived in the usual way: . This
allows for the definition of the powerset of a multiset: . For
example, the powerset of is:

Coercions from multiset to set and vice versa are defined by the following functions:

For example: , and . The number of
elements in a multiset is counted by , so . With
respect to NULL values, the exact result of this expression depends on the way the
(the) operation handles NULLs.

By making assumptions on the underlying domains we can introduce some more in-
teresting operations. If is a multiset over an arithmetic domain , then the following
operations can be defined:

sum

These operations return the maximum, minimum and sum of the values in the mul-
tiset. Some examples are: , , and
sum . Again the exact result of sum in the case of NULL
values depends on the treatment of NULLs in arithmetic operations.

5 Relational Algebra

As stated before, the semantics of path-expressions is defined in terms of relational
algebra expressions. However, since path-expressions are based on multisets, the re-
lational algebra we use here needs to be defined in such a way that it can deal with
multisets (and NULL values). The style of relational algebra we use here is one which
is widely used in academic papers. We could have chosen a style which would make
some definitions simpler, but the used algebra is certainly closer to what is needed for
a mapping to SQL than any of the other relational algebra styles.

10

5.1 Preliminaries

A relational algebra expression effectively defines a derived relationship type. For such
expressions two functions play a central role. The first function () is concerned with
the set of columns (attribute names) in this derived relationship. This function provides
the underlying structure (c.f. a sequence of roles in a normal relationship type) of the
derived relationship type resulting from the relational algebra expression. The second
function () with the actual population of the derived relationship type. The formal
signatures of these functions are:

In these definitions, is the set of relational algebra expressions, the set of at-
tributes names (column names) that can be used in the relational algebra expressions,
and the set of all instances that are allowed in the result of a relational algebra ex-
pression. Note that we presume the existence of an explicit NULL element in .

The signature of the first function () tells us that this function takes a relational
algebra expression as a parameter and returns a set of attribute names. These attribute
names are the column names of the resulting table. From a theoretical point of view
it is more elegant and more conceptual to see this as a set of attribute names rather
than a sequence. If we would model this as a list of attribute names, than the relational
schemas would not be the same as the relational schema ! In general,
however, we want to regard these to be the same! Therefore we model the header of a
relational algebra table as a set of attribute names.

The signature of the second function () is a bit more complex. This function should
return the population of the table that can be associated to a relational algebra expres-
sion. The relational algebra expression derives this population from the population
of the underlying conceptual schema. Therefore it needs a relational algebra expres-
sion and the current database population (an element from) as input parameters.
However, a third parameter is required. We allow for the use of correlated subqueries.
These correlated subqueries, like in SQL, need to be evaluated in the context of one
tuple from the surrounding query. For example, consider the SQL query:

SELECT department, name, pay
FROM employees x
WHERE pay

(SELECT AVG(pay)
FROM employees
WHERE department = x.department)

When evaluating the subquery, the reference to refers to a tuple in the
result from the surrounding query, i.c. a tuple from . The third parameter to

11

the function allows us to pass on such a tuple to the evaluation of a subquery. In
our formalisation a tuple from a relational algebra table is sees as a partial(!) function
from the set of attribute names to the possible instances.

In the relational algebra expressions we use in the context of ConQuer-92, we allowed
the roles from the underlying ORM schema to be used as attribute names. This is not
just allowed because we are trying to be friendly, but it is highly essential as we need to
be able to refer to the population of the conceptual schema! When generating an SQL
statement, these roles should be replaced by proper attribute names that are derived
from the names of the roles and object types. These names will indeed correspond to
the attribute names used for in the logical representation of the conceptual schema. For
the relational algebra level we effectively have: (but it does not mean that
all attributes are roles).

5.2 Denotational semantics

The semantics of relational algebra (and later the semantics of path-expressions and
ConQuer) are defined conform the style of denotational semantics (see e.g. [Sto77]).
In denotational semantics, the semantics of each syntactical construct (of the language
which’s semantics are being defined) is defined in terms of other syntactical constructs,
and ultimately in terms of isome underlying semantical domain. In our case the under-
lying semantical domain are the multisets and the populations of conceptual schemas.
An important role in denotational semantics is played by the environment, which can
be seen as representing the state of a program. In our case the environment of the first
semantics function is empty, but the environment of the second semantics function con-
sists of two parts. In the latter case, a relational algebra expression is evaluated in the
context (environment) of a conceptual database population and possibly a tuple from a
surrounding query.

In the style of denotational semantics, the construct which’s semantics are defined is put
between double brackets: and the environment between the traditional parenthe-
sis: . Conform this style of defining semantics we write and ,
where is the algebra expression which’s semantics are to be defined, is a popula-
tion, and is a tuple.

The actual semantics of a relational algebra expression , which is not a nested sub-
query, can now be expression as: , where is the conceptual database
population.

5.3 Projection

The first relational algebra operation we introduce is projection. In a projection the
columns of a relation can be (re)defined by means of expressions in terms of other

12

attributes. Therefore, a projection must provide a function
assigning expressions to attributes. is a set of arithmetic-expressions
of which the semantics is supposed to be provided by a function:

This function takes as input parameters an expression, the current conceptual database
population, and a tuple from any surrounding query. Later on in this section we define
this function in more detail.

The semantics of the projection operator can now be defined formally as:

.

In this definition we can see the tuple for subqueries in actual use. The tuple passing
mechanism is needed since the expressions in could quite well contain entire sub-
queries! The expression is the updated tuple in the context of relational algebra
expression . The original tuple was passed on by the surrounding query (if any)
of . Since may contain attribute names that are the same as in the surround-
ing query, these local names must overwrite the global names (simple scoping rules).
Therefore we pass the tuple parameter on to the evaluation of the expression. The
formal definition of the overwrite () function is:

Before we continue, we will give a part for part breakdown of the formal definition of
the projection. For each tuple in the result of , we need to evaluate the expressions
contained in . Therefore we unite these evaluations by

The actual evaluation of the expressions in leads to a single tuple, where the values
of the tuples are each evaluated in the context of the population and tuple :

.

As a simple example consider the projection: where we presume that
is the following table (this table will be used as a running example in the remainder

of this section):

x y z

1 2 ’a’
2 4 ’b’

13

This projection would lead to the table:

a b

3 ’a’
6 ’b’

Based on the projection operator three derived operators can be defined. An existing
relation can be extended with additional columns by means of the following operation:

where provides the definition of the additional columns,
the existing columns of are copied by , and .
The function is used to generate the proper expressions needed to leave the ex-
isting columns in-tact. Existing column definitions in are overwritten by the ones
provided in using the function. For example would lead to:

x y z a

1 2 1 3
2 4 2 6

Renaming existing attributes can be done by the following operation:

where provides the renaming, and .
An example is leads to:

a b z

1 2 ’a’
2 4 ’b’

Sometimes a set of existing attributes of a relation need to be removed. For this
purpose, the operation can be employed. The operation is identified by:

where For instance results in:

y z

2 ’a’
4 ’b’

14

5.4 Expressions

We now define the syntactical category in more detail. Let be a
constant, an attribute, a role, be an existing relational algebra expression, an
arithmetic operation, and be arithmetic-expressions, than the arithmetic-
expressions that can be used in the projection operations are:

Furthermore, as an abbreviation we can define: .
Note that only has a meaning if tuple is defined for , while
is defined only if tuple is defined for and the result is a tuple (i.e. a relationship
instance) which is defined for role . As an example,
yields:

a b

3 5
3 7

Note that the expressions with the functions such as , etc, are only allowed if the
underlying domains allow for this.

The above defined expressions can be directly (without using a projection operation
like in the example above) coerced into a relational algebra expression by:

5.5 Selection

The selection operation operates like a filter. It takes the tuples from the result
of , and returns them when condition is satisfied. The operation can be defined
formally by:

15

In this definition we can, again, see the tuple for the subqueries in actual use. The
is the updated tuple in the context of relational algebra expression . The con-

dition is an element of syntactic category of conditions: . This is a set
of conditions whose semantics is defined by the function:
Each condition is evaluated in the context of a conceptual database population and a
tuple passed on from any surrounding query.

5.6 Conditions

Using the above defined expressions we can define the syntactic category of condi-
tions in more detail. Let R be a binary relation over the underlying domains such
as , let S be a binary relation on multisets such as

, let , let be arithmetic-expressions, and
let be conditions, then we have the following rules:

5.7 Connection to the Conceptual Schema

The careful reader might observe that we do not yet have a connection between the re-
lational algebra expressions and the underlying conceptual schema. This connection is
provided by the following operator, which allows us to introduce a type into a relational
algebra expression. Let be an object type, and be an attribute name, then:

All this operation does is create a one-column table with column name . Each element
from the population of occurs only (and exactly) once in this table.

5.8 Advanced operations

As we are using multisets, the following operation is intended to ignore multiple oc-
currences when desired. It is the algebraic version of the SQL DISTINCT command.

16

The algebraic equivalent of the SQL GROUP BY statement is the following grouping
operator:

.

where and . This operation does a similar grouping
as in SQL on the attribute names provided in . As an example, let be:

a b

1 ’a’
2 ’b’
1 ’c’
2 ’b’

For , this would lead to:

a b

1
2

In our relational algebra we have the normal inner-join, as well as the left-join The
inner-join is formally identified by:

where is an abbreviation for and . The left-join is
defined as:

where , and .

Finally, for relational algebra expressions and , where , we can
define the following three operations which should be familiar from set theory:

17

For this latter class of operations it is essential to have because for
these operations the tuples must ’fit’ together with each other.

