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A General Theory for Evolving Application  Mode ls 
H.A. Proper and  T.P. van  der  Weide 

Abstract-In this article we provide a  general  theory for 
evolving information systems. This theory makes a  distinction 
between the underlying information structure at the conceptual  
level, its evolution on  the one  hand,  and  the description and  se- 
mantics of operat ions on  the information structure and  its popu-  
lation on  the other hand.  Main issues within this theory are object 
typing, type relatedness and  identification of objects. In terms of 
these concepts,  we propose some axioms on  the well- formedness 
of evolution. In this general  theory, the underlying data model  is a  
parameter,  making the theory applicable for a  wide range of 
modell ing techniques, including object-role modell ing and  object 
or iented techniques. 

Index Terms-Evolving information systems, temporal infor- 
mation systems, schema evolution, data modell ing, type related- 
ness, predicator set model, ER model. 

I. INTR~DUCTTON 

A s has  been  argued in [31] and  [l I], there ,is a  growing 
demand  for information systems, not only allowing for 

changes  of their information base,  but also for modifications in 
their underlying structure (conceptual schema and  specifica- 
tion of dynamic aspects). In case of snapshot  databases,  strnc- 
ture modifications will lead to costly data conversions and  
reprogramming. 

The  intention of an  evolving information system [lo], [24] 
is to be  able to handle updates of all components  of the so- 
called application model, containing the information structure, 
the constraints on  this structure, the populat ion conforming to 
this structure and  the possible operations. The  theory of such 
systems should, however,  be  independent  of whatever model-  
ling technique is used  to descr ibe the application model. In this 
paper,  we discuss a  general  theory for the evolution of appli- 
cation models. However,  only conceptual  aspects are consid- 
ered, focus is on  what evolution is, rather than on  how to im- 
plement evolution in a  database manegement  system. In [28], 
an  informal introduction to this theory is provided, while in 
[29] the fully elaborated theory is provided. 

The  central part of this theory will make weak assumptions 
on  the underlying modell ing technique, making it therefore 
applicable for a wide range of data modell ing techniques such 
as ER [6], EER [9], NIAM [23], and  the general ized object 
role data modell ing technique PSM [17], 1141,  action model-  
ling techniques such as  Task Structures [13], and  furthermore 
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object or iented modell ing techniques [20]. In [30], the appli- 
cation of the theory presented in this article to the object-role 
modell ing technique PSM, leading to EVORM, is described. 

The  assumptions underlying our  theory suppose a  typing 
mechanism for objects, a  type relatedness relation expressing 
which object types may share instances, and  a  hierarchy on  
object types expressing inheritance of identification. 

In [34] a  ciassification for incorporating time in information 
systems (databases) is presented. However,  all these classes do  
not yet take schema evolution into account.  For this reason, we 
propose a  new class: evolving information systems. In [29] a  
more detailed‘discussion of the relationship to these classes of 
information systems is discussed. 

In this paper  we consider evolving inforhation systems, and  
try to abstract from the subclasses ment ioned above.  There- 
fore, we take the underlying informaton structuring technique 
for granted, make only weak assumptions -on the underlying 
technique, and  limit ourselves to conceptual  issues. This paper  
restricts itself basically to the way of modell ing of conceptual  
models. Existing approaches to evolving information systems, 
such as  the Gemstone [3], ORION [19], Sherpa [22], and  Co- 
coon [36] systems provide first attempts for a  way of support  
for evolving information systems. However,  to our  knowledge, 
all these systems lack a  r igourously formalised underlying ~u.y 
of modell ing. Although it is beneficial to have  a  working way 
of support  as  soon as  possible, having a  well thought out un-  
derlying way of modell ing first has  proven its usefullness. At 
least, this should be  the second goal after complet ing the tool! 

The  structure of the paper  is as  follows. In Section II we de- 
scribe the approach that has  been  taken to the concept  of evo- 
lution, in which evolution is seen (similar as  history books)  as  
an  ensemble of individual histories of application model  ele- 
ments. As we will not focus on  a  particular modell ing tech- 
nique, Section III descr ibes the minimal requiremehts for an  
underlying technique, as  discussed above.  In Section V we 
introduce the universe for application model  evolution. After 
that, we discuss what constitutes a  wellformed application 
model  version. In Section VI the evolution of application 
models is seated, and some wellformedness rules for such 
evolutions are formulated. 

II. AN APPROACH TO EVOLVING 
I~JF~R~~ATION SYSTEMS 

In this section we discuss our  approach to evolving infor- 
mation sys‘tems. W e  start with a  hierarchy of models, which 
together constitute a  complete specification of (a version of) a  
universe of discourse (application domain). Using this hierar- 
chy, we are able to identify that part of an  information system 
that may be  subject to evolution. From this identification, the 
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difference between a traditional information system, and its 
evolving counterpart, will become clear. This is followed by a 
discussion on how the evolution of an information system is 
modelled. 

A. An Example of Evobtilon 
As an illustration of an evolving universe of discourse, 

consider a rental store for audio records (LPs). In this store a 
registration is maintained off the songs that are recorded on the 
available LPs. In order to ‘keep track of the wear and tear of 
LPs, the number of times an LP has been lent is registered. 
The information structure and constraints of this universe of 
discourse are modelled in Fig. I in the style of ER, according 
to the conventions of [39]. Note the special notation of attrib- 
utes (Tit 1 e) using a mark symbol (#) followed by the attrib- 
ute (#Title). 

Fig. 1. The information structure of an LP rental store. 

