
Generating Significant Examples for
Conceptual Schema Validation

Confidential

Asymetrix Report 94-3

H.A. Proper
Asymetrix Research Laboratory

Department of Computer Science
University of Queensland

Australia 4072
E.Proper@acm.org

Version of June 23, 2004 at 10:29

PUBLISHED AS:

H.A. Proper. Generating significant examples for conceptual schema vali-
dation. Asymetrix Research Report 94-3, Asymetrix Research Laboratory,
University of Queensland, Brisbane, Australia, 1994.

Abstract

This report bases itself on the idea of using concrete examples to verify concep-
tual schemas, and in particular cardinality constraints. When novice ORM mod-
ellers model domains, the selection of proper cardinality constraints for relation-
ship types is quite often prone to errors. In this report we propose a mechanism
for the generation of significant examples for selected subschemas. The generated
examples are significant in the sense that they illustrate the possible combinations
of instances that are allowed with respect to the cardinality constraints on the in-
volved relationship types.

In this report we firstly provide a brief informal discussion of the basic idea.
Then we present a syntactic mechanism to select the subschema for which example
instances are to be generated. This is followed by the actual example generation
algorithm itself. We will also present, as a spin-off, an algorithm that allows us

1

to detect possible flaws in the conceptual schema by calculating the number of
instances that can be used to populate the types in the schema.

1 Introduction

A key aspect in the conceptual design procedure ([Hal95]) is the use of examples to
derive the initial design of conceptual schemas. A further use of the examples is the
validation of parts of the final conceptual schema. Example populations of relationship
types can be used to validate the correctness of the information structure, and even more
importantly, for the validation of constraints. In this report we propose a mechanism to
generate significant example populations for subsets of conceptual schemas. This idea
has been described informally in [Har94]. In general, generating a significant example
population is hardly possible. Therefore, we limit ourselves to cardinality constraints
and significance of the examples with respect to single relationship types only.

The sample populations are used to visualise for the users what the effects are of adding
or removing cardinality constraints on relationship types, and to a lesser extent that of
changing the information structure itself. An informal discussion of this idea can be
found in [Har94]. This proposed mechanism will initially be used in DBCreate and is
expected to migrate to InfoModeler in a later stage; after the idea has been tested by
the user community.

The aim of DBCreate is to enable (semi!) laymen to design their own database. The
example generation tool fits quite well into that idea. Note that it is only obvious that
these semi laymen are still presumed to have some basic knowledge of conceptual
(and preferably ORM) modelling. No matter how user friendly a CAD/CAM system
may become, an architect desiging a house is still required to have a basic working
knowledge of the design of houses.

As stated before, in general it is nearly impossible to construct sample populations that
are truely significant with respect to all constraints ([BHW91]). In this report we there-
fore define a significant population of a relationship type to be a population that shows
all allowed combinations of instances with respect to the cardinality constraints defined
on that relationship type. Setting a less limited goal can easily lead to a combinatoric
explosion. The restrictions we made, however, are not an unreasonable limitation in the
context of our aims. The most commonly used (and thus mis-used) constraints are the
cardinality constraints (totality and uniqueness). For the other constraint types there is
of course still the possibility of verbalising them in a semi-natural language format.

The example generation tool itself consists of two basic elements. Firstly, the user must
be able to select parts of a conceptual schema, and put them on the screen in an orderly
way. These parts together form a tree1. As an example, consider figure 1. This screen

1One could argue that this should actually be a sequence of trees, however, due to the limited size of PC
Screens and user’s capabilities to deal with large amount of information at the same time, it is probably wiser
to limit ourselves to a single tree of limited size.

2

100

101

102

$15,000.00

$15,000.00

$20,000.00

637-1111

637-2222

637-3333

(AUD)
 (PhNr)
 (ID)

 Customer

m!

�
1!
:

�
1!

�
1!
:

�
6002

6002

6007

Smith

Smith

Jones

has

Last Name
 (ID)

Sales Person

m!

�
1!
:

�
1!

� �
m!
:

�
100

101

102

 (ID)

Customer is

taken care of by

Ord001

Ord002

Ord003

Ord004

Ord005

8/7/94

8/8/94

8/7/94

8/8/94

8/9/94

(dd-mm-yy)
 (ID)

 Order

100

101

102

 (ID)

Customer

has placed

LineInfo1

LineInfo2

LineInfo3

LineInfo4

LineInfo2

LineInfo4

LineInfo5

LineInfo1

 consists of

 LineInfo

1!

�
m!
:

�
m!

� �
1!
:

�
m!

�
1!
:

�

has Balance
 has Phone

was issued

on Date

Figure 1: An Example Grid

depicts four interconnected tables, and is based on the schema depicted in figure 2.

In [Har94], similar examples can be found that are discussed in more detail than we
do here. The inter-predicate (inter relationship type) uniqueness constraint shown
in figure 2 can not be handled as such by the example generation algorithm, as the
algorithm focusses on each relationship type separately during the generation pro-
cess. However, a natural solution appears when realising that when enforcing an inter-
predicate uniqueness constraint, this constraint is actually enforced on a derived rela-
tionship. In figure 3 the inter-predicate uniqueness constraint from figure 2 is converted
to an intra-predicate uniqueness constraint on a derived relationship. In [Hof93] and
[WHB92] an algorithm is provided to actually construct this derived relationhip type
as part of the semantics of inter-predicate uniqueness constraints.