5.9 Non-value type instances

In the relational algebra definition as given in this section, instances of entity types (or
objectified relationship types) are treated like instances of value types. However, when
we translate the path expressions to SQL we should realise that we have to replace the
references to the abstract entity instances to concrete references to value types based
on the reference schemes.

For example, if is an object type with reference scheme ,
then whenever we use instances of to make comparisons, we have to replace
them by comparisons of the proper value types. Let and be overlap-
ping subtypes of , and let be a student and be a co-worker. In the relational
algebra we might write in a selection statement: . In SQL we should re-
alise that we have to split the and attribute names in two. This would lead to:

.

6 Path Expressions

Path-expressions are formal constructs for expressing derived relationship types by
closely following the underlying information structure. Path-expressions can be con-
structed from elements of the information structure (roles, object types), constants and
a number of operators. They are evaluated with respect to the current population of the
information structure. In its elementary form, a path-expression corresponds to a path
through the information structure, starting and ending in an object type.

In this section we discuss the abstract syntax of path expressions, the concrete seman-
tics is provided in the appendix. The difference between abstract syntax and concrete
syntax is that abstract syntax describes rules by which parse trees for the expressions in
the defined language can be build. This necessarily means that issues like ambiguities
in the parsing of the languages (an ambiguous grammar) are not relevant. A concrete
syntax on the other hand, is also concerned with parsing issues. As a result, an abstract
syntax will usually not contain disambiguating constructs like ’(’, ’)’.

The set of path-expressions for a given information structure , is denoted as .
The semantics for the path-expressions does not directly refer to a population itself.
This is exactly what we want since we need to generate SQL without already evalu-
ating the query! The semantics of path-expressions is therefore defined by translating

18

the path-expressions to relational algebra. The final query result of a path-expression is
then obtained by ’executing’ the resulting relational algebra expression (or SQL state-
ments) in the context of the current database population. The translation is done by the
function:

We define this semantics, again, using the style of denotational semantics. The envi-
ronment of the semantics function is a typing relationship () and a set

indicating which attributes (variables on the ConQuer-92 level) have
already been bound to an underlying type.

The relational algebra expressions used to express the semantics of path-expressions
always have at least two columns. These are the and column. The first column
represents the head (start) of the path-expression, and the second column represents
the tail (end) of the path-expression. Intermediate results of a path-expression can be
represented in a separate column by providing an explicit attribute name. Later in this
section we see a construct to introduce such extra columns.

In a ConQuer-92 expression, all variables must be of some type. Just as in the following
Pascal fragment the type of is , and is of type , variables in ConQuer-
92 expressions are types as well:

VAR
i: INTEGER;
j: REAL;

BEGIN
i := 1;
j := 1 + i;

END

The reason for using a typing relationship rather than a typing function, which means
that a variable may be of more than one type, will become clear in the remainder of
this section.

Obviously, the typing function has to be determined before the actual translation of a
path-expression to a relational algebra expression can be done. The typing is derived
by using the function:

This function is defined more formally in subsection 6.10. There it shall also become
clear why the typing is provided as a relationship over . An obvious require-
ment on path-expressions with respect to typing is:

19

requiring attributes to be in one type relatedness class only. This means that we do
allow variables to be of more than one type, but they must be of related types. Further-
more, all attributes occurring in a path should indeed be typed:

is exactly the set of attributes in

As of now we use as an abbreviation for .

During the evaluation of a path-expression, an attribute must always be bound to its
associated type. The notion of a bound variable stems from logic. For example, in
the formula the variable is not bound to any domain. It can range over all
individuals known in our universe. If is a set of individuals, then in the

is said to be bound to the domain . To make certain that all variables in ConQuer-
92 are bound, we sometimes need to explicitly bind an attribute to its proper type.
If is a typing, then this can converted into a function providing proper bindings of
attributes/variables to their types by the function:

.

The expression:

is a relational algebra expression which forces the attribute to be limited to instances
of the root types of the types of .

Finally, we also introduce a function:

which is intended to administer the possible combinations of types for the start and end
of a path-expression. As stated before, a path-expression basically corresponds to a
path in the conceptual schema connecting types. More complex path expressions will
correspond to sets of paths through the conceptual schema. As such, complex path ex-
pressions can have multiple start and end type combinations. The functions provides
us with these combinations. This function will allows us to make optimisations and
remove ambiguities in verbalisations. For example, if for a certain path expression
we have , it means that evaluates to the empty set in any
population.

6.1 Linear path-expressions

The first class of path-expressions we introduce are the linear path-expressions. These
are the linear paths as they may result from a point to point query ([Pro94b]) or query

20

by navigation ([Pro94a]). The linear path-expressions are called linear as they always
correspond to a single path through the conceptual schema.

Linear path-expression have two elementary building blocks. Each type and role from
the conceptual schema can be used as a linear path-expression. When a role used as
a linear path-expression it becomes a so-called role-entry as it provides an entry to a
fact type () from a type () via a role ().

These two basic building blocks lead to the following formal rules. If is a type,
a role, an existing path-expression, and each time a fresh attribute, then we can
define:

If is a type with population , then the path-expression leads to:

If is a fact type with , and ,
then for a path-expression we have:

Note that while on the relational algebra level attributes and roles could be used in-
terchangeably (as column names), on the path expression level they are to be treated
separately. In path expressions, roles correspond to connections between the player of
the role and the relationship type in which the role is involved, while attributes corre-
spond to variables.

The possible combinations of head and tail types for the basic constructions are given
by:

The first important complex construction on linear path-expressions allows us to re-
verse a (linear) path-expression. If we have a path from a type to , then reversing it

21

will lead to a path from to . Let be a path, then we have:

A special case of a reversed path is a reversed role. If is a role, then is a path-
expression (role-entry) as well. The reversal of leads to , and is referred to as a
role-exit, as it provides a path from fact type to type . As an example,
let be the role from the fact type as shown above, then results in:

Using concatenation, path-expressions may be combined into yet more complex ex-
pression. Let and be (linear) path-expressions and a fresh attribute, then we can
define:

This operation corresponds to a head/tail concatenation of two existing path expres-
sions. If and are path-expressions with results:

then the path expression leads to:

The set of linear path-expressions is exactly defined as the set of path-expressions that
can be build from the above constructions.

6.2 Complex operations

A (linear) path-expression corresponds to a path through the information structure. The
front and tail elements of such paths play a central role in the concatenation of path-
expressions. Sometimes we want to limit our interest to the front elements only. For

22

this purpose we introduce the following operation:

As we are working with multisets, the distinct operation must be present on the path-
expression level as well:

If returns the following table:

we have:

The cartesian product of path-expressions is identified by:

where

If we have the following results of path expressions:

then we have:

23

The following operations are taken from [HPW97]. Let and be path-expressions,
and , be fresh attributes, then:

For we have:

Let the path expressions and result in:

For this we would for example have:

The operation is used to select those head elements from such that all the tail
elements associated to that head element occur as head of . An example is:

which results in the presidents (and their hobbies) who have only hobbies that are also
hobbies of president Clinton. The operation, on the other hand, is used to select the

24

head elements from which have associated a set of tail elements that includes all
heads from . As an example consider:

This expression results in those presidents who have at least all hobbies that president
Clinton has. The and operation are combined by the operation. For instance,

leads to the presidents which have exactly the same set of hobbies as president Clinton.

With the operations we can select the head-tail combinations that are not returned
by :

where each time

As an example let and lead to:

then we have:

As a result, the operation allows us to select the connections between the head
elements in and tail elements o f that are not connected via . A concrete
example is:

On path-expressions we also have the normal set theoretic operations like , , and .
However, in the case of path-expressions special care has to be taken for with differing
attributes. In taking the union, intersection and difference of path-expressions, the path-
expressions involved are first coerced such that they have the same set of attributes.
After the union, intersection, or difference, has been calculated the information that

25

was removed during the coercion is added again.

where each time

Note the use of the left-join in the case of the union. In practice, we will make much use
of an intersection, union, and set difference. Therefore, we also introduce the following
abbreviations:

We also introduce the traditional binary operations: into the path-
expressions. Let in the following definition , let , be fresh
attributes, and let and be path-expressions, then:

where

If and are path expressions with results:

then we have:

26

The above definition in itself would not allow us to write: if is
an entity type identified through a value type . However, on the ConQuer-92
level we introduce an abbreviation mechanism which indeed allows us to write such
path-expressions.

As the new generation of path-expressions allows for intermediate results, we now also
introduce a path shuffle operation for path-expressions:

This operation allows us to make projections and operates in a way similar to that of the
SQL SELECT statement (therefore we shall not provide an elaborated example with
tables). As an concrete example of how this may look like in ConQuer-92, inspired by
[Hal95], consider:

resulting in the presidents and spouses of presidents who are a member of the republi-
can party.

To support the use of mix-fix predicate verbalisations in ConQuer, we introduce the
following construction (although it is basically an abbreviation) on path expressions.
Let be roles of the same fact types, and

Two special operations are introduced that take care of coercing simply identified en-
tity types to value types. This will allow us to write rather than

. The coercion operations, which are basically abbrevia-
tions, are identified by:

if

otherwise

if

otherwise

The and functions allow us to write: , rather than
$.

27

6.3 Scalar expressions

Scalar-expressions are regarded as a special kind of path-expression. However, we still
do introduce a separate class of scalar-expressions. Re-
garding scalar-expressions as a special class of path-expressions leads to an orthogonal
language. The reason for introducing a special subclass is that this allows us to op-
timise the mapping to relational algebra (and SQL). We return to this issue when we
introduce the semantic coercion rule from scalar-expressions to path-expressions.