An action specification in this example is the rule Init- 
freq, stating that whenever a new LP is added to the assort- 
ment of the store, its lending frequency must be set to 0: 

ACTION Init-freq = 
WHEN ADD Lp:x DO 
ADD Lp:x has Lending-frequency of Frequency:0 

This action specification is in the style of LISA-D [IS]. 
Note that the keyword “has” connects object types to relation 
types, and the keyword “of" just the other way around. 

After the introduction of the compact disc, and its conquest 
of a sizable piece of the market, the rental store has’trans- 
formed into an LP and CD rental store. This leads to the intro- 
duction of the object type Medium as a common supertype 
(denominator) for LP and CD. This makes CD and LP to sub- 
types of Medium. The relation type Medium-type effectuates 
the subtyping of Medium into LP and CD. In the new situation, 
the registration of songs on LPs is extended to cover CDs as 
well. The frequency of lending, however, is not kept for CDs, 
as CDs are hardly subjiect to any wear and tear. As a conse- 
quence, the application model has evolved to Fig. 2. This re- 
quires an update of the typing relation of instances of object 
type LP, which are now instances of both LP and Medium. 
Note that this modification can be done automatically. 

The action specifica.tion Ini t - f req evolves accordingly, 
now stating that whenever a medium is added to the assortment 
of the rental store, its lending frequency is set to 0 provided 
the medium is an LP: 

ACTION Init-freq = 
WHEN ADD Medium:x Do 

IF Lp:x THEN 
ADD Lp:x has Lending-frequency of 

Frequency:0 

Mdhlm 
# Title 
# Artist 

L 

CD 

Fig. 2. The information structure of an LP and CD rental store. 

After some years, the CDs have become more popular than 
LPs. Consequently, the rental store has decided to stop renting 
LPs and to become a CD rental store. Besides, the recording 
quality of songs on CDs has appeared to be relevant for cli- 
ents. As this quality may differ from song to song on a single 
CD, and may for some song be different for recordings on dif- 
ferent CDs, the recording quality is added as a (mandatory) 
attribute to the Recording relation. 

This change in the rental store, leads to the information 
structure as depicted in Fig. 3. As a result of this evolution 
step, the action specification Ini t - f req can be terminated, 
since the lending frequency of CDs is not recorded anymore. 
Furthermore, the addition of the mandatory attribute Quality 
enforces an update of the existing population. In this case, 
contrary to the previous evolution step, information has to be 
added to the old population. This could, for example, be effec- 
tuated by the following transaction: 

ADD TO Recordins MANDATORY ATTRIBUTE Quality; 
UP1 .TE Recording SET Quality = 'AAD' 

Fig. 3. The information structure of a CD rental store, 

B. The Approach 
The three ER schemata, and the associated action specifica- 

tions, as discussed above, correspond to three distinct snap- 
shots of an evolving universe of discourse. Several approaches 
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can be taken to the modelling of this evolution. stone for a theory of application model evolution that abstracts 
as much as possible from underlying concrete modelling tech- 
niques and from implementation related details. It is this the- 
ory that is the main contribution of this article. The aim of the 
theory is not to reject or replace any of the existing approaches 
to schema evolution, but rather to complement it and provide a 
more elaborate theoretical background. 

Fig. 4. Evolution modelled by snapshots. 

This paper takes another approach, and treats evolution (or 
rather the time axis) of an application model as a separate con- 
cept. This approach has a resemblance to the approach from 
[33], which, however, is more restricted in the sense that is 
more directed towards an implementation. 

Within our approach, there still are two alternatives to deal 
with the history of application models. The first one is to 
maintain a version history of application models in their en- 
tirety. This alternative leads to a sequence of snapshots of 
application models, as illustrated in Fig. 4. The second alter- 
native, is to keep a version history per element, thus keeping 
track of the evolution of individual object types, instances, 
methods, etc. This has been illustrated in Fig. 5. Each dotted 
line corresponds to the evolution of one distinct element. 

Fig. 5. Evolution modelled by functions over time. 

The major advantage of the second alternative is that it en- 
ables one to state rules about, and query, the evolution of distinct 
application model elements. The first alternative clearly does not 
offer this oppertunity, as it does not provide relations between 
successive versions of the application model elements. 

Furthermore, the snapshot view from the first alternative 
can be derived by constituting the application model version of 
any point of time from the current versions of its components 
(consequently the view on the evolution of populations of the 
first approach can be derived as well). This derivation is ex- 
amplified in Fig. 6. In the theory of evolving application 
models we will therefore adapt the second alternative. 

Finally, we realise that the approach we take to the evolu- 
tion of application models is not new. The described approach 
is in line with approaches discussed in, e.g., [33], [21, and [IS]. 
However, in this article we try to use this approach as a corner 

time 

Fig. 6. Deriving snapshots from element evolutions. 

C. EvoIving Information Systems 
We are now in a position to formally introduce evolving in- 

formation systems. The intention of an evolving information 
system is to describe an application model history. (In this 
paper, the difference between recording and event time [35], 
and the ability to correct stored information are not taken into 
corisideration. For more details, see [lo] or [ll].) An applica- 
tion model history in its turn, is a set of (application model) 
element ev&tions. Each element evolution describes the 
evolution of a specific application model element. An element 
evolution is a partial function assigning to points of time the 
actual occurrence (version) of that element. 

An example of an element evolution is the evolution of the 
relation type named Recording in the rental store. When 
CDs are added to its assortment, the version of the application 
model element Recording changes from a relation type 
registrating songs on LPs, to a relation type registrating songs 
on Media. The removal of LPs from the assortment leads to 
the change of the application model element Recording into 
a relation type registrating songs on CDs. 

The domain -YUY!Hfor application model histories is de- 
termined by the following components: 

1) The set d3MfF is the domain for the evolvable elements 
of an application model. A formal definition of ;23MrE 
will be provided in Section VI. 