An optional feature helping the user in better understanding the structure of the dis-
played examples is illustrated in figure 4 and 5. These figures illustrate a possible

3

Customer

(ID)

Balance

(AUD)

Phone

(PhNr)

Sales Person

(ID)

Last Name

Order

(ID)

Date

(dd-mm-yy)

Price

(AUD)

Product

(P-Code)

Nr

u

E-mail

(RFC-822)

Fax

(PhNr)

has

has

has placed

has

is taken care of by

has

has

w
as issued on

consists of

line item
 for ... w

ith ... is on ...

Figure 2: Example Schema

mouse over effect. When the mouse cursor is over one of the values in a table, arrows
are shown illustrating the connections between the instances in the table.

Two further aspects of the example in figure 1 that are noteworthy, as we elaborate
them further in the remainder of the report, are the right-button following Customer and
the down-button following Line Info. The first button is used to indicate that more facts
about customers are stored than currently shown on the screen, i.e. the tree could be
breathened. This is even better illustrated in figure 6. The second button indicates that
Line Info is a compositely identified object type (nested relationship types are regarded
as compositly identified object types as well). Clicking on this button leads to the
screen depicted in figure 7. In this screen the Line Info column is split according to the
reference schema of object type Line Info. Note that the down-button is now replaced
by an up-button to indicate that the details can be hidden again if so desired.

As stated before, an example grid can be seen as a tree. In figure 8 we have depicted
the tree that can be associated to this sample grid. The tree underlying a sample grid is
constructed by repeatedly selecting items from the conceptual schema and adding them
to the existing tree. Initially, there is no order provided in which the nodes of the tree
should be put on the screen. However, the items in the header can be shifted around
by users at will. Alternatively, one could let the system re-shuffle the entire tree using

4

Customer

(ID)

Balance

(AUD)

Phone

(PhNr)

Sales Person

(ID)

Last Name

Order

(ID)

Date

(dd-mm-yy)

Price

(AUD)

Product

(P-Code)

Line

(Nr)

E-mail

(RFC-822)

Fax

(PhNr)

has

has

has placed

has

is taken care of by

has

has

w
as issued on

consists of

 ... w
ith ... is on ...

*

Figure 3: Dealing with Inter-Predicate Constraints

the conceptual relevance ([CH94]) of the object types involved as an ordering crite-
rion. Furthermore, the spider query mechanism ([Pro94a]) could be used to quickly
put complete trees on the screen.

The second element of the example generation tool is the generator of the examples
itself. Given a tree as depicted in figure 8, a significant population for the relation-
ship types contained (in effect the edges) in the tree must be constructed. As stated
before, the significance in this first setup is limited to the generation of all valid com-
binations for the relationship types in the tree. We limit ourselves to the intra predicate
uniqueness and totality constraints only.

The structure of this report is as follows, in section 2 we define the syntax of the trees
underlying the sample grids, and provide a brief formalisation of the required concepts
of Object-Role Modelling. In section 3 we discuss a negotiation mechanism for the
size of the population of the edges in the trees. The generation of the actual sample
population is covered in section 4. Finally, section 5 concludes the report. For the
reader who is unfamiliar with the notation style used in this report, it is advisable to
first read [Pro94b].

5

100

101

102

$15,000.00

$15,000.00

$20,000.00

637-1111

637-2222

637-3333

(AUD)
 (PhNr)
 (ID)

 Customer

m!

�
1!
:

�
1!

�
1!
:

�
6002

6002

6007

Smith

Smith

Jones

has

Last Name
 (ID)

Sales Person

m!

�
1!
:

�
1!

� �
m!
:

�
100

101

102

 (ID)

Customer is

taken care of by

Ord001

Ord002

Ord003

Ord004

Ord005

8/7/94

8/8/94

8/7/94

8/8/94

8/9/94

(dd-mm-yy)
 (ID)

 Order

100

101

102

 (ID)

Customer

has placed

LineInfo1

LineInfo2

LineInfo3

LineInfo4

LineInfo2

LineInfo4

LineInfo5

LineInfo1

 consists of

 LineInfo

1!

�
m!
:

�
m!

� �
1!
:

�
m!

�
1!
:

�

has Balance
 has Phone

was issued

on Date

Figure 4: An Example Mouse Over

2 Creating a Forrest

This section discusses the syntax of a forrest for the example grid and also provides
a brief formalisation of the ORM concepts needed. Although the example generation
tool will initially be used in the context of DBCreate (value types, entity types and
binary relationship types), we already allow for ORM schemas as used by InfoMod-
eler. We start out from a formalisation of ORM based on the one used in ([HP95]).
However, since only a limited part of the formalisation is needed, we do not cover the
formalisation in full detail.

2.1 ORM Basis

6

100

101

102

$15,000.00

$15,000.00

$20,000.00

637-1111

637-2222

637-3333

(AUD)
 (PhNr)
 (ID)

 Customer

m!

�
1!
:

�
1!

�
1!
:

�
6002

6002

6007

Smith

Smith

Jones

has

Last Name
 (ID)

Sales Person

m!

�
1!
:

�
1!

� �
m!
:

�
100

101

102

 (ID)

Customer is

taken care of by

Ord001

Ord002

Ord003

Ord004

Ord005

8/7/94

8/8/94

8/7/94

8/8/94

8/9/94

(dd-mm-yy)
 (ID)

 Order

100

101

102

 (ID)

Customer

has placed

LineInfo1

LineInfo2

LineInfo3

LineInfo4

LineInfo2

LineInfo4

LineInfo5

LineInfo1

 consists of

 LineInfo

1!

�
m!
:

�
m!

� �
1!
:

�
m!