The semantics of scalar-expressions are provided by:

Let be a constant, and be path-expressions, then this class of path-expressions is
provided as:

The operation counts the number of tuples in the result of , whereas , ,
and calculate the sum, minimum, maximum, and average of the head elements

of respectively.

Attributes can be used in scalar-expressions. Even more, the underlying components
of attributes over a nested type (objectified relationship type) may be accessed. So, if
is an attribute and a role, we have:

if

if

Functions can for obvious reasons be used in scalar-expressions as well. Let
be scalar-expressions, then we have:

For infix functions like we allow as an abbreviation for , but we prefer
to do this on the verbalisation level of ConQuer-92 rather than on the path-expression
level.

28

As stated before, scalar-expressions are special path-expressions, so we have for a
scalar-expression :

if

otherwise

where is the set of resulting types from scalar-expression . The latter set can be
calculated in a conventional way (like in any other programming language), using the
typing in as a base. As an example, let be a path-expression resulting in:

then the result of the expression would result in . When interpreted as
a path-expression, this would lead to:

The idea of the coercion from scalar-expressions to path-expressions is to apply it as
late as possible; i.e. evaluate a scalar-expression on the relational algebra level as
much as possible as a scalar-expression.

Functions can also be applied on path-expressions. In such a case, the function is
applied to each tuple separately. Let be path-expressions (which are not all
scalar-expressions), be fresh attributes, and a function symbol, then we
have:

where is the set of resulting types of function

Note that this path-expression returns the tail of as tail. If the types of the parameters
to function are also known, a stricter type check of the provided path-expressions can
be done. For instance, if is the type for the parameter at position , then we must have:

. As an illustration, let and lead to:

29

the will result in:

The limitation in the above definition that not all are scalar-expressions avoids an
ambiguity in parsing path-expressions. A scalar-expression of the form
is a scalar-expression iff are all scalar-expressions.

In ConQuer-92 we could now write (using the abbreviation for simply identified object
types):

which returns the area of a room in house . A more advanced example, taken from
[Hal95], is:

6.4 Conditions

Conditions are build from path-expressions and can be used as constraints on the
database, for conditions in a select statement (to be introduced below), and for yes-
no queries. Conditions, however, are defined as a special class of path-expressions in
the same way, and for the same reasons, as path-expressions.

The semantics of conditions are provided by:

Let S be a binary relation on multisets such as , let L be a
logical connector such as , let R be a relational operator such as

, let be a path-expression, scalar-expressions, and
conditions, then:

30

We also define exclusion of path-expressions and as: .

Using conditions we can also introduce a selection mechanism for path-expressions.
This selection mechanism works similar to the selection mechanism for relational al-
gebra expressions. It is defined as:

The extra joins are needed to bind any free attributes in . Note that even if a at-
tribute in is bound in , we still need to do the join as they are needed to evaluate
the condition in the first place. The attributes contained in are the ones which are
already bound by the ‘calling’ environment in the case of a subquery. It means that the
path-expression is to be used in a projection expression or a condition, and evaluated
in an environment where the given attribute has already received a value. Note: the
above path-expression only makes sense when: , i.e. all
attributes used in the condition must be typed.

As an example of the semantics of this operation, let yield:

the the expression would lead to:

A concrete example of the use of this operation in ConQuer-92 would be:

Two abbreviations based on the operations are:

As each condition is a path-expression we also need an implicit coercion to path-
expressions. Let be a condition, then:

31

where denotes the value type for boolean values, and true is a constant denotation
(and thus a path expression). For example, if is a path-expression yielding a non-
empty result, then the condition is true. Interpreted as a path expression, this
condition would then lead to the table:

Two other simple forms of these operations are of course and
. An example in ConQuer-92 of the use of this operation (taken from

[Hal95]) is:

Note that the colon symbol after signifies that the value of attribute is an
instance of the value type used to identify . The value of attribute on the other
hand is an instance of the non-value type .

What’s needed now is a diagram showing the implicit and explicit transitions between
path-expressions, scalar-expressions and conditions.

6.5 Gathering information

Normally, once a path-expression has been specified one wants a diverse set of infor-
mation to be returned for the resulting instances. For example, one would like to say:

For this purpose, the confluence operation is used. Since SQL-92 is not able to deal
with nested relations, we have changed the definition slightly as opposed to the one
used in [HPW93]. If are attributes, path-expressions, and

, then the new definition is:

where

32

Each time no is provided, will be used as a default. The ’s are used to
connect the ’s path-expressions to the . The path is the main query, whereas the

’s are used to ‘gather’ the required information. The gathered information is merged
into the result of the path-expression using attributes .

a1

hd

an

x1
xn tlP

Q1

Qn

Figure 5: The anatomy of a confluence operation

We do not provide an elaborated example for the confluence operation, but rather limit
ourselves to the illustration of what happens. This has been depicted in figure 5. The
path-expression is the base of the query, and the to are all pieces of informa-
tion we are interested in regarding the basic query . The ’s are path expressions
themselves, and the ’s provide the connection points between the ’s and the query

. The final result has to be represented in a table, and the attribute names provide
the names of the columns containing the extra information selected by the ’s

6.6 Group functions

SQL allows for the grouping of relations based on a given set of attribute names by
means of the GROUP BY construction. On the result of such a grouping a number
of scalar operations can be performed. In the path-expression language we allow for
similar constructs. Let be a new attribute, then:

33

where is an arbitrarily chosen attribute. Let ,
then we can also define.

sum

sum

sum

For each we have:

The grouping functions in the path-expression language operate in the same way as in
SQL. Therefore we will not provide an elaborated example of their semantics.

6.7 Sub-expressions

Sub-expressions are a simple, yet neat, way of introducing limitations on (linear) path-
expressions. The sub-expression concept is basically an abbreviation which is intro-
duced as:

This allows us to write . The line of is not disturbed by
the sub-expression. The sub-expression operates like a filter. When verbalising, the
sub-expression corresponds to a limitation that is put between parenthesis in natural
language. As we will be using parenthesis for disambiguation purposes, we suggest
the use of the symbol [and] to designate a sub-expression. As an example consider:

which corresponds to the intuitive formulation:

Deep thought. O ye smartest of computers. Shiniest machine of all.
Please,

list the person who is a coworker, during the year 1994, of

the company named ’Asymetrix’

34

6.8 Denotations

For denotations we introduce an extra set of abbreviations that allow us to write com-
pact denotations of instances, in particular for compositely identified types. Before
introducing these abbreviations we first need to introduce the syntactic category of
path expression denotations (). The following two rules are all rules
to build these denotations:

1. if , then

Any normal path-expression can be used to identify a simply identified object
type.

2. if , then

Sometimes we want to introduce attribute names that represent the abstract in-
stance rather than the concrete values. For example, in , the will
be a variable of type , whereas in will be a variable of type

(presuming a person is identified by a single name).

3. if then .

For the compositely identified object types, we can simply combine existing in-
stance denotations by making a list of them. Naturally, the order is dictated by
the order specified by the reference scheme for the type at hand.

We can now formally introduce the denotations into the path-expression language. We
actually do not have to introduce extra language constructs; the denotations are simply
a standard abbreviation mechanism.

For value types we have the simplest form of denotation. If ,
then we have:

For the introduction of abstract attributes we have the following abbreviation. If
then:

Each object type with a reference scheme defined for it (which could be a simple
one:one reference schema for the simply identified object types), the following abbrevi-
ation is introduced. For ,
we have:

If , the parenthesis may be omitted leading to ; so for instance to ,
or . Finally for relationship types, we have when

:

Again, if , the parenthesis may be omitted.

35

6.9 Macro mechanism

In ConQuer-92, we allow for macro definitions of path-expressions. Currently, how-
ever, we do not support (mutually) recursive macro definitions. In a next version re-
cursive definitions will be allowed, however, since the SQL-92 standard does not allow
for recursive queries, it does not make sense to support recursive definitions yet. For
recursive macros the advanced concept of transitive closure of fix-point is required,
and most current SQL implementations are not even capable of supporting SQL-92, let
alone SQL-3.

The macros are presumed to be provided by a function:

A macro definition is denoted as:

where ’s are attributes. An example macro definition in ConQuer-92 would be:

inv itm

inv itm inv itm

Macros are integrated into the language by the three rules below. Three rules are
needed as we allow for macro definitions of conditions, scalar-expressions, and path-
expressions in general. Let be a macro definition, then
the path-expression language can be extended according to the following three rules:

1. If and , then we have for scalar-
expressions :

2. If and , then we have for conditions
:

3. If (in other words, is a
’normal’ path-expression), and , and are fresh
attributes, and are path-expressions, then we have:

where .

36

As an example, would lead to:

This example also illustrates why, in the case of a ’normal’ path-expression, we need
to introduce the fresh attribute names ’s. If an instance of is selected as an invoice
number, then it is now enforced that this number is the same for the quantity and unit
price parts of the path-expression.

An expression of the form results in an expressions in which all oc-
curences of have been replaced by (for each). If there are such
that , then is replaced by only!

6.10 The typing function

At the beginning of this section we discussed the importance of the typing relation,
which determines of which type(s) the instances of attributes may be. In this subsection
we look at how we can derive this typing information by examining the parse tree of a
path-expression.