2) Time, essential to evolution, is incorporated into the the- 
ory through the algebraic structure where T iss a 
(discrete, totally ordered) time axis, and F a set of func- 
tions over 5 For the moment, F is assumed to contain 
the one-step increment operator D, and the comparison 
operator 1. Several ways of defining a time axis exist, 
see, e.g., [7], [37], or [I]. 
The time axis is the axis along which the application 
model evolves. With this time axis, an application model 
history is a (partial) mapping TX-+ _a7MIE. In this arti- 
cle, H is used for partial functions, and + for total 
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3) 

4) 

functions. XM3f-is the set of all such histories. In a later 
section, we will pose well-formedness restrictions on 
histories. 
Other time models are possible, for example, in distrib- 
uted systems a relative time model might be used. For a 
general survey on time models, see [32]. The linear time 
model is usually chose.n in historical databases (see for 
example [34]). 

3M is the domain for actions that can be performed on 
application model histories. 
The semantics of the actions in Jl4 is provided by the state 
transition relation on application model histories: 

[] cJvxTxm3fxm3-1; 

where H urn], H  ’ means: H ’ may result after applying ac- 
tion m to H at time t. In business applications, most ac- 
tions will turn out to be deterministic. However, some- 
times it is useful to allow for nondeterminism; for exam- 
ple when external influences can effect the outcome of a 
process, while these influences themselves are not con- 
sidered part of the universe of discourse. 

Our  way of abstracting the semantics of actions was in- 
spired by the Temporal Logic of Actions as discussed in [Zl]. 

D. A Dual Vision 
The execution of an action at some point of time is referred 

to as an event occurrence. 

DEFINITION 1 (event occurrence sequence domain). The do- 
main of sequences of event occurrences is identified by: 
TO= I>-i, .?bl. 

An application model history (H) describes the evolution of 
an underlying application. A prefix of this history describes the 
evolution of this application upto some point of time, and 
forms a state of an assod.ated evolving information system. 
First we introduce prefixing of a single element evolution: 

DEFINITION 2 (element evolution prejix). Zf h : T H AME, 
then the prefix of h at time t is: 

/z,~ =Ls.if sit then h(s) elseh(t) fi. 

The states of an evolving information system, tracking ap- 
plication model history H, (are identified by: 

DEFINITION 3 (evolving information system state). If 
3f E -PV@f then the state of H at time t is: 

Note that each state of am evolving information system is an 

application model history as well (Hit E ZXMH). States are 

also referred to as initial histories. For the state operation we 
have the following property: 

LEMMA 1. If H  is an application model history, then 

ult- Hit ( 1 b = Hlu 

t I u =-a ( Hlr),, = Hit . 

The evolution of an application model is described by an 
application model history H. Besides, this evolution may be 
modelled as a sequence E of event occurrences, specifying 
subsequent changes to initial histories of the application 
model, starting from the initial application model. Thus the 
combination of E and H leads to a dual vision on states of 
evolving information systems. On  the one hand, a state results 
from a set of event occurrences. On  the other hand, a state is a 
prefix of an application model history. 

The relation between an application model history H, and a 
set of event occurrences E is captured by the Behaves 
predicate: 

DEFINITION 4. Let E c 20 and 3f- E 5UVlg, then: 

Behave4E~ H) A ~(t,+E [ fqf II mnt H,Pf ] 

‘%[f$ ff& *%[(t&E]]. 

The first part of the above definition states that every 
event occurrence must be reflected in the application model 
history H. On  the other hand, the second part of the defini- 
tion states that any change in the H must be based on some 
event occurrence. 

The events which are described in our running example are: 

1) event El occurring at time tl: the introduction of CDs 
2) event Ez occurring at time t2: the abolishment of LPs 

For simplicity, we assume that no other events (including 
changes to the population) have taken place. If we refer to 
application model history of this example by the name Store, 
then the following three different states can be recognized: 

1) Store,,, : the initial history of the system 

2) Storellz : the history of the system after the introduction of 

CDs, upto the abolishment of LPs (at t2). 
3) Storelt3 = Storelb12 for points of time later than b rz. 

The predicate Behaves enforces the following properties: 

Store,,, [El ]Storer, and StorelCz [E, ]JStorel,J . 

Due to this property, the communication between user and 
information system can be transaction oriented. The descrip- 
tion of a (convenient) language for this communication falls 
outside the scope of this paper. 

At this point, we have demarcated the states and transitions 
of an evolving information system. Later, we will impose well- 
formedness restrictions on application model histories, and 
thus on the states of the evolving information system. We will 
use ISAMH(H) to denote that H satisfies these restrictions. 
These restrictions on states imply a restriction on transitions, 
expressed by the predicate Is EI S : 
DEFINITION 5. Let E E CEO and H E SUvlg, then: 

ISEIS(& H) 4 Behaves(E, H)AV,~~ [ISAJYIH(H,)]. 

III. GENERALISED INFORMATION STRUCTURES 

The kernel of the application model universe is formed by 
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the information structure universe, fixing the evolution space 
for information structures. Therefore, we take this universe as  
a  starting point to build the formal framework, as  it forms a  
solid (time and  application independent)  base  for this 
framework. 

A. The  information structure universe 

The  information structure universe, for a  given modell ing 
technique, is def ined as: 

DEFINITION 6. The  universe IL, for information strucfures is 
determined by  the structure: 

'l&=(&V-,-,+,IsSch). 

where L  are label object types, %-are abstract object types. 
The  relation - captures relatedness between object types. In- 
heri tance of identification of object types is descr ibed in the 
relation -+. Finally, the predicate IsSch (is schema) embod-  
ies wel l formedness of information structures. These compo-  
nents are discussed in more detail in the next subsections. 