�
1!
:

�

has Balance
 has Phone

was issued

on Date

Figure 5: Another Mouse Over

A conceptual schema is presumed to consist of a set of types TP . Within this set
of types two subsets can be distinguished: the relationship types RL, and the object
types OB. Furthermore, let RO be the set of roles in the conceptual schema. The
fabric of the conceptual schema is then captured by two functions and two predicates.
The set of roles associated to a relationship type are provided by the partition: Roles :
RL→℘(RO). Using this partition, we can define the function Rel which returns for
each role the relationship type in which it is involved: Rel(r) = f ⇐⇒ r ∈ Roles(f).
Every role has an object type at its base called the player of the role. This player is
formally provided by the function: Player : RO→TP . Subtyping of object types is
captured by the predicates SpecOf ⊆ OB ×OB. Using SpecOf we can define the notion
of type relatedness: x ∼ y for object types x and y. This notion captures the intuition
that two object types may share instances. This relation is defined by the following
four derivation rules:

7

100

101

102

$15,000.00

$15,000.00

$20,000.00

637-1111

637-2222

637-3333

(AUD)
 (PhNr)
 (ID)

 Customer

m!

�
1!
:

�
1!

�
1!
:

�
6002

6002

6007

Smith

Smith

Jones

has

Last Name
 (ID)

Sales Person

m!

�
1!
:

�
1!

� �
m!
:

�
100

101

102

 (ID)

Customer is

taken care of by

Ord001

Ord002

Ord003

Ord004

Ord005

8/7/94

8/8/94

8/7/94

8/8/94

8/9/94

(dd-mm-yy)
 (ID)

 Order

100

101

102

 (ID)

Customer

has placed

LineInfo1

LineInfo2

LineInfo3

LineInfo4

LineInfo2

LineInfo4

LineInfo5

LineInfo1

 consists of

 LineInfo

1!

�
m!
:

�
m!

� �
1!
:

�
m!

�
1!
:

�

has Balance
 has Phone

was issued

on Date

has Fax

has E-Mail

Figure 6: Extendable Column

1. x ∈ TP ` x ∼ x

2. x SpecOf y ` x ∼ y

3. x ∼ y ` y ∼ x

4. x ∼ y ∼ z ` x ∼ z

Note that when using ORM with the advanced concepts ([HP95]) such as polymor-
phism, sequence types, set types, etc., the definition of ∼ needs to be refined.

Instances of all non-value types must be identified in terms of instances of other object
types. This identification is usually provided by a so called reference schema. If VL
denotes the set of value types, then the (direct!) identification relationship between
types is presumed to be captured by the function:

RefSch : (TP −VL)→TP ∪RO+ ∪(RO ×RO)+

8

100

101

102

$15,000.00

$15,000.00

$20,000.00

637-1111

637-2222

637-3333

(AUD)
 (PhNr)
 (ID)

 Customer

m!

�
1!
:

�
1!

�
1!
:

�
6002

6002

6007

Smith

Smith

Jones

has

Last Name
 (ID)

Sales Person

m!

�
1!
:

�
1!

� �
m!
:

�
100

101

102

 (ID)

Customer is

taken care of by

Ord001

Ord002

Ord003

Ord004

Ord005

8/7/94

8/8/94

8/7/94

8/8/94

8/9/94

(dd-mm-yy)
 (ID)

 Order

100

101

102

 (ID)

Customer

has placed

 consists of

 LineInfo

1!

�
m!
:

�
m!

� �
1!
:

�
m!

�
1!
:

�

has Balance
 has Phone

was issued

on Date

1

2

1

1

2

1

1

2

Nr

p921a

p921b

p921a

p921a

p921c

p921c

p921a

p921b

$100

$200

$200

$300

$200

$100

$100

$300

(P-Code)
 (AUD)

Product
 Price

Figure 7: Exploded View on Line Items

Each non-value type is either identified by a type (a super type), or a sequence of roles
(a relationship type), or a sequenc of role pairs (compositely identified object types).
Note that in this report we do not concern ourselves with well-formedness rules on
reference schemas. A function that is derived from RefSch and which is needed in the
remainder is IdfObjs : OB→OB+. This function returns the sequence of object types
needed to directly identify a given object type. Its definition is provided as:

IdfObjs(x) ,











[y] if RefSch(x) = [y]

[y1, . . . , yl] if RefSch(x) = [〈p1, y1〉 , . . . , 〈pl, yl〉]

[y1, . . . , yl] if RefSch(x) = [〈p1, q1, y1〉 , . . . , 〈pl, ql, yl〉]

Note that we presume the existance of an implicit coercion function between sequences
and sets. So, for example, if S is a set of sequences we allow ourselves to write ∪S for

9

Customer

Balance
 Phone
 Sales-Person

Last-Name

Order

Date

LineInfo

Figure 8: An Example Tree

the set of all elements occurring in the sequences in S.

A lot of the decissions made by the example generation algorithm are based on the
maximum size of the populations of the object types. Later on, an algorithm to calculate
these sizes is presented. However, the maximum sizes of the populations of the value
types should be given by the modeller. For instance, a value type representing the
gender of persons will usually contain at most two instances. To accommodate this, we
presume the existance of the function DomSize : VL→ INI . One obvious requirement
for this function is: x, y ∈ VL ∧ x SpecOf y ⇒ DomSize(x) ≤ DomSize(y).

Finally, in this report an important role is played by the uniqueness and tolality con-
straints. For that purpose, we presume the predicates Unique ⊆ ℘(RO) and Total ⊆
℘(RO) to provide all uniqueness and totality constraints.

