
Overview

Computer Supported Query Formulation
Confidential

Asymetrix Report 94-5

H.A. Proper
Asymetrix Research Laboratory

Department of Computer Science
University of Queensland

Australia 4072
E.Proper@acm.org

Version of June 23, 2004 at 10:28

PUBLISHED AS:

H.A. Proper. An overview of computer supported query formulation. Asymetrix
Research Report 94-5, Asymetrix Research Laboratory, University of Queens-
land, Brisbane, Australia, 1994.

1 Introduction

Most present day organisations make use of some automated information system. This
usually means that a large body of vital corporate information is stored in these infor-
mation systems. As a result, an essential function of information systems should be the
support of disclosure of this information.

We purposely use the term information disclosure in this context. When using the
term information disclosure we envision a computer supported mechanism that allows
for an easy and intuitive formulation of queries in a language that is as close to the
user’s perception of the universe of discourse as possible. From this point of view,
it is only obvious that we do not consider a simple query mechanism where users

1

have to enter complex queries manually and look up what information is stored in a
set of relational tables. Without a set of adequate information disclosure avenues an
information system becomes worthless since there is no use in storing information that
will never be retrieved.

An adequate support for information disclosure, however, is far from a trivial problem.
Most query languages and query mechanisms do not provide any support for the users
in their quest for information. Most of these existing mechanisms can hardly be called
disclosure mechanisms as they do not provide users any support during the formulation
process. Furthermore, the conceptual schemata of real-life applications tend to be quite
large and complicated. As a result, users may easily become lost in conceptual space
and they will end up retrieving irrelevant (or even wrong) objects and may miss out on
relevant objects. Retrieving irrelevant objects leads to a low precision, missing relevant
objects has a negative impact on the recall ([SM83]).

The disclosure of information stored in an information system has some clear paral-
lels to the disclosure problems encountered in document retrieval systems. To draw
this parallel in more detail, we quote the information retrieval paradigm as introduced
in [BW92]. The paradigm starts with an individual or company having an informa-
tion need they wish to fulfil. This need is typically a vague notion and needs to be
made more concrete in terms of an information request (the query) in some (formal)
language. The information request should be as good as possible a description of the
information need. The information request is then passed on to an automated system,
or a human intermediary, who will then try to fulfil the information request using the
information stored in the system. This is illustrated in the information disclosure, or
information retrieval paradigm, presented in figure 1 which is taken from [BW92].

We now briefly discuss why the information retrieval paradigm for document retrieval
systems is also applicable for information systems. For a more elaborate discussion on
the relation between information systems and document (information) retrieval systems
in the context of the information retrieval paradigm, refer to [Pro94a]. In the paradigm,
the retrievable information is modelled as a set K of information objects constituting
the information base (or population).

In a (multi-media) document retrieval system the information base will be a set of
multi-media documents ([SM83]), while in the case of an information system the in-
formation base will contain a set of facts conforming to a conceptual schema (although
this could be multi-media as well). Each information object o ∈ K is characterised
by a set of descriptors X (o) that facilitates its disclosure. The characterisation of in-
formation objects is carried out by a process referred to as indexing. In an information
system, the stored objects (the population or information base) can always be identified
by a set of (denotable) values, the identification of the object. For example, an address
may be identified as a city name, street name, and house number. The characterisation
of objects in an information system is directly provided by the reference schemes of
the object types.

The actual information disclosure is driven by a process referred to as matching. In

2

document retrieval applications this matching process tends to be rather complex. The
characterisation of documents is known to be a hard problem ([Mar77], [Cra86]), al-
though newly developed approaches turn out to be quite successful ([Sal89]). In infor-
mation systems the matching process is less complex as the objects in the information
base have a more clear characterisation (the identification). In this case, the identifica-
tion of the objects (facts) is simply related to the query formulation q by some (formal)
query language.