Further ref inements of the information structure universe 
depend  on  the chosen data modell ing technique (such as  
NIAM, ER, PSM and  Object Oriented data models), and  are 
beyond  the scope of the theory. In Section III.A.5 we see how 
ER fits within this framework. For more examples, see  [26] 
and  [30]. For our  purposes,  an  information structure universe 
is assumed to provide (at least) the above  components,  which 
are available in all conventional high level data modell ing 
techniques. 

A.I. ObjectTypes 

The  central part of an  information structure is formed by its 
object types (referred to as  object classes in object or iented 
approaches).  Two major classes of object types are distin- 
guished. Object types whose instances can be  represented di- 
rectly (denoted) on  a  medium (strings, natural numbers,  etc) 
form the class of label types L. The  other object types, for 
instance entity types or fact (relation) types, form the class YL 
The  set of all possible object types is def ined as: 0  =  Lu  .?f . 
The  example of Fig. 1  contains nine object types: three entity 
types Record, Song, and  Frequency,  two relation types 
Recording and  Lending-frequency, and  four label 
types Title,Artist,Author, and  Times. 

A.2. Type Relatedness 
The  relation -E 0  ~0  expresses type relatedness be-  

tween object types (see [17]). Object types x and  y are termed 
type related (x - y) iff populat ions of object types x and  y may 
have  values in common in any  version of the application 
model. Type relatedness corresponds to mode  equivalence in 
programming languages [38]. The  relation of type reIatedness 
can be  recognised in conventional modell ing techniques like 
ER, NIAM, or PSM, as  well as  in semantic data model  ap-  
proaches including object or iented concepts (see, for example, 
[5]). TyIjically, subtyping and  general isation lead to type re- 
lated object types. For the data model  depicted in Fig. 1, the 
type relatedness relation is the identity relation: x - x for all 

object types x. According to the the intuitiv’e  meaning of type 
relatedness, this relation is required to be  reflexive and  sym- 
metrical: 

[ISUl] (reflexive) x - x 

[ISU2] (symmetrical) x - y a  y - x. 

A.3. The  Identification Hierarchy 

In data modell ing, a  crucial role is p layed by  the notion of 
object identification: each  object type of an  information struc- 

ture should be  identifiable. In a  subtype hierarchy however,  a  
subtype inherits its identification from its super  type, whereas 
in a  general isation hierarchy the identification of a  general ised 
object type is inherited from its specifiers. For the data model  
depicted in Fig. 2, this means  that instances of LP and  CD are 
identified in the same way as  instances of Medium. 

An object type from which the identification is inherited is 
termed an  ancestor of that object type. The  inheritance hierar- 
chy (identification hierarchy) is provided by  the relation 
x -+ y, meaning x is an  ancestor of y. For Fig. 2  this leads to: 
Medium -+ LP and  Medium -+ CD. The  inheritance relation 
is both transitive and  irreflexive. 

[ISU3] (transitive) x -+ y A y -+ z 9  x -+ 2  

[ISU4] (irreflexive) 7  x -+ x. 

Similar axioms can be  found as  propert ies in literature about  
typing theory for databases [4], [25], and  [5]. The  difference, 
between these propert ies and  ours, lies in the abstraction of an  
underlying structure of object types and  their instances. As we 
do  not make any  assumption on  these structures, such proper- 
ties must be  stated as  axioms. Another reason is that the inheri- 
tance hierarchy is intertwined with type relatedness, requiring 
appropriate axioms. 

Object types without ancestors, are called roots: 

Root(x)b,[z" x]. 

The  roots n  of an  object type y are found by: 

xRootOfy+=yvx*y)r\Root(x). 

The  finite depth of the inheritance hierarchy is expressed by  
the following schema of induction: 

[ISUS] (ancestor induction). Zf V’,[F(x)] *F(y) for any  y, 

then v’,[F(x)]. 

From the intuition behind the ancestor relation it follows 
that object types may have  instances in common with their 
ancestors. This implies that object types not only inherit,iden- 
tification from their ancestors, but type relatedness as  well. 
These requirements are laid down in the following axioms: 
[ISU6] ( inheritance oftype relatedness) x- yr\ y-+z * X- z 

[ISU7] (foundation oftype relatedness) 
x-yr\TRoot(y)=+[x-zr\z-;y]. 

For every data model  from conventional data modell ing 
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techniques, an  ancestor and  root relation can be  derived. If no  
specialisations or general isations are present in a  particular 
data model, the associated ancestor relation will be  empty. As 
a  result, the root relation will then be  the identity relation. For 
instance the root relation for Fig. 1  is: x RootOf x for every 
object type x. When  the data model  at hand  contains speciali- 
sation or generalisations, the relations -+ and  RootOf will be  
less trivial. 

A.4. Correctness of Information Structures 

An information structure is spanned  by a  set of object types. 
Not all sets of object types taken from 0 will correspond to a  
correct information structure. Therefore, a  technique depend-  
ent predicate IsSch c o,(0) has  to be  supplied, designat ing 
which sets of object types form a  correct information structure. 

A.5. An Example: ER 

As a  brief example of how the general  theory can be  related to 
an  existing modell ing technique, we consider ER in this section. 
As stated before, a  fully elaborated and  formalised application of 
the theory to an  object-role :modell ing technique can be  found in 
[30]. For Chen’s [6] ER model  (extended with subtyping), the 
information structure univerise is as  shown below. 

Label  Types. The  set of label types L  in ER corresponds to 
the printable attribute types. Note that in some ER versions, 
entity types can be  used as  attribute for other entity types. 