In this report we thus only use the following components of an ORM schema:

〈TP ,RL,VL,OB,RO, SpecOf, Roles, Player, RefSch, DomSize, Unique, Total〉

When implementing the algorithms and ideas presented in this article, these compo-
nents are the interface between the example generator tool and the meta model from
the fact base.

2.2 Forrests

A tree of an example grid is built from a set of nodes. Let in the remainder N be a
set of all such nodes. Formally, a tree can now be defined by two functions: EOut and
Obj. As one object type can be represented by more than one node, the object type
represented by a node is provided by the function: Obj : N �OB. The edges of the
tree are provided by the function EOut : N→℘(L × N). This function provides for
each node the set of outgoing edges. Using the EOut function the following “inverse”
function can be derived, which returns for each node the set of incomming edges:

EIn : N→℘(L × N)

10

EIn(n) ,
{

〈l, m〉
∣

∣ 〈l, n〉 ∈ EOut(m)
}

The edges of the tree are labelled with link information. The set of links L is defined
by: L , RO∪RP , where RP ,

{

p←
∣

∣ p ∈ RO
}

is the set of reversed roles. The
reversed roles can be used to connect a node representing a relationship type to a node
representing one of the participating object types. Each link has a starting point and
an ending point. To access these points (object types) uniformly, we introduce the
following two generic functions:

Start, End : L→TP

Start(x) ,

{

Player(x) if x ∈ RO

Rel(x) otherwise

End(x) ,

{

Rel(x) if x ∈ RO

Player(x) otherwise

Note: from now on we presume Rel and Player to be generalised to elements from RP
in the obvious way.

In order for EOut and Obj to span a tree, they must adhere to certain properties. Each
edge in the tree must be a connection between the source and destination of the edge
via the role. This is expressed by the following axiom:

[T1] For each l ∈ L:

〈l, m〉 ∈ EOut(n) ⇒ Start(l) ∼ Obj(n) ∧ Obj(m) = End(l)

The function EOut must indeed define a tree, so the graph spanned by EOut has to be a
connected, acyclic graph with a unique root.

[T2] |π2(∪ ran(EOut))| = |ran(EOut)|

[T3] ∃!x∈dom(EOut) [x 6∈ π2(∪ ran(EOut))]

Note: if a directed graph has a unique root then it is automatically connected. All used
nodes must have an object type associated:

[T4] dom(EOut)∪π2(∪ ran(EOut)) ⊆ dom(Obj)

Furthermore, a link can be used only once for an outgoing edge of a node. This is
formally enforced by:

[T5] 〈l, n1〉 ∈ EOut(m) ∧ 〈l, n2〉 ∈ EOut(m) ⇒ n1 = n2

11

One of the items that can be shown when displaying nodes on screen is the fact that a
given node can be extended with more edges. In figure 1, the right-button behind the
Customer indicated that more relationship types are available for this object type. A
node can be extended with an extra edge iff a link exists that can form a proper edge,
and is not already used by on another edge of this node. This property can be expressed
formally as:

CanExtend(n) ⇐⇒
{

l ∈ RO
∣

∣ Start(l) ∼ Obj(n) ∧ l 6∈ π1 EOut(n)
}

6= ∅

The set in the righthand side of the above definition can actually be used to fill the
listbox displayed in figure 6.

The order in which the nodes themselves are displayed on the screen is recorded by the
function Order : N→ INI . As this function must provide a total order of the nodes, we
should have:

Order(x1) = Order(x2) ⇒ x1 = x2

One additional option of a system using an example generator is to have the system
re-order the tree based on the conceptual relevance of the object types represented by
the nodes. If CWeight : TP → INI is a function returning the conceptual weight of types,
then the system is able to order the nodes such that:

Order(n1) < Order(n2) ⇒ CWeight(Obj(n1)) ≤ CWeight(Obj(n2))

Note: more than one order may exist for the same CWeight values since differing object
types may have the same conceptual weight. Not all nodes need to be displayed on the
screen. Some nodes can be left implicit. For instance, a node representing a non-
objectified binary relationship does not have to be shown on the screen. The set of
implicit nodes in a tree is identified by:

I ,
{

n ∈ N
∣

∣ π1 EIn(n)∩RP = ∅ ∧π1 EOut(n)∩RO = ∅ ∧ EIn(n) 6= ∅ ∧ EOut(n) 6= ∅
}

From this definition immediately follows that two neighbouring nodes cannot both be
implicit. This leads to the following lemma:

Lemma 2.1 (no implicit neighbours) n ∈ N ∧ m ∈ π2 EOut(n) ⇒ {n, m} 6⊆ I

Proof:
Let n ∈ N ∧ m ∈ π2 EOut(n) such that {n, m} ⊆ I.

Since m ∈ π2 EOut(n) it immediately follows from the definition of EIn that:

π1 EIn(m) = π1 EOut(n)

As we presumed that n, m ∈ I we in particular have:

π1 EOut(n)∩RO = ∅ and π1 EIn(m)∩RP = ∅

12

Since π1 EIn(m) = π1 EOut(n) we have:

π1 EOut(n)∩RO = ∅ and π1 EOut(n)∩RP = ∅

Which implies that EOut(n) which is a contradiction since m ∈ π2 EOut(n).

Therefore we can not have {n, m} ⊆ I if n ∈ N ∧ m ∈ π2 EOut(n). 2

As an example, consider the tree depicted on the right side of figure 9 in the context of
the schema shown there as well. The open circles represent nodes that do not have to
be shown on the screen when this tree is shown to the user.