Information

Need

Information

Request

q

Information

Base

K

Character-

isation

X

Formulation
 Matching
 Indexing

Figure 1: The information retrieval paradigm

The remaining problem is the query formulation process itself. An easy and intuitive
way to formulate queries is absolutely essential for an adequate information disclosure.
Quite often, the quest from users to fulfil their information need can be aptly described
by ([Bru93]):

I don’t know what I’m looking for, but I’ll know when I find it.

In document retrieval systems this problem is attacked by using query by navigation
([BW92], [Bru93]) and relevance feedback mechanisms ([Rij89]). The query by nav-
igation interaction mechanism between a searcher and the system is well-known from
the Information Retrieval field, and has proven to be useful. It shall come as no sur-
prise that these mechanisms also apply to the query formulation problem for infor-
mation systems. In [BPW93], [BPW94], [HPW94b], [Pro94a] such applications of
the query by navigation and relevance feedback mechanisms have been described be-
fore. When combining the query by navigation and manipulation mechanisms with the
ideas behind visual interfaces for query formulation as described in e.g. [ADD+92]
and [Ros94], powerfull and intuitive tools for computer supported query formulation

3

become feasible, resulting in improved information disclosure. Such tools will also
heavily rely on the ideas of direct manipulation interfaces ([Sch83]) as used in present
day computer interfaces.

One important step in the improvement of the information disclosure of information
systems, is the introduction of query languages on a conceptual level. These lan-
guages allow for the formulation of queries in terms common to the users, i.e. the
verbalisations of the types in the conceptual schema. Examples of such conceptual
query languages are RIDL ([Mee82]), LISA-D ([HPW93], [HPW94a]), and FORML
([HHO92]). By letting users formulate queries on a conceptual level, users are safe-
guarded from having to know the exact mapping to internal representations (e.g. a set
of tables which conform to the relational model) to be able to formulate queries in a
non conceptual language such as SQL. The next step is to introduce ways to support
users in the formulation of queries in such conceptual query languages (CQL).

2 A New Generation of Formulation Mechanisms

In line with the above discussed information retrieval paradigm and the notion of rel-
evance feedback, a query formulation process (both for a document retrieval system,
and an information system) can be said to roughly consist of the following four phases:

1. The explorative phase. What information is there, and what does it mean?

2. The constructive phase. Using the results of phase 1, the actual query is formu-
lated.

3. The feedback phase. The result from the query formulated in phase 2 may not
be completely satisfactory. In this case, phases 1 and 2 need to be re-done and
the result refined.

4. The presentation phase. In most cases, the result of a query needs to be incorpo-
rated into a report or some other document. This means that the results must be
grouped or aggregated in some form.

Depending on the user’s knowledge of the system, the importance of the respective
phases may change. For instance, a user who has a good working knowledge of the
structure of the stored information may not require an elaborate first phase and would
like to proceed with the second phase as soon as possible.

In the research for the InfoAssistant product, we try to integrate a palette of comple-
mentary mechanisms to formulate queries on a conceptual level. These mechanisms
are the following:

4

query by navigation This mechanism has been introduced in [BPW93], [PW95] and
[Pro94a]. The idea behind this mechanism is to shape a conceptual schema,
which is essentially a graph, as a hypertext and letting users formulate (part of)
their information need by navigating through this hypertext. This mechanisms
is particularly suited for those users who do not have a clear idea of what infor-
mation is stored in the information system as it is able to truely guide the user
through the (structure of the) stored information.

A precursor of the query by navigation mechanism for information systems exists
for information retrieval systems ([Bru93]). In expiriments it was shown that in
the IR case, this mechanism helps novice users in finding their way around the
stored information, without hampering expert users ([BBB91]).

All research that remains to be done in this area is some tuning and adapting the
existing (academic) ideas to the applied situation in InfoAssistant.

query by construction This mechanism has also been discussed before in [BPW93],
[PW95] and [Pro94a]. This mechanism was born out of the observation that the
results of a query by navigation sessions are relatively simple queries without
advanced operations such as grouping, intersections, counting, etc. Extending
the query by navigation mechanisms with such operations would have led to an
unacceptable increase in complexity. Therefore the introduction of the query by
construction as an additional mechanism was chosen.