Nonlabel Types. The  set of nonlabel types 3vis def ined as  
the set of relationship types, entity types and  associative object 
(entity) types. 

Inheritance. Traditional ER only cbntains the notion of 
subtyping. So for each  subtype x of a  supertype y we have:  
y -+ X. The  complete inhe:ritance relation --+ is then obtained 
by  applying the transitive closure. 

Type Relatedness. Two subtypes of the same supertype are 
type related. Furthermore, subtyping is the only way in ER to 
make type related object t:ypes. Furthermore, a  subtyping hier- 
archy has  a  unique top element. Let n(x) denote the unique top 
element of the subtyping hierarchy containing object type n. 
Thus type relatedness for ER is def ined as: 

x-yh(x) =  n(y). 

Schema Well formedness. The  predicate IsSch can be  de-  
scribed according to ER rules. This will be  omitted in this 
paper.  

The  information structure universe axioms are easily verified. 
The  type relatedness axioms ISUl and  ISU2 are immediate con- 
sequences  of the above  d8efinition. The  identification hierarchy 
axioms ISUS, ISU4, and  ISU5 directly follow from the nature of 
subtyping in ER. The  axioms that relate type relatedness with the 
identification hierarchy are also easily verified. 

B. Properties of Information Structure Universes 
The axioms so far try to model  the concepts of type related- 

ness, object type and  inheritance. In this section, we derive some 
useful1 propert ies of information structure universes, illustrating 
the validity of the ISU axioms at the same time. The  first prop- 
erty relates the root relationship to type relatedness: 

LEMMA 2. Any root of an  object type is related to that object 
type: xRootOfy Ax-y. 

Axiom ISU7 may be  general ized to: 

LEMMA 3. Sharing a  root is equivalent with being type re- 
lated: x-ye&[x- z~zRootOfy]. 

In order to prove this property, and  interesting propert ies to 
come, two proof schemas concerning inheritance and  founda- 
tion of propert ies are introduced first. W e  call a  property P of 
object types a  strong inheritance property, iff for all x, y: 
P(x)/\x-+y*P(y). 

Note that states that the relation P,, def ined by  P,(y) =  
x - y, is a  strong inheritance property for all x. A property P 
will be  referred to as  a  weak inheritance property iff, for all y: 
P(y)~~Root(y)*&[P(x)~x-y]. 

Axiom ISU7 states that the relation P,, def ined by  P.&y) =  
x - y, is a  weak inheritance property for all x. The  first proof 
schema is rather straightforward, and  is concerned with inheri- 
tance of properties: 

THEOREM 1  (inheritance schema).  If P is a  strong inheritance 
property, then the property is preserved by  the 
RootOf relation: P(x)~xRootOfy =3  P(y). 

The  second proof schema is concerned with the foundat ion 
of properties: 

THEOREM 2  (‘foundat ion schema).  Zf P is a  weak inheritance 
property, then P originates from root object types: 
P(y) 3  $.[P(x) AX RootOf y]. 

The  result of Lemma 3  can be  general ised to the following 
theorem: 

THEOREM 3  (type relatedness propagation). Type relatedness 
of roots is equivalent with that of object types: 
3  z,-z2 [zl RootOfx A z2 RootOfy] @  x - y. 

Fig. 7. Data model with propagation of type relatedness. 

As an  illustration of this theorem, consider the PSM data 
model  from Fig. 7. It contains two generalisations, two spe- 
cialisations, and  two power  types (D, E). Power types are the 
data modell ing pendant  of powersets used  in set theory. The  
instances of object types D and  E are sets of instances of B and  
C, respectively. The  RootOf relation for this data model, is 
given in Fig. 8. The  type relatedness of D and  E, which itself 



990 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 6, DECEMBER 1995 

follows from the type relatedness of B and  C [17], is propa- 
gated to F  and  G  by means  of the RootOf relationship and.  In 
[ 171,  [ 151,  the inheritance of type relatedness via type con- 
structions, e.g., powertyping, is elaborated. 

f ;G 

i 
E 

I3 
a...., .‘X,~, . . . . . . &A& . . . . . . . ...‘. 

,,..- 
C 

. . ..O. 
.:’ ., 
:. : 

Fig. 8. Root dependency graph showing propagation of type relaledness. 

IV. GENERALISED APPLICATION MODELS 

An application model  version provides a  complete descrip- 
tion of the state of the information system at some point of 
time. Such an  application model  version is bound  to the ~ppli- 
cation model  universe U, . 
DEFINITION 7. An application model  universe is spanned  by 

the tuple: 

where the information structure universe U, has  been  
introduced in the previous section. ZI is a  set of underly- 
ing concrete domains to be  associated to label types. The  
set ~2  is der ived from these concrete values, and is a  du-  
main for instantiating abstract object types, The  predicate 
IsPop checks if such an  instantiation is well-formed. y 
and  /I are the universes for constraint and  method defini- 
t ions respectively. The  semantics of both constraints and  
methods is provided by  the ternary predicate [ ] (see Sec- 
tion II. C) The  dependenc ies of constraints aad  method on  
the type level (0, L  x ‘D,> are descr ibed by  the relation 
Depends.  The  information structure universe U, was 
introduced in the previous section. The  other components  
of the application model  universe are discussed in the re- 
mainder of this subsection. 

A. Domains 

The  separat ion between concrete and  abstract world is pro- 
v ided by  the distinction between the information structure I, &d 
the set of underlying (concrete) domains in D 1151.  Therefore, 
label types in an  information structure version will have  to be  
related to domains. An application model  version contains a  
mapping Dom, providing the relation between label types and  
domains. Each domain assignment Dam, is bound  to: 
Doxn = L  W  D. Some illustrative exampies of such domain 
assignments, in the context of the rental store running example, 
are:Times I-+ Natno,Title H Str ing,whereNatno 

and  String are assumed to be  (names of) concrete domains. 