A
 C

B

p

s

q

t

r

p

q
 r

t

s

Figure 9: Examples of Implicit Nodes

A further result is the following lemma stating that each implicit node must correspond
to a relationship type, and that the predicators used to label the incoming and outgoing
edges are all of the same relationship type:

Lemma 2.2 (single relationship type involvement) n ∈ I ⇒ ∀l∈π1(EOut(n)∪ EIn(n)) [Rel(l) = Obj(n)]

Proof:
If n ∈ I then we must, due to the definition of I have l ∈ π1 EIn(n) ⇒ l ∈ RO.
This implies that Rel(l) = Obj(n). So ∀l∈π1 EIn(n) [Rel(l) = Obj(n)]

Furthermore, if l ∈ π1 EOut(n), it follows from the definition of I that l ∈
RP . From axiom T1 follows that Start(l) ∼ Obj(n), which can be reformulated
as Rel(l) ∼ Obj(n). Since two relationship types can, in ORM, only be type
related if they are the same, we therefore have: Rel(l) = Obj(n). As a result:
∀l∈π1 EOut(n) [Rel(l) = Obj(n)]. 2

To cater for identification, and in particular complex identification, nodes can have
associated a number of identifying nodes. This is captured by the function

NRefSch : N� N∪(RO × N)+ ∪(RO ×RO × N)+

13

which can defines an (possibly empty) identification tree for each node in the tree
provided by EOut. This function must always behave conform the identification given
in the schema:

[T6] For each n ∈ dom(NRefSch) we should have:

1. NRefSch(n) = [m] ⇒ RefSch(Obj(n)) = [Obj(m)]

2. NRefSch(n) = [〈p1, m1〉 , . . . , 〈pl, ml〉] ⇒

RefSch(Obj(n)) = [p1, . . . , pl] ∧ ∀1≤i≤l [Player(pi) = Obj(mi)]

3. NRefSch(n) = [〈p1, q1, m1〉 , . . . , 〈pl, ql, ml〉] ⇒

RefSch(Obj(n)) = [〈p1, q1〉 , . . . , 〈pl, ql〉]∧∀1≤i≤l [Player(qi) = Obj(mi)]

where m, m1, . . . , ml ∈ N and p1, . . . , pl, q1, . . . , ql ∈ RO.

The above axiom can thus be seen as an invariance requirement on the algorithm that
builds the tree of the example grid.

Not all nodes used by EOut must necessarily have an identification tree associated. For
instance, in the first example grid of the running example, Line Info instances are not de-
noted by means of their full identification. We used textual representations (surogates)
of abstract instances such as: LineInfo1, LineInfo2, etc.

For the remaining axioms on identification trees in the example grids, we need one
more derived function. The function IdfNodes : N→N

+ which (analogously to IdfObjs)
determines the set of nodes needed to directly identify a given node. Its definition is
provided as:

IdfNodes(x) ,











[y] if NRefSch(x) = [y]

[y1, . . . , yl] if NRefSch(x) = [〈p1, y1〉 , . . . , 〈pl, yl〉]

[y1, . . . , yl] if NRefSch(x) = [〈p1, q1, y1〉 , . . . , 〈pl, ql, yl〉]

Note again that we presume the existance of an implicit coercion function between
sequences and sets.

We can now require each identification tree to be a tree indeed.

[T7] (acyclic) If x ∈ dom(NRefSch), then we have NonCyclic(x, {x}), where:

NonCyclic(x, X) ⇐⇒ X ∩ IdfNodes(x) = ∅∧∀y∈IdfNodes(x) [NonCyclic(y, X ∪{y})]

Note that for simple ORM schemas the fact that NRefSch is a tree for each object type
in the tree spanned by EOut, follows directly from axiom T6 and the acyclicity of
the identification trees spanned by RefSch. However, when using the polymorphism
concept in more advanced ORM models, in particular when defining recursive data

14

structures, RefSch does not necessarily have to span trees anymore (but NRefSch is still
required to do so).

For obvious reasons, all nodes used in the identification trees have an object type asso-
ciated:

[T8] ∪ ran(IdfNodes) ⊆ dom(Obj)

The example grid tree and the identification trees should not be intermixed (except for
the roots of the identification trees):

[T9] ∪ ran(IdfNodes)∩(dom(EOut)∪ dom(EIn)) = ∅

The root nodes of the identification trees should indeed be part of the tree for the
example grid:

[T10] (dom(IdfNodes) −∪ ran(IdfNodes)) ⊆ (dom(EOut)∪ dom(EIn))

Finally, one good default rule is to automatically add simple identifications. So the
following rule should be an invariant when manipulating the trees (e.g. when adding a
simply identified object type):

[T11] |RefSch(Obj(x))| = 1 ⇒ NRefSch↓x

A tree for the example grid, in the context of an ORM schema, is now completely
determined by the following five components:

〈N, EOut, Obj, Order, NRefSch〉

3 Negotiating the Size of the Example Space

As the title of this section suggests, in this section we concern ourselves with a ne-
gotiation mechanism to determine the number of examples that are to be used in the
example grid. Such a negotation phase is needed because some object types may have
a limited set of instances. In particular value types such as Gender which will generally
have two or three instances only.

The first question we need to answer is the maximum number of instances that a given
type may have. Due to relationships between types and the constraint patterns associ-
ated to the relationships; limiting the number of instances of a value type may prop-
agate through the conceptual schema. As an example consider the schema shown in
figure 10. Object type B has a maximum number of instances of 2. As each instance
of object type A must play relationship f with a unique instance of B, there can be only

15

two instances of A. As a result, there can be only two instances of relationship f, so if f

would be objectified this could lead to another propagation of a size limitation. In the
context of larger schemas, these propagations may cause “ripple” effects through the
entire schema. Note that if A is connected to B through a series of other relationship
types, then it could even be the case that the maximum size of B needs to be reduced
further!