The query by construction mechanism is basically a syntax directed editor which
allows a user to combine the query particles resulting from query by navigation
(and the three additional mechanisms discussed below) sessions to be combined
into complex queries using the more advanced operations.

Research-wise, this part is finished as there is not much research needed for a
syntax directed editor

point to point queries The point to point queries originated from a rough idea from
J. Harding. A point to point query starts by selecting two or more object types
from a conceptual schema. Then the system should return a list of possible
(non cyclic) paths through the information structure between the specified object
types. For obvious reasons, the paths in this list should be ordered according to
some relevance criterion.

This style of querying corresponds to a situation in which users know some as-
pects (object types) about which they want to be informed, but do not yet know
the exact details of their information need and the underlying information struc-
ture. The query by navigation mechanism, on the other hand, is intended to
support users who do not have an overview of the stored information.

In [Pro94b] this mechanism is discussed and formalised in full detail.

spider queries This mechanism originated from a discussion with L. Delano. Users
quite often simply want to know all information about instances of an object

5

type x. For this purpose the spider queries were introduced. A crucial aspect of
spider queries is of course limiting the all information as users probably do not
want to be confronted with a listing of all information stored in the information
system.

The idea behind spider queries is to start out from one object type, and to as-
sociate all information that is relevant to this object type. The essential part of
a spider query is selecting the object types in the direct suroundings of the ini-
tial object type that are considered to be relevant, thus limiting the amount of
information returned to the user.

This style of querying corresponds to a situation where users only know about
the existance of some object types in the conceptual schema about which they
would like to be informed.

A complete discussion and formal treatment of this mechanism can be found in
[Pro94b].

natural language queries A more commonly known mechanism for computer sup-
ported query formulation are (semi) natural language query formulation systems.
These mechanisms try to interpret sentences in a semi-natural language format
and generate an appropriate query in SQL.

Our aim is to try and integrate these ideas with the newly added formulation
mechanisms. One important aspect of this integration is that it would allow us
to interpret the natural language sentence, and then automatically formulate a
query in a conceptual query language rather than SQL. This would certainly put
the user in a much better position to validate the resulting query than to confront
users with an SQL query.

A natural language formulation mechanism is usefull for those users who know
what information is stored in the information system, but who do not know the
exact names of the types. The flexibility of a semi-natural language would then
cater for this.

In the remainder of this overview report we discuss some example session using the
different disclosure avenues. This should give a more hands-on idea of what these
mechanisms are about.

3 An Example Session

In this section we discuss a sample session using the query formulation component of
InfoAssisant. The discussed example operates on a conceptual schema for the adminis-
tration of the election of American presidents. The example schema itself is not shown;
the structure of the domain will become clear from the sample session. Note that the

6

quality of the verbalisations of paths expressions used in the examples in this section
should be improved. However, this is the subject of further research.

In figure 2, a possible screen is depicted for building queries using a point to point
query mechanism. The upper window is concerned with the point to point query itself,
whereas the lower window contains the complete query under construction. When
specifying a point to point query a user specifies a sequence of object types: the points.
For each point, the user is offered a listbox containing all object types present in the
conceptual schema. The order of the object types in the listbox should preferably be
based on some notion of conceptual importance ([CH94]). In figure 3 an existing point
to point query path from president to election is extended with another point.