B. Instances 

The  populat ion of an  information structure is not, as  usual, a  
partial function that maps  object types to sets of instances. 
Rather, an  instance is considered to be  an  independent  thing, 
which can evolve by  itself. Therefore, (non empty) sets of ob-  
ject types are associated to instances, specifying the object 
types having this instance as  an  instantiation. This associat ion 
is the intuition behind the relation HasTypes,.  The  domain 
for this relation is: HasTypes =12x(&O)-{@}) where Q  is 
the set of all possible instantiations of object types. Note that 
HasTypes,  is a  relation rather than a  (partia&%nction. The  
reason is to support  complex general isation hierarchies. For 
example, suppose (a,, a,} is an  instance of both D and  E in 

Fig. 7. Then  {a,,a,} is related to both {D, F} and  {E, G) by  
HasTypes,.  

Another example is the connect ion (I,, {Medium, Lp}), 
meaning II is an  (abstract) instance of entity types Medium 
and  Lp. The  populat ion of an  object type, traditionally pro- 
v ided as  a  function Pop:0 j@(Q), can  be  derived from the 
associat ion between instances and  object types: 
Pop,Cn)=(YlvHasTypes, YAX E Y}. 

Not dl subsets of HasTypes will correspond to a  proper 
population. A populat ion of an  information structure will have  
to adhere  to some technique dependent  properties. These 
propert ies are assumed to be  provided by  the predicate 
IsPop c ~(0) x @(HasTypes).  Note that this predicate 
does  not take the validity of constraints in the application 
model  into consideration. This is not yet possible, as  con- 
straints may be  transition oriented, implying that they can only 
be  enforced in the context of the evolution of the elements. 
The  enforcing of constraints on  the (evolution of) populat ions 
will therefore be  postponed until Section VI. 

C. Constraints 

R/lost data modell ing techniques offer a  language for ex- 
pressing constraints, both state and  transition oriented. This 
language descr ibes a  set y of all possible constraint definitions. 

Each constraint C is treated as  a  partial function, assigning 
constraint definitions to object types: C : 0  t3 y. Constraint 
C is said to be  owned  by object type x, if x  has  assigned a  
constraint definition by  constraint C. Each constraint is con- 
sidered to be  an  application model  element. 

Constraints are inherited via the identification hierarchy. 
However,  as  in object or iented data modell ing techniques, 
overriding (strengthening) of constraint definition in identifi- 
cation hierarchies is possible (see for instance [S]). This is 
later introduced as axiom AMV12. 

A constraint c, in an  application model  version, will be  a  
(usually very sparse) partial function c : 0  w y, providing’ 
for every object type a  private definition of the constraint. 
Each modell ing technique will have  its own possibilities to 
formulate inheritance rules, thus governing the mapping c. The  
domain for constraints is: R = 0  x y. Enforcing con- 
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straints on a population is discussed in the next section. 
D. Methods 

The action model part of an application model version will 
be provided as a set of action specifications. The domain for 
action definitions (p) is determined by the chosen modelling 
technique for the action model. 

The, modelling technique dependent, inheritance 
mechanism for constraints can be used for methods as well. 
A method m is regarded as a partial function m : 0 H p, 
assigning action specifications to object types. The set of 
all possible methods is the set of all these mappings: 
n/r = 0 B-+ p. This definition provides the formal foun- 
dation of the methods in the preleminary definition of the 
living space of an evolving information system as provided 
in Section 1I.C. 

E. Semantics of Constraints and Methods 
The semantics of both methods and constraints are defined 

by the relation I[ 1. Therefore, we consider constraints as special 
methods, as in [21]. This leads to the following axiom: 

[AMUll y  c  P. 

A direct result of this axiom is: R c_ 34. Next, we focus at 
the semantics of methods, which are described by [ ] as transi- 
tions on application model histories. Methods are required to 
preserve the wellformedness properties specified by I sAMH. 

[AMU2] H [m], H’+(IsAMH(H)J ISAMH(H’)). 

The meaning of a method may depend on the history sofar 
of an application model. It may, however, not depend on any 
future behaviour of the application model: 

[AMU3] H [rnlt H’a H = H,, , 

Furthermore, the 
after its completion: 

effect of a is completely known 

[AMU4] H urn], H’=s H’= H;, 

The history of an application model is supposed to be mo- 
notoneous. So it is not possible to falsify (correct) the history. 

[AMUS] H [[mjt ~‘3 H,, = H;, . 

Constraints are deemed as a special kind of method, behav- 
ing like a guard on application model histories. As a result, 
constraints are basically predicates. The semantics of con- 
straints are not influenced bly the next state: 

[AMU6] If c  E 23 tlhen H [c], H, w Hiclt H2 . 

This axiom implies that H\c], is a meaningful1 expression. 

F. Evolution Dependency 
Every method and constraint will refer to (uses) a number of 

object types and denotable instances (i.e. directly representable 
on a communication medium). This relation is provided in the 
application model universe by means of the dependency rela- 
tion Depends: Depends ~(~u~y)X(ou~X~). 
This relation is modelling technique dependent, but is not 

subject to evolution. 
The interpretation of this relation is as follows: x  Depends 

y means that if y  is not alive in an application model version, 
then x has no meaning in that version. A consequence is that, 
in case of evolution of application models, when y evolves to 
y’, then x must be adapted appropriately. 