Given a path-expression , the typing function should search the parse tree of
for the following patterns:

Pattern Typing

where , and . These patterns are typical ways to bind
attributes in path-expressions to an underlying domain. In the right hand side of the
column we have provided the derived typing for the attribute.

Since it is not hard to write an algorithm to search a parse tree of a path expression for
the above patterns, we do not provide a more detailed formalisation.

6.11 Derivation Rules

In InfoModeler there is a clear need for the ability to define formalised derivation rules
which can be translated to an SQL statement. In this subsection we introduce two
classes of derivation rules.

37

The first class deals with the definition of derived relationship types. If is a (derivable)
relationship type with , a path-expression and
are attributes, then:

is a derivation rule for relationship type with semantics (in the context of a population
):

where typing is defined by:

For obvious reasons, the typing requirement:

should hold.

The population is the existing population of the database, whereas is the
updated population after applying the derivation rule. An example of what this will
look like in ConQuer-92 is:

The second class of derivation rules are concerned with ordinary (non relationship type)
derivable object types. If is a type, and a path-expression, then:

is a derivation rule for type with semantics:

where typing is derived by:

with the typing requirement:

In ConQuer-92 this would for instance lead to:

A special use of these derivation rules is of course for subtype definitions.

38

6.12 Constraints

Path-expressions, in particular that subset of the path-expressions that allows us to
formulate conditions, can be used to denote textual constraints. If
is a path expression and a population, then it can be evaluated as a constraint by
requiring:

The condition can now be interpreted as a constraint on population , which neces-
sarily needs to return a non-empty result.

6.13 Ordering the result of a path expression

The final aspect of the path-expression language we need to discuss is the ability to
order results. Ordering is not a part of the path-expressions themselves, as ordering
results in merely a presentation issue from a query language point of view. Therefore
we provide a small extension of the path-expressions language, which is not a path-
expression itself. In the next section, where we introduce ConQuer-92 itself, we will
discuss this in some more detail.

The result of a path-expression can be sorted by the following operation:

where and . The semantics of these functions will not be
provided in full detail here, but their definition is rather obvious

7 Syntax and Semantics of ConQuer-92

We have now finally reached the stage where we can start working on more readable
versions of path-expressions. To this end we first introduce naming functions for the
concepts from the conceptual schema used to build path-expressions. These functions
are the additional requirements on the meta-model with respect to verbalisations. This
means that the factbase structure must be extended accordingly.

Similarly to the path-expression level, the ConQuer level is initially specified using
abstract syntax. In appendix B the actual concrete syntax of ConQuer-92 is given. The
relation between the ConQuer level and the path-expressions level is that ConQuer pro-
vides the textual surface structure of the path-expressions while the path-expressions
represent the deeper structures.

39

7.1 Named concepts

Most of the concepts used to build ORM schemas will receive a name of some form.
The well known ones are types and roles. With respect to the conceptual schema,
path-expressions only require names for these two concepts and combinations thereof.

It should be noted that a role name is not the same as the predicate. A role name
described the role played by the player in the relationship type. For the types and roles
we introduce: giving the names of types, and
giving the names of roles. The type names must be unique, so we should have:

However, this does not have to hold for role names. Nevertheless, their names must be
unique within one relationship type:

Note that not every role must necessarily receive a name. Roles have two additional
ways of receiving a name. Especially when dealing with objectified relationship types,
it turns out to be useful to have reversed role names, i.e. connecting the relationship
type to the player rather than the other way around. These reverse names are provided
by: . We will use the role names for the verbalisation of a role entry,
while a reversed role name is used for a role exit. These reverse names must be unique
within one fact type as well:

A

B

C

p q r

F

Figure 6: Providing names for schema concepts

As an example, consider the schema depicted in figure 6. For this schema we could
have:

40

This will allow us to verbalise as: .
This is already much better readable than an SQL version would be. However, we will
add extra names to improve further on such verbalisations.

To allow for more elegant verbalisations we allow a user to provide prefixes and post-
fixes to type names. The prefixes and postfixes provide the glue to better connect partial
verbalisations. So an object type might receive as a prefix and as a postfix

, leading to . However, in some cases one would like to express
the fact that the person is not determined, i.e. one would like to say .
To this end we allow for two kinds of prefixes and postfixes. One for the determined
class and one for the undetermined class. In a later stage these classes can be extended
with plural and singular cases as well. For the moment the prefixes and postfixes are
provided by: , and .
Note that in the English language the determined and undetermined postfix will usually
be the same. However, in other languages this might not be the case. For our running
example the prefixes and postfixes could be:

For we could now have:
This verbalisation can be improved even further. Most connections between two object
types will involve two roles only. In our case, object type and
are connected via roles and (of relationship type). For this frequently occurring
class of connections the mix-fix predicate verbalisations can be used. The binary case
as given above is the most commonly occurring case, but these verbalisations are also
useful for ternaries and quarternaries. Formally, these mix-fix predicates are provided
by the relation:

For this naming function we must have:

requiring that the number of ‘gaps’ in the verbalisation corresponds to the number
of roles. Since a relationship type can have multiple mix-fix predicate verbalisations
associated is a relationship.

In the case of a relationship with an arity of higher than one we can also have mix-fix
predicates spanning only part of the relationship type. It is obvious that these names

41

allow us to formulate elegant paths through relationship types, including ones of higher
arity.

For our running example we could have the following mix-fix predicate verbalisations:

It goes without saying that not all combinations of roles within one relationship type
have to be named by the users. Only for role-sequences that are used frequently a mix-
fix predicate verbalisation makes sense. Our running example could now be verbalised
as:

which is in our opinion reasonably readable.

7.2 Basic information descriptors

In this subsection we define the syntactic category of information descriptors. The
information descriptors in ConQuer-92 correspond directly to the path-expressions on
the path-expression level. The semantics of ConQuer-92 information descriptors is
defined by a function:

This function does not take any extra parameters besides the ConQuer information
descriptor since this translation is just a matter of syntactic re-writing.

The names for types, and their prefixes lead to:

[P1]

[P2]

In the example we have , so we have . Fur-
thermore, since and , we
have

42

Note that in parsing we do not care at all about the determined or undetermined cases
for pre- and post-fixes (hence the free variable). In section 8, where we consider
verbalisations, we will indeed take this into consideration.

Attributes which are used as variables in ConQuer-92 information descriptors receive
a name via the function . Named attributes must have a unique name,
so this function must adhere to:

Since ConQuer does have a limited form of scoping (the function is the only oper-
ation leading to scoping of variables), we could reduce this claim that for all attributes
within a scope the above uniqueness of variable names must hold.

For using variables in the context of types we have the following rules:

[P3]

[P4]

If is an attribute with name , then for our running example we have:

The names given to roles and reversed roles lead to the following four rules:

[P5]

[P6]

[P7]

[P8]

For the running example we therefore have:

and

7.3 Complex information descriptors

In this section we introduce the operations that can be used to build more complex
information descriptors. The most important construct is concatenation:

43

[P9]

This construct allows us to concatenate:

to: .

To explicitly cater for subtypes and their selective effects on the result of a path expres-
sion, we introduce the construct:

[P10]

where and may be denotations or empty. As an example, let object type
have two (overlapping) subtypes: and . For s we store their
salary, and for s we store their hobbies. Then we could for instance have:

This expression has a differing semantics from:

as it does not limit the s to s.

The mix-fix predicate verbalisations are integrated into ConQuer-92 by the following
definition:

[P11]

to cater for any post-fix for the player of role , we also introduce:

[P12]

The path resulting from a mix-fix predicate verbalisation always leads from the head
of to the tail of , so from to .

Path reversal on the information descriptor level is verbalised as:

44

[P13]

The front elements of an information descriptor result from:

[P14]

A multiset result can be coerced to a set by:

[P15]

All binary operations of the path-expression level are present on the information de-
scriptor level. To this end we first define the relation as:

ConQuer-92 Operation Path Expression Operator

These operations are now integrated in ConQuer-92 by:

[P16]

The union, intersection, and set difference operations will usually be to restrictive since
the intersection is applied to at least the head and tail combinations. So if and
result in:

:
hd tl

1 2
2 3
2 4
1 8
3 4

:
hd tl

1 2
2 9
8 3
3 1

would lead for to:

hd tl

1 2

45

In general we want such operations to be applied to the head elements of paths only.
Therefore we introduce the operations:

ConQuer-92 Operation Path Expression Operator

For these operations we have:

[P17]

For we would have:

hd tl

1 1
2 2
3 3

The values in the result of information descriptors can be compared to each other us-
ing relational operators like . For this purpose we introduce the
operations, which is identified as:

ConQuer-92 Operation Path Expression Operator

For this class of operations we have:

[P18]

We are now able to write:

46

Finally, we introduce an inline projection operation on information descriptors that
allows us to do projections of existing information descriptor, while still treating the
result as an information descriptor.

[P19]

Note that must be larger than 1, and that if the subclause should be
dropped. Examples are:

leading to an information descriptor (with an underlying path-expression) that has as
head column and tail column .

7.4 Scalar expressions

On this level we obviously also have scalar-expressions. They are provided by the set
, and the semantics are provided as: .

Again, this is just a syntactic re-write function.

The first class of functions on expressions is contained in , which is defined by:

ConQuer-92 Function Function

[P20]

An example would be:

[P21]

47

Formally there should be a difference between a constant of the path-expression level,
which is an abstract mathematical object, and its verbalisation on the information de-
scriptor level. It is only for pragmatic reasons that we ignore this distinction in our
current formalisation.

[P22]

[P23]

Note that these last two rules only make sense when the variable is properly bound
to a type already.