A
 B

{1,2}

Figure 10: Propagating Maximum Size of Populations

Initially, object types are presumed to have a potentially infinite maximum population.
For this purpose we need to introduce the notion of infinity as an explicit element in
our calculations. Let ∞ denote infinity, then our population size calculations take place
within the set: INI∞, INI ∪ {∞}. For INI∞ we inherit the +, × and < operations from
INI with the following additional cases:

if n ∈ INI , then:
n ≤ ∞

n + ∞ = ∞ + n = ∞

n ×∞ = ∞× n = ∞

As the minimum min(n, m) of two natural numbers is defined in terms of <, we obvi-
ously have: n ∈ INI ⇒ min(n,∞) = min(∞, n) = n.

3.1 Generating Patterns

In determining the maximum sizes of populations, we need to generate for each rela-
tionship type the significant combinations of instances. As stated before, we consider
a combination of instances to be significant if it shows all allowed combinations with
respect to the cardinality constraints defined on that relationship type. The patterns are
generated by the algorithm given below2. This algorithm takes as input the relation-
ship type to be populated and the maximum sizes of the types (determined so far); in
particular the players of the roles in the relationship type and the maximum size of the
relationship type itself. The latter size is relevant in the case of objectified relationship
types. Suppose in the example of figure 10, A is actually an objectified relationship
type. In such a case we can only generate two instances for relationship type A. The
algorithm itself is given as:

2I would like to thank L. Campbell for providing me with the first informal draft version of this algorithm.

16

GenPattern : RL × (TP → INI∞) → (TP � INI) ×℘(RO→ INI)

GenPattern(Rel ,Size) ,

VAR

Pattern: ℘(RO→ INI);
FreshTuple: RO→ INI ;
WorkTuple: RO→ INI ;
Used: TP � INI∞;
p: RO;

MACROS

Extendable(P : ℘(RO)) ≡

∀p∈P [Used(Player(p)) < Size(Player(p))] ∧

Used(Rel(p)) + |P | ≤ Size(Rel(p));

IncrUsed(p : RO) ≡

BEGIN

Used(Player(p)) +:= 1;
Used(Rel(p)) +:= 1;

END;

BEGIN

Initialise variables

Pattern := ∅;
Used(Rel) := 0;
FOR EACH p ∈ Roles(Rel) DO

Used(Player(p)) := 0;
END FOR;

WHILE Extendable(Roles(p)) DO

Generate fresh tuple

FOR EACH p ∈ Roles(Rel) DO

IncrUsed(p);
FreshTuple(p) := Used(Player(p));

END FOR;

Probe uniqueness

17

Pattern +:= {FreshTuple};
FOR EACH p ∈ Roles(Rel) DO

WorkTuple := FreshTuple;

Try to mutate tuple

IF ¬∃τ⊆Roles(Rel) [Unique(τ) ∧ p 6∈ τ] ∧ Extendable({p}) THEN

IncrUsed(p);
WorkTuple(p) := Used(Player(p));
Pattern +:= {WorkTuple};

END IF;
END FOR;

Generate nil tuple

FOR EACH p ∈ Roles(Rel) DO

IncrUsed(p);
FreshTuple(p) := 0;

END FOR;

Probe totality

FOR EACH p ∈ Roles(Rel) DO

WorkTuple := FreshTuple;

Try to mutate tuple

IF ¬Total(p) ∧ Extendable({p}) THEN

IncrUsed(p);
WorkTuple(p) := Used(Player(p));
Pattern +:= {WorkTuple};

END IF;
END FOR;

END WHILE;

RETURN 〈Used ,Pattern〉;
END.

18

3.2 Schema Plausibility Check

An interesting spin-off of the pattern generation algorithm is that when using this algo-
rithm to determine the maximum size of all types in a conceptual schema, the result can
be used to do a plausibility on the conceptual schema. If some type has a number max-
imum number of instances of 0, it is highly likely that there is an error in the constraint
patterns of the conceptual schema. Since the pattern generation algorithm only uses a
limited class of patterns, this kind of plausibility check may be a bit “oversensitive”.

When determining the maximum sizes of all types in a conceptual schema, the results
of the pattern generation algorithm can be used to refine, the current maximum sizes
of the object types can be resized. This resizing is done by the algorithm below. It (re-
)calculates the maximum sizes of the object types involved in each relationship type
for which one of the involved types already has a maximum size that is not infinite.

ReSize : (TP → INI∞)→(TP → INI∞)

ReSize(Size) ,

VAR

Pattern: ℘(RO→ INI);
Used: TP � INI∞;
ToDo: ℘(RL);
x, r: TP ;
p: RO;

BEGIN

We should only take relationship types with at least one finite

size for the types involved into consideration. Otherwise, GenPattern

would not terminate.

ToDo :=
{

Rel(p)
∣

∣ Size(Player(p)) 6= ∞∨ Size(Rel(r)) 6= ∞
}

;
One way to optimise this further is to restrict the ToDo set

to those relationships for which one of the involved sizes has

changed during the last (or initial!) iteration.

Recalculate maximum sizes

FOR EACH r ∈ ToDo DO

〈Used ,Pattern〉 := GenPattern(r,Size)

FOR EACH x ∈
{

Player(p)
∣

∣ p ∈ Roles(r)
}

∪{r} DO

Size(x) := min(Size(x),Used(x));
END FOR;

END FOR;

19

Propagate maximums in subtype hierarchy

FOR EACH x, y ∈ OB DO

IF x SpecOf y THEN

Size(x) := min(Size(y),Size(x));
END IF;

END FOR;

RETURN Size;
END.