As an example, consider the second action specification 
from the rental store example: 

ACTION Init-freq = 
WHEN ADD Medium:x DO 

IF Lp:x THEN 
ADD Lp:x has Lending-frequency of 

Frequency:0 

This action specification depends on object types Medium, 
Lp, and Frequency. It, furthermore, depends on the domain 
assignment: Frequency I+ Natno. If one of the object 
types, or the domain assignment, is terminated or changed, the 
action specification has to be terminated or changed accord- 
ingly. This will be formalized in a later section as axiom 
AMVll. 

V. APPLICATION MODEL VERSIONS 

In this section, the formal definition of an application model 
version is provided, containing all components from the hier- 
archy of models, and the relations among them. First, we give 
a delimitation of the state space of the application model ver- 
sions by means of an application model universe. 

A. Deriving Application Model Versions 
The (description of the) evolution of an application domain 

(i.e., an application model history) has been introduced as a set 
of application model element evolutions. Therefore, an appli- 
cation model version can be determined by the actual applica- 
tion model element versions. At this moment we will identify 
the domain for such versions: 

DEFINITION 8. An application model version over application 
model universe ‘Ux is defined as: 

Z, =(O,,a,,3M,,HasTypes,,Dom,) 

where 
o,co,a,Ga,~,dw 
HasTypes,~HasTypes,andDom,EDom. 

From a version of an application model, we can derive the 
current version 

1, = (Lp N-t, -pr) 

of the information structure as follows: 
q=o,fd, 

Nt =o, n!N-, 

X--t y  p x-yr\x,y E o,, 

x-*,2 x-+yr\x,y E 0,. 

Every application model version must adhere to certain 
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rules of well-formedness. Some of these rules are modelling 
technique dependent, and therefore outside the scope of this 
paper. Nonetheless, some general rules about application 
model versions can be stated. 

object type is accompanied by one of its ancestors (if any). 
This is stipulated in the following axiom: 

A.1. Active and Living Objects 

[AMVSI (foundation of live). The relation P, defined by 
P(x) = x E O,, is a weak inheritance property. 

Note that AMV5 cannot be derived from AMV3. The reason is 
that a non-root object type may be alive, yet have no instance 
associated. By applying the foundation schema on axiom 
AhQJ5 we get: 
LEMA 6 (living routs). 

An object type x is called aEive at a certain point of time t, if 
it is part of the application model version at that point of time 
(XE 0,). Furthermore, an object type x is termed active at a 
certain point of time t, if it is instantiated at that moment, i.e., 
if there is an instance typing X at time t such that x  E X. We 
call X an instance typing at time t if 

3,,,[vHasTypes,X]. 

y  E 0,33x[x E O,r\xRootOf y]. 

Note that in this case the root x  does not have to be unique. 

A.2. Well-Formed Concretisation 
In the remainder of this subsection, a number a rules for in- 
stance typings will follow. 

A first rule of well-formedness states that every active ob- 
ject type must be alive as well. This rule can be popular&d as: 
“I am active, therefore I am alive.” It is formalised as: 

[AMVll (active life). If X is an instance typing at time t, then: 
xco,. 

In a valid application model version each label type is con- 
cretised by associating a domain. Therefore, the domain pro- 
viding function Dam, is a (total) function from alive label types 
to domains: 

The next rule of wellformedness states that sharing an in- 
stance at any point of time, is to be interpreted as a proof of 
type relatedness: 

[AMV6] (full concretisation). Dam, : Lt -+ L0 

Furthermore, the instances of label tybes must adhere to this 
domain assignation: 

[AMV7] (strong typing of labels). If v  HasTypes,X and 
v E U 2; then: x  E X 3 v E Dam,(x). 

[AMV2] (active relatedness). If X is an instance typing, then: 
x,ys x=+x-y. A.3. Constraints and Methods 

We call X an instance typing, if X is an anstance typing at 
some point of time t. In a later section we will prove a stronger 
version of this axiom. From the very nature of the root relation 
it follows that instances are included upwards, towards the 
roots. As a result, every instance of an object type is also an 
instance of its ancestors (if any): 

[AMVS] (alive dejinitions). If w  E 2z, u .%I, then: 

[AMV3] Cfoundation of activity). If X is an instance typing, dom(w)c 0,. 

then the relation P, defined by P(x) = x E X, is a weak inheri- 
tance property. 

Methods, and thus constraints, are defined as mappings 
from object types to method and constraint definitions respec- 
tively. This implies that object types, owning a constraint or a 
method, must be alive. 

where dam(w) = {#x. y)rw} is the domain of function w. 

Applying the foundation schema (Theorem 1112) to this axiom 
shows the presence of roots in instance typings: 

LEMMA 4 (active roots). If X is an instance typing, then: 
yEX33,[xEX~xRootOfyj. 

For example, constraint Cr from the airplane example can only 
be alive if the object type Manufacturer is alive. As a next 
rule, object types that own the same constraint or method, must 
be type related. 

In most traditional data modelling techniques each type hi- 
erarchy has a unique root. As a consequence, each instance 
typing contains a unique root. Some data modelling tech- 
niques, however, allow type hierarchies with multiple roots 
(see Fig. 7). For such modelling techniques, the following ax- 
iom guarantees a unique root for each instance typing. 

[AMV4] (unique root). If X is an instance typing and x, y  E X 
then: Root(x)~Root(y)=$x=y. 

The above axiom leads to the following strengthening of 
Lemma 4. 

[AMV9] (type related definitions). If w  E Y$ u .94, then: 

x,y~ dom(w)*n-y. 

Finally, due to inheritance, if a constraint is defined for an 
ancestor object type, it is defined for all its offspring as well. 

[AMVlO] (inheritance of definitions). If w  E =Fi, v  %& then 
the relation P, defined by P(x) = x E dam(w), is a strong in- 

heritance property. 