Functions and operations are introduced for ConQuer-92 expressions as:

[P24] is a function symbol

[P25] is an infix operator symbol

Similarly to the path expression level, each expression is also an information descriptor:

[P26]

Functions can be applied to path-expressions. On the information descriptor level this
leads to the following verbalisation.

[P27] is a function symbol

[P28] is an infix operator symbol

Some simple examples are:

48

7.5 Conditions

We now define the set of condition: for ConQuer-92. Its semantics are
provided by the relation . We start with compari-
son operations of expressions. The value comparison operations we used on informa-
tion descriptors () can be used in conditions as well to compare the values
of expressions:

[P29]

An example would be:

For building information descriptors can be compared as well using a variety of set
comparison operators. Let be filled by:

ConQuer-92 Operator Path Expression Operator

For information descriptors we now have:

[P30]

As an illustration consider:

Conditions themselves can be combined in a number of ways. For obvious reasons,
these combining operations are based on the operations from logic. Let be
defined as:

49

ConQuer-92 Operator Condition Operator

We now have:

[P31]

[P32]

[P33] ˜

Conditions can be used, similarly as in SQL, be used for selections (restrictions). In the
case of ConQuer-92 selections can be used on information descriptors. The selection
operation is verbalised as:

[P34]

Besides the simple clause, we have a number of other verbalisations based on
this operation. Other verbalisations of the selection statement are:

[P35]

[P36]

[P37]

[P38]

50

[P39]

Some illustrative examples of the use of the operations were already provided
in the previous section.

Since on the path-expression level every condition is a path-expression, on the ConQuer-
92 level every condition is an information descriptor:

[P40]

Conversely, information descriptors can be coerced to conditions by:

[P41]

7.6 Gathering information

The verbalisation of the confluence operation is not a beauty. In practice we shall prefer
to use a graphical representation on screen. Furthermore, we also provide a version of
the confluence operation that is integrated with the to be introduced statement.

[P42]

where:

7.7 Group functions

We introduce the grouping related operations in two groups. The first two are intended
for counting the entire result of a grouped information descriptor, and the second group
is used to perform arithmetic operations on the grouping results.

The functions on groupings are verbalised as follows:

[P43]

51

[P44]

For the other grouping functions we introduce the relation as:

ConQuer-92 Operator Condition Operator

These operations are integrated in the language by:

[P45]

[P46]

7.8 Sub-expressions

The sub-expression concept is introduced on the information descriptor level as:

[P47]

As we will be using parenthesis for disambiguation purposes, we suggest the use of the
symbol [and] to designate a sub-expression, even on the information descriptor level.
An example was already given in the previous section.

7.9 Denotations

Now it is time to define a special class of constructs that can be used to denote instances
of types. The mechanics of the denotations has already been discussed on the path-
expression level. This class is represented as the set , and its semantics
are provided by: . The semantics defining rules
are:

[P48]

52

[P49]

[P50]

The denotations are now integrated in the class of information descriptors by:

[P51]

[P52]

7.10 Macros

Each macro definition results in extension of the ConQuer-92 language. On the path-
expression level, macros where introduced by the function. On the ConQuer
level, the language extensions resulting from these definitions are provided as:

[P53]

[P54]

[P55]

These definitions imply that macros are, from a syntactical point of view, treated as if
they were function symbols. As a result, in the grammar for ConQuer as provided in
the appendix we will not see any explicit notions for the macros; they are part of the
possible functions that are defined on ConQuer expressions.

In this section we do not revisit the derivation rules. Derivable types can be used in
path-expressions and ConQuer expressions just as any other type. When a ConQuer
query (and its underlying path-expressions) needs to be evaluated, then the derivation
rule for the derivable type needs to be substituted in the existing expression.

7.11 Parsing and ambiguities

Since this section defined the semantics of ConQuer-92 in terms of an abstract syntax,
we will not be confronted with ambiguities. However, one ConQuer-92 expression
might have more than one possible parse tree in terms of the syntax provided in the
appendix (ignoring issues of commutative or associative operations like).
These ambiguities will usually result from multiply used role names (like , , etc).
The different parse trees for one ConQuer expression correspond to different path-
expressions, which have a different semantics.

53

At the moment it is not certain whether users of the InfoAssistant tool will actually
type in complete ConQuer expressions themselves. If this is not going to be the case,
then we will never have to actually parse ConQuer expressions, which would avoid
any of these ambiguities all together. Nonetheless, when a further integration is made
between NUQL and ConQuer, the notion of ambiguities due to alternative parse trees
will become even larger. In the remainder of this subsection we discuss a way in which
our knowledge about the schema combined with the typing within the resulting path-
expressions can help us in deciding between alternative parse trees.

If is a ConQuer-92 expression (or a NUQL expression for that matter), and is a
parse tree for and is a different parse tree for , then to we can either associate
path expression or . If tree and are different, than this means that
we have an ambiguity on our hands! Using we can sometimes dismiss one (or both)
of the alternatives. If then is the likely alternative, and vice versa.
The reason for dismissing when lies in the fact that the interpretation
of expression as parse tree would lead to a path-expression which is structurally
empty. In other words, by looking at the schema (the relatedness of types), and looking
at how the types are connected in the path-expressions (using), it can be proven that
the path-expression will always lead to an empty result for any population of the
underlying schema.

If all alternatives lead to a structurally empty result, then ConQuer (or NUQL) expres-
sion is a structurally empty query formulation, and should be marked by the system
as an incorrect query. If a parsing ambiguity cannot be solved this way, the alterna-
tive interpretations need to re-verbalised and shown to the user. This latter process
is particularly useful as a feedback mechanism for translation of NUQL expressions
to path-expressions, as it allows us to show the possible interpretations of a NUQL
expressions in terms that are still close to natural language (the ConQuer expressions).

7.12 Normalisation

Let be an information descriptor. In the path expression certain patterns will
occur that can be optimised with respect to their verbalisation (to be discussed in the
next section), as well as the mapping to SQL. Let be a path expression (resulting
from parsing an information descriptor), and be its typing (so). In the
parse tree of we would now like to replace the following patterns:

1. replace where by

Note: is the notation for a binary mix-fix predicate!

2. replace where by

3. replace where by .

54

Note: if occurs while is not a value type, then this is not a semanti-
cally sensible path expression. will always return a value type instances, so
concatenating an expression to a non-value type always returns empty.

4. Replace for each pair the expression
by the expression .

Note that where is not replaced. The could be a
subtype of , and removal of from the path-expression would change its seman-
tics.

7.13 Listing results

The result of an information descriptor (via the path-expression and relational algebra
expression) is a bag. In most real life applications some order on this bag is required.
Therefore we should allow for sorting on top of ConQuer-92 information descriptors.
Note: projection of the results is an integrated part of the information descriptors.
These filters should be added on top of ConQuer expressions, and should not be a part
of it.

The last syntactic category we introduce is therefore the list specification (ListSpec)
class. Its semantics are expressed by the function . We do not provide a formal
semantics, as all what these operations do is take the bag resulting from an information
descriptor and order the results. If , then we have the following possible
list specifications:

[P56]

listing the results without enforcing an order

[P57]

listing the results in ordered in ascending order for the heads of ,

[P58]

listing the results in ordered in descending order for the heads of . However, some-
times users may want to order on other columns in the result than the head column. Let

, and and each
be a variables in where , then the general format of the
statement is:

[P59]

55

where if then fi. Note: we presume that there are two stan-
dard variables: and .

The columns that are actually printed by the list statement could still be non-value
types. For instance, would lead to a list of
the abstract instances of costumers rather than their costumer nr (presuming they are
identified through such a number). It should be clear that the statement must
replace the abstract costumer instances by the concretised costumer nrs. It will also be
these last nrs that would be used in the ordering operations.

Formally we presume that we have a function which
expresses each instance in terms of some set of values. We should of course have:

The exact definition of this function depends on the conceptual schema, the reference
schemas, and the current population. This function can then be used to denote the
instances resulting from the list statement. When mapping path expressions to SQL,
this function becomes implicit since the abstract instances are never stored, but rather
their denotations in terms of concrete values.

Finally, one may sometimes like to do a final projection on the columns in the table
resulting from an information descriptor. Therefore we extend the statement with
an optional projection clause. This would allow us to formulate:

In this case, the table resulting from

is projected on and /1000 using a normal projection operation as introduced in
section 5. In the projection list, we are allowed to use any scalar expression, where the
variables and are used as standard variable names for the head () and tail
() columns of the table resulting from the information descriptor.

8 Verbalisation Rules

This section discusses verbalisation rules for path-expressions. These rules should be
interpreted as a standardised verbalisation format for information descriptors.

Sometimes path-expressions will be generated automatically, e.g. when doing a point
to point query. In such a case, a verbalisation of the path-expression needs to be build
from scratch.

When a user enters an information descriptor manually then the user may have used
a verbalisation that can be improved upon. In that case, the information descriptor

56

specified by the user needs to be interpreted as a path-expression, and then re-verbalised
by the system.

When entering queries using NUQL, we may be confronted with a situation where one
NUQL query may have more than one interpretation in terms of a path-expression. If
this occurs, the different interpretations have to be verbalised using the rules stated in
this section, and shown to the user as alternatives.

For the verbalisation of path-expression we introduce the function:
. Again, we use the style of denotational semantics, so

we write: .