The idea is now to constantly call the above resize algorithm until the eventual max-
imum sizes have been stabalised. We do this by means of the following fixed-point
calculation:

CalcSizes : →(TP → INI∞)

CalcSizes() ,

VAR

Size: TP → INI∞;
NewSize: TP → INI∞;

BEGIN

NewSize := MaxSize;

Do fixed point calculation

REPEAT

Size := NewSize;
NewSize := ReSize(Size);

UNTIL NewSize = Size;
END.

Note that this algorithm terminates since the number of type classes is finite and when
resizing the maximum sizes we always choose the minimum value. In this last algo-
rithm, MaxSize is the initial setting of the maximum sizes. This initial setting com-
pletely depends on the number of instances (or generatable) for the value types in the
conceptual schema. In subsection 2.1 we introduced the function DomSize : VL→ INI
as the function that provides these sizes. From this we can derive the initial maximum
size for any object type as follows:

20

MaxSize : TP→ INI∞

MaxSize(x) ,

{

DomSize(x) if ∃x [DomSize↓x]

∞ otherwise

We are now in a position to interpret the results from CalcSizes. Let Size(x) be the size
of type x resulting after CalcSizes. If Size(x) = 0 for some type x, then it is highly likely
that there is a problem with the constraint patterns. In such a case, each relationship
type with a player y such that Size(y) = 0 and a player z such that Size(z) > 0 should
be examined.

Furthermore, if there is a type x such that Size(x) < MaxSize(x), there is a limited
likelyhood that there is a problem with the constraint patterns. In this case, each re-
lationship with a player y such that Size(y) < MaxSize(y) and a player z such that
Size(z) = MaxSize(z), should be examined.

3.3 The Example Space

When generating examples for an example grid, we do this for each “umbrella” in the
tree, i.e. a node and its direct descendants. The umbrella associated to a node n is
defined formally by:

Umbrella : N→℘(N)

Umbrella(n) , π2 EOut(n)∪
⋃

y∈π2 EOut(n)∩ I

Umbrella(y)

From lemma 2.1 follows that an umbrella can be at most three nodes deep: the root,
one layer of explicit or implicit nodes, and the layer containing the off-spring of the
implicit nodes of layer 2. An example of two umbrellas is shown in figure 11. These
two umbrellas correspond to two tables of the example grid shown in figure 1. When
generating the examples for an entire tree, we only have to consider all umbrellas of
the nodes which are not implicit, since the implicit nodes are already contained in these
umbrellas.

The set of relationships involved in an umbrella can now simply be derived as follows:

RelSet : N→℘(RL)

RelSet(n) ,
{

Rel(l)
∣

∣ l ∈ π1 EOut(n)
}

where Rel is presumed to be generalised to elements of RP . Note that we only need
to look at the set of outgoing edges from root of the umbrella as the outgoing edges
from the nodes of the second layer are all implicit nodes, which allows us to apply
lemma 2.2.

21

Customer

Balance
 Phone
 Sales-Person
 Order

Order

Date
 LineInfo

Figure 11: Two example umbrellas

A crucial first step in the generation of the examples is the negotiation of the number
of instances in the root of each umbrella. In this negotiation we disregard the context
of each umbrella, so we can not simply use the results of the CalcSizes function. The
reason to ignore the context lies in the fact that when validating the constraint pattern
of one relationship type, one does not want to have a negative influence on the number
of examples by a (possible) problem in another part of the schema. In the definition,
again an initial maximum size of type populations is needed. From this we can derive
the maximum size for any object type using the following recursive function:

MaxSize : OB→ INI

MaxSize(x) ,

{

DomSize(x) if x ∈ VL

Πy∈IdfObjs(x) MaxSize(y) otherwise

Using this function the actual ‘negotiation’ function can be defined, determining the
proper size of the root of an umbrella:

NodeSize : N→ INI

NodeSize(n) , min(MaxUserSizePref , minr∈RelSet(n) Usage(r, n))

where Usage is defined as:

Usage : RL × N→ INI

Usage(r, n) ,

{

Used(Obj(n)) if MaxSize(n) 6= ∞

∞ otherwise

such that: 〈Used ,Pattern〉 = GenPattern(r, MaxSize)

and MaxUserSizePref is a user defined constant providing the preferred maximum size
of root nodes. Note: we presume maxx∈X f(x) returns 0 if X = ∅.

22

4 Filling an Example Grid

In this section we do the final step and actually populate the example grids. Thus far
the only result from the GenPattern algorithm we used was the usage of instances. In
this section, the patterns generated by GenPattern are finally utilised to generate the real
examples.

4.1 Filling Object Types

When generating instances for the edges of an umbrella, we need to generate instances
for the nodes (object types) first. Let GenerateInst : OB × INI →Ω be a given function
that generates instances for object types. This function need the natural number to
generate unique (and yet deterministic) instances.

When applied for a value type x, the result of GenerateInst(x, n) is one of the instances
of the domain for values of x. Suppose that the user has given 8/7/94, 8/8/94, 8/9/94 as
examples for the Date value, then GenerateInst(Date, 2) would result in 8/8/94. When
the GenerateInst(x, n) is used for a non-value type, a surrogate instance is generated.
For instance, GenerateInst(LineInfo, 1) could result in LineInfo1. The set Ω is used in this
report as a general domain for simple instances from value types and composed in-
stances from compositely identified types. Using this primitive function, the following
more refined generation function can be defined, which also takes the required details
of identifications (IdfNodes) into account:

GetInst : OB × INI →Ω

GetInst(x, n) ,











nil if n = 0

Compose(IdfNodes(x), n − 1) if IdfNodes↓x

[GenerateInst(x, n)] otherwise

Note that the n = 0 case is a special case. Generating a nil value for n = 0 allows us to
treat patterns resulting from optional roles uniform to the other patterns. The Compose

function is used to construct the actual instance in the case of an object type with an
identification provided by IdfNodes.