After all points of the point to point query have been specified, the point to point query
can be transformed into a proper query (i.e. a path through the conceptual schema) by
pressing the Go! button in the point to point query window. In figure 4, this process is
illustrated. The sample PPQ involves three points. Therefore, two paths through the
conceptual schema will result. We now shift our attention from the point to point query
window to the query by construction window. Note that the small box containing the
PPQ abbreviation is now replaced by the paths resulting from the point to point query
(i.e. President winning election which resulted in nr of votes). The system initially inserts
a most likely path. The user can, however, select alternative paths using a listbox.
Note that not all alternative paths between the two points are listed in the listbox. The
reason for this is the NP completeness of the path searching problem. To avoid the
NP completeness problem, only the best paths are listed initially. However, potentially
all paths can be selected (which still remains NP complete) by repeatedly selecting the
MORE option. In the remainder of this article we will discuss this in more detail.

Since every path resulting from a query by navigation session connects two points
in the conceptual schema, any path through the conceptual schema displayed in the
query by construction screen can be used as a starting point for a query by navigation
session, and vice versa. This is illustrated in figure 5. In this session, the user has se-
lected the box which contains the two paths politician is president of administration and
inaugurated in year for a query by navigation session. The upper window now displays a
node in the query by navigation session, with the path politician is president of administration inaugurated in year

as its focus. If the user had selected the inaugurated in year listbox, the initial focus
would have been administration inaugurated in year.

The query by construction window in figure 5 basically offers a syntax directed editor.
In the left part of the window all possible constructs from the query language are listed.
In our examples we have used the constructs defined in LISA-D. Once the FORML
and LISA-D languages have been merged, a more complete language for the query by
construction part will result.

Next we discuss a session involving a spider query. We start out from an existing
query in a query by construction window, which could have been constructed using a
query by navigation querie or a point to point query. Note that this could also be single
object type, e.g. politician. The spider query mechanism adds one important aspect to

7

the query by construction window, the spider button: . When a user presses this
button, the system calculates the spider query of the object type directly to the right of
the button. This is illustrated in figure 7. The system allows for the removal of parts of
the resulting spider query that are not considered to be relevant by the user. Suppose
the user is not interested in administration is headed by and election won by, then these
paths can be deleted, which leads to the screen depicted in figure 8.

It is now interesting to see that a query essentially is a double tree with a shared root
(politician in the example). Furthermore, the leaves on the tree resulting from the spider
query can be extended further if desired by commencing new spider queries. Finally,
since the result of a spider query is constructed from path expressions as well, these
expressions have the

�
associated that can be used to select alternative paths between

the head and tail object types. Furthermore, the paths can also be used as a starting
point of a query by navigation session. This latter posibility is illustrated in figure 9.

asy

References

[ADD+92] A. Auddino, Y. Dennebouy, Y Dupont, E. Fontana, S. Spaccapietra, and
Z. Tari. SUPER - Visual Interaction with an Object-based ER Model.
In G. Pernul and A.M. Tjoa, editors, 11th International Conference on
the Entity-Relationship Approach, volume 340–356 of Lecture Notes in
Computer Science, pages 423–439. Springer-Verlag, 1992.

[BBB91] R. Bosman, R. Bouwman, and P.D. Bruza. The Effectiveness of Navi-
gable Information Disclosure Systems. In G.A.M. Kempen, editor, Pro-
ceedings of the Informatiewetenschap 1991 conference, Nijmegen, The
Netherlands, 1991.

[BPW93] C.A.J. Burgers, H.A. Proper, and Th.P. van der Weide. Organising an In-
formation System as Stratified Hypermedia. In H.A. Wijshoff, editor, Pro-
ceedings of the Computing Science in the Netherlands Conference, pages
109–120, Utrecht, The Netherlands, EU, November 1993.

[BPW94] C.A.J. Burgers, H.A. Proper, and Th.P. van der Weide. An Information
System organized as Stratified Hypermedia. In N. Prakash, editor, CIS-
MOD94, International Conference on Information Systems and Manage-
ment of Data, pages 159–183, Madras, India, October 1994.

[Bru93] P.D. Bruza. Stratified Information Disclosure: A Synthesis between Infor-
mation Retrieval and Hypermedia. PhD thesis, University of Nijmegen,
Nijmegen, The Netherlands, EU, 1993.