The parameters constituting the environment of the verbalisation function, and
provide some extra information used to make better verbalisations. The provides the
maximum set of types of the path expression (if any) directly to the left of the current
path expression. With to the left we mean here, with respect to concatenation . So if
and are types, in this means that is the set of types directly to the left of

and in the case of this is . Below we will see that this
information is required to prevent ambiguities in the verbalisations. We do not provide
a formalisation of a way to obtain ; it is simply a matter of analysing the parse tree of
tha path-expression and find it’s direct neighbours. Note, and this is a very important
case, that when we consider a path-expression without a left context, then
must be used. For example, if is a role-entry and is the complete path expression
we want to verbalise, then the left context is empty while .

The is simply the typing function for the attributes (variables) as we have seen before
when defining the semantics of ConQuer. Note that we presume that the input of this
is a path-expression (or rather a parse tree thereof) that has been normalised conform
the rules introduced in subsection 7.12.

8.1 Empty path expressions

Empty path expressions will only occur in the context of query by navigation. They
are verbalised as follows:

[V1]

8.2 Types and denotations

For simple occurrences of types in path expressions we have:

[V2]

57

From this rule follows that in general we will prefer to use the articles for the undeter-
mined case. For example: or rather than .
However, when a concrete instance of the type is given, our preference changes to the
determined case: . Therefore, instance denotations are ver-
balised by:

[V3]

The denotations themselves are verbalised by the function which
has a similar signature as the function.

[V4]

[V5]

[V6]

[V7]

Note due to the normalisation rules specified in subsection 7.12 we know that a pattern
where is a (value) type and a scalar-expression will have been changed to

.

8.3 Concatenation

For there are six separate verbalisation rules. When verbalising a path-expression,
we should try to apply them in the order given here.

The first rule is concerned with the verbalisation of a role-entry.

[V8]

The difficulty with a role entry is that a role name does not have to be unique
within a schema. For example, is by far the most popular role name. (Note:

is not a role name but a binary mix-fix predicate verbalisation; they will be dealt
with in the next subsection.) When verbalising a path-expression, however, we must
make sure that we refer to a unique role. This is why we need to check the uniqueness

58

of the role name within the context of the role-entry in the path-expression. This is
done by:

This clause checks whether there is another role with the same name (
) such that the context of the role entry cannot distinguish between them.

For a role-exit, the same considerations apply:

[V9]

If a role name, or a reverse role name, are not unique within their context, we are forced
to make these names unique in some way. We know that role names and reverse role
names are unique within the context of one fact type. So if a role name, or reversed
role name, is not unique we are forced to suffix this name with the fact type name. This
leads to the rules:

[V10]

[V11]

As the above verbalisations are independent of their context in a path-expression, they
are not defined in the context of a concatenation (). In this case, the last rule for
concatenation (see below) can be used.

When verbalising a concatenation of two types directly following each other we need
to introduce the connecting word . This is captured by the rule:

[V12]

where and may be denotations or empty.

Finally, the most generic rule is given below, which simply concatenates verbalisations:

[V13]

59

8.4 Mix-fix predicate verbalisations

The next class of verbalisation rules we introduce deal with mix fix predicates. Three
rules are introduced which should, again, be applied in the order in which they are
introduced. If a mix-fix predicate verbalisation is unique within its path-expression
context, then the following rule can be applied:

[V14]

where . The uniqueness require-
ment in this case is provided as:

When a mix-fix predicate verbalisation is not unique within its context, we are forced
to make the verbalisation unique by adding a suffix to the verbalisation. For this case
we have:

[V15]

which suffixes the first part of the verbalisation () with the name of the fact type
(). Usually, this latter rule will not be needed. Even for the most commonly used
verbalisation , the context will usually provide a good disambiguation.

If , then may be the result of a normalisation of . For these combi-
nations no mix-fix predicate might have been defined. For these (hopefully rare) cases
we introduce:

[V16]

Note that is always unique by itself.

8.5 Unary operations

The remaining verbalisation rules are now simple straightforward rules which basically
define the inverse of the semantics function for ConQuer as defined in the previous sec-
tion. We will not encounter any additional complications due to possible ambiguities.

For path reversal we have:

60

[V17]

The verbalisation of the unary operations is provided by :

Verbalisation Path Expression

The verbalisation rule is then:

[V18]

8.6 Binary operations

For the set based operations we defined two classes. The first class operates only on
the front elements. These are the operations:

Verbalisation Path Expression Operator

For these operations we have:

[V19]

Note that the above rule has presidence to the one below. This prevents us from getting

as a verbalisation where would have been more appropriate.

The set of set operations operating on the entire path was :

Verbalisation Path Expression Operator

with verbalisation rule:

61

[V20]

The value comparison were defined as:

Verbalisation Path Expression Operator

The verbalisation rule is then:

[V21]

8.7 Path re-shuffling

The path-reshuffler is verbalised by:

[V22]

8.8 Functions

For functions and operators we simply have:

[V23] is a function symbol

[V24] is an infix operator symbol

62

8.9 Selection

For the selection statements we have four rules. They should be tried to be applied
in the order of specification. The four rules will deal with selection statements of
increasing complexity.

[V25]

[V26]

[V27]

[V28]

Note that when a user enters an information descriptor they may choose to use any
of the above given verbalisations. The system should then normalise this when re-
displaying the path-expression on the screen.

8.10 Group functions

Grouping functions are again simply the inverse of the semantics function for ConQuer.
So we have:

[V29]

[V30]

63

For the other grouping functions we introduce the relation as:

Verbalisation Condition Operator

For this class of operations we have the following two verbalisation rules:

[V31]

[V32]

8.11 Gathering information

The confluence operation is verbalised as:

[V33]

where:

8.12 Sub-expressions

Sub-expressions hardly need any verbalisation:

[V34]

64

8.13 Scalar expressions

Scalar expressions are verbalised using . We define the
class of operations by:

Verbalisation Function

The verbalisation rule then becomes:

[V35]

Constants are verbalised as themselves:

[V36]

For variables we have:

[V37]

[V38]

For functions and operators we have:

[V39] is a function symbol

[V40] is an infix operator symbol

As scalar expressions can be use as path expressions we have:

[V41]

65

8.14 Conditions

The verbalisation of conditions is provided by . The value com-
parison operations we used on information descriptors () can be used in
conditions as well:

[V42]

Information descriptors can be compared as well using a variety of comparison opera-
tors. Let be filled by:

Verbalisation Path Expression Operator

For information descriptors we now have:

[V43]

Conditions can be combined in a number of ways. Let be defined as:

Verbalisation Condition Operator

66

We now have:

[V44]

[V45]

[V46] ˜

9 Miscelaneous

In this section we discuss two remaining issues. Firstly, an example parsing and trans-
lation process is provided. We show for a given ConQuer-92 expression its parse tree,
and the way in which it can be stored (a syntax tree).

The final part of this section discusses nine phases in which ConQuer can be gradually
be introduced in the InfoModeler product.

9.1 Example parsing process

Consider the example we have discussed earlier:

The parse tree resulting from this expression is shown in figures 7, 8, and 9.

We could store a ConQuer-92 expression as an entire parse tree, but it is usual to store
parse trees in a more condensed format in the form of a syntax tree. In appendix B were
the ConQuer-92 grammar is provided, we also provide a record structure for each key
syntactical category. If we now presume the following namings of types and mix-fix
predicate names in the underlying domain:

where , , and , then the

67

’WHERE’

<id>

Person who earns Salary x AND ALSO works for a Company c

WHERE x > THE AVERAGE Salary of a Person who works for c

<selection>

<id>

<bin op app>

<id>

<bin op app> ’AND ALSO’

<bin id op><id>

<bin id op>

<id>

<mfix>’’<tspec>

<tname>

’Person’ ’who’

<mfix part>

’earns’

’a’ ’Salary’

<tname>

<id>

<tspec>

<iref>

<vname>

’x’

’works for a Company c’ ’x > THE AVERAGE Salary of
a person who works for c’

<post fix>

<pre fix>

Figure 7:

<id>

’works for a company c’

<mfix>

<mfix part>

’works for’

<id>

<tspec>

’a’ ’Company’

<tname>

<iref>

<vname>

’c’

<pre fix>

Figure 8:

68

’x > THE AVERAGE Salary of a Person who works for c’

<scalexpr>

<condition>

<scalexpr>

<vname>

’x’

<valuecomp>

’<’ <function>

<bin op app>

<id>

<id><id>

<tspec>

<tname>

’THE AVERAGE’

’Salary’

<bin id op>

’’ <mfix>

<mfix part>

’of’

<id>

<bin op app>

<id>

<tspec>

<pre fix> <tname>

’a’ ’Person’

<bin id op>

’’

<id>

<mfix>

<post fix>

’who’

<mfix part>

’works for’

<id>

<scal expr>

<vname>

’c’

Figure 9:

69

above parse tree would lead to the following set of records:

This shows how we can actually store ConQuer-92 expressions. The record structures
have been set up in such a way that the ConQuer-92 expressions and their underlying
path-expressions can be stored in one single format.

For example, using the definition of the semantics of ConQuer-92, we can now simply
rewrite to a path-expression. This results in:

Operationally it means that we do not have to store the path-expressions separately.

9.2 Order of implementation

It is the aim of the InfoModeler team to release the first version of InfoModeler as
soon as possible, and then gradually increase the support of the ConQuer-92 language.
Below I have provided a list of phases. In the initial phases some non-terminals are
listed that will not yet be implemented in that phase. It means that in the grammar
for that phase, the mentioned non-terminal (and al other non-terminals solely used to
define it) is removed. I have tried to evenly divide the extra work involved between
each step as much as possible (based on my intuition), while also making sure the
resulting languages are still sensible.