Compose : OB+ × INI →Ω

Compose([x1, . . . , xn], m) ,











[GetInst(x1, γ(m) + 1)] if n = 1

[Compose([x1], γ(m) DIV MaxSize(x1))] ++

[Compose([x2, . . . , xn], γ(m) MOD MaxSize(x1))] otherwise

where: γ(m) =

{

x/2 if IsEven(x)

Π1≤i≤n MaxSize(xi) − (m + 1)/2 otherwise

Note that the use of the γ function causes a “natural” spread in the use of the examples.

23

4.2 Filling an Example Grid

For filling an umbrella with instances all that remains to be done is to call GenPattern

for each relationship type contained in the umbrella with the negotiated nodesizes given
in NodeSize, generate the concrete instances using GetInst, and finally order the result.
All this is done by the GenPop algorithm. The algorithm takes the root node of the
current umbrella as its input parameter and results in a population of the relationship
types contained in the umbrella, together with an ordered population of the object types
playing a role in these relationship types. The results can than be used (together with
the earlier discussed Order for the nodes) to present the examples in an ordered way.
The algorithm is defined as:

GenPop : N→(RL�℘(RO� Ω)) × (OB� Ω+)

GenPop(n) ,

VAR

RPop : RL�℘(RO� Ω)

OPop : OB� Ω+

Rel : RL

Tuple : RO� Ω

NewTuple : RO� INI

Role : RO

BEGIN

FOR EACH Rel ∈ RelSet(n) DO

〈Used ,Pattern〉 := GenerateInst(Rel , NodeSize);
FOR EACH Tuple ∈ Pattern DO

We presume that INI ⊆ Ω

NewTuple := Tuple

FOR EACH Role ∈ Roles(Rel) DO

NewTuple(Role) := GetInst(Player(Role),Tuple(Role));
OPop(Player(Role)) ++:= [NewTuple(Role))];

END FOR;
RPop(Rel) +:= {NewTuple};

END FOR;
END FOR;

OPop := ReOrder(RPop ,OPop, Obj(n));
RETURN 〈RPop,OPop〉;

24

END.

The ReOrder : (RL�℘(RO� Ω)) × (OB� Ω+) × TP → (OB� Ω+) function
is used to order the instances in the result. The order is based on the number of tuples
in the relationship examples that use the instances. We do not provide an ordering
algorithm for this function and leave that to the choice of the programmers. However,
the following ordering condition must be met. If P = ReOrder(RPop,OPop, x), then:

∀i,j∈dom(P) [i < j ⇒ |Tuples(RPop, P [i], x)| ≥ |Tuples(RPop, P [j], x)|]

where Tuples(RPop, v, x) =
{

t
∣

∣ ∃p:Player(p)=x [t ∈ RPop(Rel(p)) ∧ t(p) = v]
}

.

5 Conclusions

In this report we have presented an algorithm to generate examples for a selection of
relationship types, such that the examples are significant (to a certain degree). These
examples can be used to fill example grids, allowing users to validate cardinality con-
straints by looking at example patterns.

As a spin-off, we also discussed the option of calculating the maximum sizes of all
types in a conceptual schema. This would allow us to detect possible problems with
cardinality constraints.

The next step is to integrate these ideas into DBCreate and in a later stage InfoModeler
itself. The definitions in this report are already suited for the ORM schemas as they can
be specified in InfoModeler. They are not yet suited for the extended ORM concepts
as introduced in [HP95]. However, the modification of the here presented algorithms
to cover these extensions is not expected to be hard. asy

References

[BHW91] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics
and verification of object-role models. Information Systems, 16(5):471–
495, October 1991.

[CH94] L.J. Campbell and T.A. Halpin. Abstraction Techniques for Conceptual
Schemas. In R. Sacks-Davis, editor, Proceedings of the 5th Australasian
Database Conference, volume 16, pages 374–388, Christchurch, New
Zealand, January 1994. Global Publications Services.

[Hal95] T.A. Halpin. Conceptual Schema and Relational Database Design.
Prentice-Hall, Sydney, Australia, 2nd edition, 1995.

25

[Har94] J. Harding. Examples View: Seeing is Understanding. Asymetrix Product
Design, Database Division, Asymetrix Corp, Seattle, WA, 1994.

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains.
PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, 1993.

[HP95] T.A. Halpin and H.A. Proper. Subtyping and Polymorphism in Object-Role
Modelling. Data & Knowledge Engineering, 15:251–281, 1995.

[Pro94a] H.A. Proper. Interactive query formulation using spider queries. Asymetrix
Research Report 94-2, Asymetrix Research Laboratory, University of
Queensland, Brisbane, Australia, 1994.

[Pro94b] H.A. Proper. Introduction to formal notations. Asymetrix Research Report
94-0, Asymetrix Research Laboratory, University of Queensland, Brisbane,
Australia, 1994.

[WHB92] Th.P. van der Weide, A.H.M. ter Hofstede, and P. van Bommel. Uniquest:
Determining the Semantics of Complex Uniqueness Constraints. The Com-
puter Journal, 35(2):148–156, April 1992.

26