[BW92] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for
Information Disclosure. The Computer Journal, 35(3):208–220, 1992.

8

[CH94] L.J. Campbell and T.A. Halpin. Abstraction Techniques for Conceptual
Schemas. In R. Sacks-Davis, editor, Proceedings of the 5th Australasian
Database Conference, volume 16, pages 374–388, Christchurch, New
Zealand, January 1994. Global Publications Services.

[Cra86] T.C. Craven. String Indexing. Academic Press, London, United Kingdom,
1986.

[HHO92] T.A. Halpin, J. Harding, and C-H. Oh. Automated Support for Subtyp-
ing. In B. Theodoulidis and A. Sutcliffe, editors, Proceedings of the Third
Workshop on the Next Generation of CASE Tools, pages 99–113, Manch-
ester, United Kingdom, May 1992.

[HPW93] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal def-
inition of a conceptual language for the description and manipulation of
information models. Information Systems, 18(7):489–523, October 1993.

[HPW94a] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. A Concep-
tual Language for the Description and Manipulation of Complex Informa-
tion Models. In G. Gupta, editor, Seventeenth Annual Computer Science
Conference, volume 16 of Australian Computer Science Communications,
pages 157–167, Christchurch, New Zealand, January 1994. University of
Canterbury. ISBN 047302313

[HPW94b] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Support-
ing Information Disclosure in an Evolving Environment. In D. Karagian-
nis, editor, Proceedings of the 5th International Conference DEXA’94 on
Database and Expert Systems Applications, volume 856 of Lecture Notes
in Computer Science, pages 433–444, Athens, Greece, EU, September
1994. Springer Verlag, Berlin, Germany, EU. ISBN 3540584358

[Mar77] M.E. Maron. On Indexing, Retrieval and the Meaning of About. Journal
of the American Society for Information Science, 28(1):38–43, 1977.

[Mee82] R. Meersman. The RIDL Conceptual Language. Research report, Inter-
national Centre for Information Analysis Services, Control Data Belgium,
Inc., Brussels, Belgium, 1982.

[Pro94a] H.A. Proper. A Theory for Conceptual Modelling of Evolving Application
Domains. PhD thesis, University of Nijmegen, Nijmegen, The Nether-
lands, EU, 1994. ISBN 909006849X

[Pro94b] H.A. Proper. Interactive query formulation using point to point queries.
Asymetrix Research Report 94-1, Asymetrix Research Laboratory, Uni-
versity of Queensland, Brisbane, Australia, 1994.

9

[PW95] H.A. Proper and Th.P. van der Weide. Information Disclosure in Evolving
Information Systems: Taking a shot at a moving target. Data & Knowledge
Engineering, 15:135–168, 1995.

[Rij89] C. J. van Rijsbergen. Towards an information logic. In Proceedings of the
12th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 77–86, Cambridge, Massachusetts,
United States, June 1989. ACM Press.

[Ros94] P. Rosengren. Using Visual ER Query Systems in Real World Applica-
tions. In G.M. Wijers, S. Brinkkemper, and T. Wasserman, editors, Pro-
ceedings of the Sixth International Conference CAiSE’94 on Advanced In-
formation Systems Engineering, volume 811 of Lecture Notes in Computer
Science, pages 394–405, Utrecht, The Netherlands, June 1994. Springer-
Verlag.

[Sal89] G. Salton. Automatic Text Processing–The Transformation, Analysis, and
Retrieval of Information by Computer. Addison-Wesley, Reading, Mas-
sachusetts, 1989.

[Sch83] B. Schneiderman. Direct Manipulation: A Step Beyond Programming
Languages. IEEE Computer, 16(8):57–69, 1983.

[SM83] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill New York, NY, 1983.

10

InfoAssistant
 �
��
�� �

� ��
�

Point to Point Query

Query by Construction

 Election
�From
 to
 � President
� �
 Age

 Administration

 Election

 Elect. results

 Hobby

 Person

��

.