70

Phase 1: Not yet implemented: shuffler, group accounting, sub expres-
sion, selection, confluence, denotations in type specifications
limited to simple constants and variables only, set comparisons in the condi-
tions.

Phase 2: Not yet implemented: group accounting, selection, confluence,
denotations in type specifications limited to simple constants and vari-
ables only, set comparisons in the conditions.

Phase 3: Not yet implemented: denotations in type specifications limited to
simple constants and variables only, set comparisons in the conditions.

Phase 4: ConQuer-92 is complete.

Phase 5: Tighter integration with NUQL.

Phase 6: Extensions of ConQuer-92.

10 Conclusions

In this report we have given a complete formal definition of the ConQuer-92 conceptual
query language. From a practical (= Asymetrix) point of view, this language is now
ready to be implemented in the InfoAssistant QueryTool. The next step is therefore
providing a compiler from ConQuer-92 to SQL-92.

For the longer term, more should be done to improve the quality of verbalisations
and make a closer integration of ConQuer-92 and NUQL. One could imagine a non-
ambiguous subset of ConQuer-92 which is used to verbalise path-expressions in a nor-
malised form (basically what happens already), and a more liberal ConQuer-92 lan-
guage from a user’s point of view. So a user is allowed to enter more natural lan-
guage like sentences which are then transformed by the system to a normalised format
(while resolving ambiguities). Furthermore, when SQL-3 becomes readily available
ConQuer-92 can be extended with forms of recursion.

From a theoretical (= Universities) point of view, the extensions to the original LISA-D
provided by ConQuer-92 will have to be incorporated into next versions of the strictly
academic LISA-D language. LISA-D is expected to see more extensions in the next
years. Our list of wishes includes support for uncertainty and relevance making a
closer integration with expert systems and information retrieval systems feasible. For
example:

’Pollution’, ’Rivers’

Furthermore, incorporation of more linguistic principles into the LISA-D language may
lead to better verbalisations.

71

A Grammar of Path Expressions

In this appendix we define the concrete syntax of path expressions. This syntax will
dictate the form and shape of the data structures used to store queries. Although queries
are presented to the user and entered by users in terms of ConQuer-92 expressions, they
will be stored as a combined form of path-expression parse trees and ConQuer-92 parse
trees.

As we are now dealing with concrete syntax as opposed to abstract syntax as defined in
section 6, the definitions given here do include parenthesis to allow for disambiguation
of the expressions.

A.1 Atoms

We distinguish a number of elementary parts of path-expression parse tree. The first
ones are concerned with schema elements. For each , , and
we have:

<type> ::=

<role> ::=

<attribute> ::=

Each constant is also an element of the path-expression language. So, if is a constant,
then:

<constant> ::=

Any function symbol can be used in a path-expression, so we have:
<function> ::=

In the language of path-expressions a number of operators can be used. These opera-
tions are:

<binary path operator> ::= <path concatenator> | <prod-
uct> | <path set comparitor>

| <value comparitor> | <set op-
erator>

<path concatenator> ::= ’ ’

<path selector> ::= ’ ’

<product> ::= ’ ’

<value comparitor> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’ | ’ ’
| ’ ’

<set operator> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’ | ’ ’

72

| ’ ’

<path set comparitor> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’

<unary path operator> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’

<group function> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’
| ’ ’ | ’ ’

<group counter> ::= ’ ’ | ’ ’

<logical connector> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’

<path function> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’ |
’ ’

<exists quantifier> ::= ’ ’

<path shuffler> ::= ’ ’

<path reverser> ::= ’ ’

<set comparitor> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’ | ’ ’ |
’ ’ | ’ ’

<order operator> ::= ’ ’

A.2 Linear Path Expressions

The first real class of path-expressions we introduce are the linear path expressions:

<linear path expression> ::=
<type> |
<role> |
<linear path expression> <path reverser> |
<linear path expression> <path concatenator> <linear path expression>

A.3 Path Expressions

The path-expressions in general are introduced below. Note that <path reverser>
is re-introduced for path-expressions in general. This is needed as a reversed linear path
expression is still a linear path-expression, and hence needs to be part of definition
of the linear path-expressions. Nonetheless, any path-expression in general can be
reversed.

73

<path expression> ::=
<linear path expression> |
<instance denotation> |
<path expression> <path reverser> |
<unary path operator> <path expression> |
<path expression> <binary path operator> <path expres-

sion> |
<path shuffler> ’(’ <path expression> ’,’ <attribute list> ’)’ |
<function> ’(’ <path expression list> ’)’ |
<path selector> ’(’ <option sequence> [’;’ <option>] ’)’ |
<group counter> ’(’ <path expression> ’,’ <attribute set> ’)’ |
<group function> ’(’ <path expression> ’,’ <attribute set> ’,’ <at-

tribute> ’)’ |
’<’ <role> ’,’ <role to path list>, ’,’ <role> ’>’ |
<path confluence> |
<sub expression> |
’(’ <path expression> ’)’ |
<scalar expression> |
<condition>

Note that any scalar expression or condition can simply be interpreted as a path-
expression, and are therefore part of the path-expressions.

<instance denotation> ::=
<type> ’:’ <denotation>

<denotation> ::=
<path expression> |
’!’ <attribute> |
’(’ <denotation list> ’)’

<denotation list> ::=
<denotation> [{’,’ <denotation>}...]

<attribute list> ::=
<attribute> [{’,’ <attribute>}...]

<attribute set> ::=
’{’ <attribute list> ’}’

<role to path list> ::=
<role> ’:’ <path expression> [{’,’ <role> ’:’ <path ex-

pression>}...]

74

<path confluence> ::=
’[’ <confluence element list> ’]’

<confluence element list> ::=
<confluence element> [{’,’ <confluence element>}...]

<confluence element> ::=
<attribute> ’:’ <path expression> ’:’ <attribute>

<sub expression> ::=
’[’ <path expression list> ’]’

<path expression list> ::=
<path expression> [{’,’ <path expression>}...]

<option sequence> ::=
<option> [{’;’ <option>}...]

<option> ::=
<path expression> ’;’ <condition>

A.4 Scalar expression

The next syntactic category we introduce are the scalar expressions.

<scalar expression> ::=
<constant> |
<path function> ’(’ <path expression> ’)’ |
<attribute> |
<attribute> ’.’ <role> |
<function> ’(’ <scalar expression list> ’)’ |
’(’ <scalar expression> ’)’

<scalar expression list> ::=
<scalar expression> [{’,’ <scalar expression>}...]

A.5 Conditions

The conditions are defined by:

<condition> ::=

75

<exists quantifier> <path expression> |
<path expression> <set comparator> <path expres-

sion> |
<scalar expression> <value comparator> <scalar expres-

sion> |
<condition> <logical connector> <condition> |
<negation> <condition> |
’(’ <condition> ’)’

A.6 Queries

Finally, the set of path-expression queries are identified by the following definitions:

<path expression query> ::=
<path expression> |
<order operator> ’(’ <path expression> ’,’ <order cri-

terion sequence> ’)’

<order criterion sequence> ::=
<order criterion> [{’;’ <order criterion>}...]

<order criterion> ::=
<attribute name> ’: Asc’ |
<attribute name> ’: Desc’

B Grammar of ConQuer-92

In this appendix we define the concrete syntax of ConQuer-92. As we are now dealing
with concrete syntax as opposed to abstract syntax as defined earlier, the definitions
given here do include parenthesis to allow for disambiguation of the expressions. In
this appendix we shall also discuss hierarchical record structures which can be used to
store the ConQuer-92 expressions in a hybrid form between ConQuer-92 syntax trees
and path-expression syntax trees.

B.1 Atoms

We distinguish a number of elementary parts of ConQuer-92 parse trees. The first
ones are concerned with schema elements. For each , ,

, , , and we have:
<type name> ::=

76

<role name> ::=

<reverse role name> ::=

<variable name> ::=

<prefix> ::=

<postfix> ::=

Each partial mix fix verbalisation leads to a mix fix part. So, if and
we have:

<mixfix verb part> ::=

For each constant we have:
<constant> ::=

For each function name of an arithmetic function we have:
<function name> ::=

For each binary arithmetic operation (each of which is also a function name!) we
have:

<bin operator> ::=

The predefined operators used in ConQuer-92 are divided in the following classes:
<concat> ::=

<distinctor> ::= ’ ’

<fronts selector> ::= ’ ’

<function> ::= ’ ’ | ’ ’ | ’ ’
| ’ ’ | ’ ’

<group function> ::= <function> | ’ ’
| ’ ’

<logical connector> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’ | ’ ’
| ’ ’ | ’ ’ | ’ ’ | ’ ’ | ’ ’

<path reverser> ::= ’ ’

<set comparitor> ::= ’ ’ | ’ ’ | ’ ’
| ’ ’

| ’ ’ | ’ ’ |
’ ’

| ’ ’ | ’ ’ | ’ ’
| ’ ’ | ’ ’ |

’ ’

77

| ’ ’

<set operation> ::= ’ ’ | ’ ’
| ’ ’

| ’ ’ | ’ ’
| ’ ’

| ’ ’ | ’ ’ | ’ ’
|’ ’

| ’ ’

<subtype selector> ::= ’ ’

<value comparitor> ::= ’ ’ | ’ ’ | ’ ’ | ’ ’
| ’ ’ | ’ ’ | ’ ’ | ’ ’
| ’ ’ | ’ ’ | ’ ’
| ’ ’

Note the definition of <concat>. In an information descriptor the concatenation
operator is empty. For example, and are information descriptors.
When concatenating we get , i.e. no operation is inserted.

For our convenience we introduce the following aggregate classes:

<binary information descriptor operator> ::=
<set operation> |
<value comparitor> |
<subtype selector> |
<bin operator> |
<concat>

<unary information descriptor operator> ::=
<path reverser> |
<fronts selector> |
<distinctor>

B.2 Information descriptors

The information descriptors are introduced as one large potpouri of options. Informa-
tion descriptors will be stored in case specific records. So for each of the non-terminals
in the definition of information descriptors we will define one specific record. When
actually implementing these record structures in C++, one might want to introduce a
general superclass for information descriptors with as subclasses the specific records
for each options.

78

<information descriptor> ::=
<type specification> |
<role reference> |
<constant occurrence> |
<mixfix predicate verbalisation> |
<unary operation application> |
<binary operation application> |
<shuffler> |
<function or macro application> |
<selection> |
<confluence> |
<group accounting> |
<sub expression> |
’(’ <information descriptor> ’)’ |
<scalar expression> |
<condition>

As we will introduce specialised records for each of the above syntactical classes, the
data structure for information descriptors is a disjunction of the records of the options.

The first kind of information descriptors deals with type specifications.

<type specification> ::=
[<prefix>] <type name> [<instance reference>]

<instance reference> ::=
<variable name> |
’:’ <denotation>

<denotation> ::=
<information descriptor> |
’!’ <variable name> |
’(’ <denotation list> ’)’

<denotation list> ::=
<denotation> [{ ’,’ <denotation> }...]

79

For type specification we have the following record structure:

In our notation we use to indicate an optional attribute, and for a repetitive
attribute. The record refers to a record for denotations. We need to introduce this
separate redord since denotations can be recursively defined. So we have:

We can refer to roles in two ways corresponding to role entries, and role exits. This
leads to:

<role reference> ::=
[<postfix>] <role name> |
<reverse role name>

Role references are stored in the following record:

where = .

Constant occurrences lead to the following non-terminal and record structure:

<constant occurrence> ::=
<constant>

A mix-fix predicate verbalisation basically consist of an optional postfix for the pre-
ceding type (if any), followed by a non-empty sequence of mix-fix predicate parts and
information descriptors. The syntax is therefore:

<mixfix predicate verbalisation> ::=
[<postfix>] [{ <mixfix verb part> <information de-

scriptor> }...]
<mixfix verb part> <information descriptor>

A mix-fix predicate verbalisation can be stored in the following record structure:

80

Both unary and binary operations for information descriptors lead to the following
relative easy definitions of the syntax and records:

<unary operation application> ::=
<unary information descriptor operator> <informa-

tion descriptor>

<binary operation application> ::=
<information descriptor> <binary information descrip-

tor operator>
<information descriptor>

Note: and are enumeration types consisting of the binary
information descriptor operator and unary information descrip-
tor operator respectively.

The Harlem Shuffle operation involves a non empty list of variable names and an in-
formation descriptor; the information descriptor to be re-shuffled. So we have:

<shuffler> ::=
’ ’ <variable name>

[’ ’ <variable name list>]
’ ’ <variable name> <information descriptor>

<variable name list> ::=
<variable name> [{’,’ <variable name>}...]

We store an occurrence of the shuffle operation as:

We would like to stress here again that macros for information descriptors are treated
as ordinary functions. So as a syntactic category they are treated indistinctively. This
leads to:

<function or macro application> ::=
<function name> ’(’ <information descriptor list> ’)’

The record structure is now:

81

Although selections can have different syntactical representations, they are basically a
sequence of conditions and information descriptor together with an optional default (if
none of the conditions yields true). When verbalising a selection, the preferences as
discussed in section 8 should be used. <selection> ::=

’ ’ <condition> ’ ’ <information descriptor> |
’ ’ <condition> ’ ’ <information descriptor> ’ ’

<information descriptor> |
<information descriptor> ’ ’ <condition> |
<alternatives sequence> ’ ’ <information de-

scriptor> |
<alternatives sequence>

<alternatives sequence> ::=
<alternative> [{’;’ <alternative>}...]

<alternative> ::=
<information descriptor> ’ ’ <condition>

The selection operation is stored in the following record:

In a confluence operation a number of information descriptors is provided selecting as-
pects we are interested in starting out from an existing information descriptor. Variable
names needed to be introduced to link the information descriptors yielding the aspects
we are interested in to the existing information descriptor (), and to provide names
for the resulting columns (). The syntax of this construct is captured as:

<confluence> ::=
<confluence element list> ’ ’ <information descrip-

tor>

<confluence element list> ::=
<confluence element> [{’,’ <confluence element>}...]

<confluence element> ::=
<information descriptor> [’ ’ <variable name>]

[’ ’ <variable name>] This operation is stored in
the following format:

82

Group accounting requires evolves around three syntactic classes. Firstly, a variable
selecting which column in the grouped information descriptor the group accounting
function needs to be applied is needed. Secondly, the actual information descriptor that
needs to be grouped is required. Thirdly, the variable names that need to be grouped
are needed. These observations lead to the following definition of the group accounting
operation:

<group accounting> ::=
<group function> [<variable> ’ ’] <information de-

scriptor>
’ ’ <variable name list> The record structure for

this operation is:

Finally, sub expressions are simply a list of information descriptors enclosed by square
brackets:

<sub expression> ::=
’[’ <information descriptor list> ’]’

<information descriptor list> ::=
<information descriptor> [{, <information descrip-

tor>}...]

We store this as:

B.3 Scalar expression

The scalar expressions of ConQuer-92 are build from five main classes We will not
introduce special syntactic categories for these classes of scalar expressions. We will,
however, discuss the record structures needed to store these classes separately.

<scalar expression> ::=
<constant> |
<function> ’(’ <information descriptor> ’)’ |
<variable name> [’.’ <role name>] |
<function or macro name> ’(’ <scalar expression list> ’)’ |
<scalar expression> <bin operator> <scalar expression> |
’(’ <scalar expression> ’)’

83

<scalar expression list> ::=
<scalar expression> [{’,’ <scalar expression>}...]

The record structure for scalar expressions is a disjunction of five alternatives:

The alternatives are provided as:

B.4 Conditions

The conditions consist of six main classes. The syntax is provided as:

<condition> ::=
’ ’ <information descriptor> |
<information descriptor> <set comparitor> <infor-

mation descriptor> |
<scalar expression> <value comparitor> <scalar ex-

pression> |
<condition> <logical connector> <condi-

tion> |
<function or macro name> ’(’ <condition list> ’)’ |
<negated condition> |
’(’ <condition> ’)’

<negated condition> ::=
’ ’ <condition> |
’˜’ <condition>

The record structure for conditions is identified by:

84

The alternatives are defined by:

Note: , and are enumeration types contain-
ing all set comparitor, value comparitor and logical connectors
respectively.

B.5 List statement

The list statement is defined by the following definitions:

<list statement> ::=
’ ’ [<scalar expression list> ’ ’]

<information descriptor> [<order specification>]

<order specification> ::=
’ ’ <order> |
’ ’ <order list>

<order> ::=
’ ’ | ’ ’

<order list> ::=
<order item> [{’,’ <order item>}...]

85

<order item> ::=
<variable name> <order> |
’ ’ <order> |
’ ’ <order>

A list statement can be stored in the following record structure:

Even though the list statement allows us to use and as an
ordering specification without referring to a specific variable name, this absence implic-
itly refers to the head column of the table resulting from the information descriptor.

References

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, vol-
ume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, Amsterdam, The Netherlands, Revised Edition, 1984.

[Hal95] T.A. Halpin. Conceptual Schema and Relational Database Design.
Prentice-Hall, Sydney, Australia, 2nd edition, 1995.

[HP95] T.A. Halpin and H.A. Proper. Subtyping and Polymorphism in Object-Role
Modelling. Data & Knowledge Engineering, 15:251–281, 1995.

[HPW93] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal def-
inition of a conceptual language for the description and manipulation of
information models. Information Systems, 18(7):489–523, October 1993.

[HPW94] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. A Concep-
tual Language for the Description and Manipulation of Complex Informa-
tion Models. In G. Gupta, editor, Seventeenth Annual Computer Science
Conference, volume 16 of Australian Computer Science Communications,
pages 157–167, Christchurch, New Zealand, January 1994. University of
Canterbury.

[HPW97] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Exploiting Fact
Verbalisation in Conceptual Information Modelling. Information Systems,
22(6/7):349–385, September/November 1997.

[Lev79] A. Levy. Basic Set Theory. Springer-Verlag, Berlin, Germany, 1979.

[Lew85] A. Lew. Computer Science: A Mathematical Introduction. Prentice-Hall,
Englewood Cliffs, New Jersey, 1985.

86

[Par90] H. Partsch. Specification and Transformation of Programs - a Formal Ap-
proach to Software Development. Springer-Verlag, Berlin, Germany, 1990.

[Pro94a] H.A. Proper. Generating significant examples for conceptual schema val-
idation. Interactive Query Formulation using Query By Navigation 94-4,
Asymetrix Research Laboratory, University of Queensland, Australia, 1994.

[Pro94b] H.A. Proper. Interactive query formulation using point to point queries.
Confidential Asymetrix Research Report 94-1, Asymetrix Research Labo-
ratory, University of Queensland, Australia, 1994.

[Sto77] J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Semantics. MIT Press, Cambridge, Massachusetts,
1977.

87