.. ..

.. AND ALSO ..

.. OR ELSE ..

.. BUT NOT ..

INSTANCE

.
 �

� � �
PPQ

Go!

AND ALSO

Go!

 politician is president of administration

� �
 inaugurated in year
 1920

�
Figure 2: Building a PPQ query

11

InfoAssistant
 �
��
�� �

� ��
�

Point to Point Query

Query by Construction

� Election
�From
 via
 to
 � President
� �
 Nr of children

 Nr of votes

 Nr of years

 Person

 Politician

 President

��

.

.. ..

.. AND ALSO ..

.. OR ELSE ..

.. BUT NOT ..

INSTANCE

.
 �

� � �
PPQ

Go!

AND ALSO

Go!

 politician is president of administration

� �
 inaugurated in year
 1920

�
Figure 3: Extending the PPQ path

12

InfoAssistant
 �
��
�� �

� ��
�

Point to Point Query

Query by Construction

 Nr of votes
 � Election
�From
 via
 to
 � President
� �

.

.. ..

.. AND ALSO ..

.. OR ELSE ..

.. BUT NOT ..

INSTANCE

.
 �

�
Go!

AND ALSO
Go!

 politician is president of administration

� �
 inaugurated in year
 1920

�
 president winning election

�
 which resulted in nr of votes

�
 president winning election

 president participating in

 - the election

 MORE ...

��
Figure 4: Completing a PPQ

13

InfoAssistant
 �
��
�� �

� ��
�

Query by Navigation

Query by Construction

.

.. ..

.. AND ALSO ..

.. OR ELSE ..

.. BUT NOT ..

INSTANCE

.
 �

�
AND ALSO
Go!

� � � � �� � � � �� � �
 politician is president of administration

� �� �� �� �
 inaugurated in year

�
1920

���
 president winning election

�
 which resulted in nr of votes

�

�������� Focus: politician is president of administration inaugurated in year

administration inaugurated in year

politician is president of administration

politician is president of administration inaugurated in year in which is born president

politician is president of administration inaugurated in year in which is inaugurated administration

person is president of administration inaugurated in year

president is president of administration inaugurated in year

year in which is inaugurated the administration administered by politician

Figure 5: Switching to query by navigation

14

InfoAssistant
 �

�� �

Query by Construction

.

.. ..

.. AND ALSO ..

.. OR ELSE ..

.. BUT NOT ..

INSTANCE

.

�

�
AND ALSO

 is president of administration
� inaugurated in year
 1920
 �
 wins the election
� which resulted in nr of votes
�Go!

 the politician

�
Figure 6: Start of a spider query

15

	 		 	
 nr of years that were served by

	
 sport that is part of

 hobby that is part of

 the recreation plan for

			
AND ALSO

 inaugurated in year
 1920

 wins the election
 which resulted in nr of votes

	Go!

 the politician

 is president of administration
		
InfoAssistant

	

	

Query by Construction

	 			

	
	

 election won by

	
 administration is headed by

	

Figure 7: Result of a Spider Query

16

 nr of years that were served by

 sport that is part of

 hobby that is part of

 the recreation plan for

AND ALSO

 inaugurated in year
 1920

 wins the election
 which resulted in nr of votes

Go!

 the politician

 is president of administration

InfoAssistant

Query by Construction

Figure 8: Pruning the Spider Query

17

� � �
 nr of years that were served by
� sport that is part of

 hobby that is part of

 the recreation plan for
�� �� �
AND ALSO

 inaugurated in year
 1920
� �� �
 wins the election
� which resulted in nr of votes
�Go!

 the politician

 is president of administration
��

InfoAssistant
 �Query by Navigation

Query by Construction
 �
����

Focus: the politician which served the nr of years

the nr of years

the politician

the politician which served the nr of years that were served by the president

�
�
�� the president which served the nr of years

nr of years that were served by the politician

�
� � ��

�� �

Figure 9: Switching to query by navigation

18