LEMMA 5 (active root). lf X is an instance typing, then: 
yEXS3!,[xxX~xRootOfy]. 

Axiom AMV3 has a structural pendant as well: every living 

Note that the inheritance direction for populations, is re- 
verse to the inheritance direction for methods (and con- 
straints). The motivation for the next axiom lies in the follow- 
ing observation (see Section 1V.F). The definition of a con- 
straint or a method refers to a set of object types, and domain 
concretisations. Thus, if a method or constraint definition is 
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alive, then all these referred items should be alive at that same 
moment. 

[AMVll] (dangling references). If w E ?X, u n/l, then: 
w(x) Depends y + y E 0, u (L, x ‘I$). 

Since every instance from a non-root object type is inherited 
downwards in the identification hierarchy towards the root 
object types, constraints on child-object types should be at 
least as restrictive: 

[AMV12] (strengthening of constraints). If c E R, then: 
x+y/\cLx,y* c(y)kc(x). 

where di II- d2 is defined as: tl, H [H [dl], * H [d&l. The in- 
tuitive meaning of dl ll- dz is: dl is at least as restrictive as dz 
(see also [12]). 

B. Populations of Informaltion Structures 
A special part of an application model version is its popula- 

tion. This population can be derived from the relation 
HasTypes,: 
DEFINITION 9. The population at any point of time, is a map- 

ping Pop: 
T + (0 + p (Q!)), defined by: Pop,(n) 
= (v(3,[vHasTypes,Yh~~Y]}. 

It will be convenient to have an overview of all instances 
that ever lived. We will refer to this population as the extra- 
temporal population. 

DEFINITION 10. The extra-temporal population of an applica- 
tion model is a m,apping Pop-: 0 + @(CL), defined 
by 

PoP&)=~~~POP&) 

Axiom AMV3 relates instances to the object type hierarchy. 
This leads to the following property for populations: 

LEMMA 7 (population distribution). Every instance of an ob- 
ject type, is also instance of one of its roots: 

The result of the previous 
tra-temporal populations: 

lemma can be generalised to ex- 

COROLLARY 1. 

Next we focus at strong typing, which is considered to be a 
property to hold on each moment: if x + y, then their popula- 
tions may never share instances. The following axiom is suffi- 
cient to guarantee this property, as we will show ‘in Theorem 5. 

[AMV13] (exclusive root population). If Root(x) and 
R.oot(y) then: 

x+y* Pop,(x)nPop,(y)=IZI 

If roots are not type related, then their extra-temporal 
populations are disjoint. 

By means of the following theorem the nature of type relat- 
edness, captured for roots in the above axiom, is generalised to 
object types in general: 

THEOREM 4 (exclusive population). If x ?L y then 

zRootOfy 
Popm(z)=O. 

The populations of object types 
have no values in common. 

which are not type related, 

From Lemma 7 and Theorem 4 the main typing theorem is 
derived: 

THEOREM 5 (strong typing theorem). 

x+y=i-POp,(X)f7Popm(y)=0. 

We will now define what constitutes a wellformed applica- 
tion modelversion.Let &=(O,, C?& A'vf,,HasTypes,,Dom,): 

IsAM(~,)~IsSch(O,)r\IsPop(O,,HasTypes)h& 

adheres to the AMV axioms. 
In the next section, this predicate will be used to define 

what constitues a proper application model history (IsAMH). 

VI. EVOLUTIONOFAPPLICATIONMODELS 

As stated before, the evolution of an application model is 
described by the evolution of its elements. The set R%E was 
introduced as the set of all evolvable elements of an applica- 
tion model. Its formal definition in terms of components of 21, 
is: 

DEFINITION 11. Application model elements: 

~C??=Ou~u~uHasTypesuDom 
An application model element evolution was defined as a 

partial function, assigning actual version of application model 
elements to points of time. Note that the type relatedness and 
root relationships are defined for the evolution state space as a 
whole, and are therefore not subject to any evolution. 

In this section we will present a set of wellformedness rules 
for application model histories. These rules represent our way 
of thinking with regards to a wellformed evolution, which is 
based on strong typing and a strict notion of identification of 
instances. Alternative ways of thinking, and corresponding 
wellformedness rules may be chosen. For the remainder of this 
section, let H be some (fixed) application model history. 

A. Separation of Element Evolution 
The first rule of wellformedness states that the evolution of 

application model elements is bound to element classes. For 
example, an object type may not evolve into a method, and a 
constraint may not evolve into an instance. The motivation 
behind this rule is strong typing at a theory level. Usually, 
strong typing leads to better structured models, while type 
checking provides a means for error detection. This is formal- 
ised in the following axiom: 
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[EWl] (evolution separation). 

IfX E {O,&J'vf,HasTypes, Dom},andhE a 

then: 

where 

h(t) c  X=3 ran(h)c_X 

ran(h) = [+,y)Eh]. 

From this axiom it follows that an application mode1 history 
can be partitioned into the history of its object types, its con- 
straints, its methods, its populations, and its concretisations (of 
label types): 

DEFINITION 12. Object type histories: 

f&e =(h~H13i[h(W]} 

constraint histories: 

Hconstr = (c E f+tkw E q 

method histories. 

Hmerh = cm E H131[m(t) E m]) 

population histories. 

H,, = (8 E Hl%[g(t) E HasTm=s]} 

concretisation histories: 

Hdom = (d E HiE13[d(t) E Dom]}. 

In Section III, an application model version was introduced 
(EJ as the following tuple: 

c, =(0,,2t,,JVf,HasTypes,,Dom,). 

B. Deriving Application Model Versions 

At any point of time t the application model version 
C,(H) =(O,, a,,?~!~, HasTypes,, Dom,) is easily derived 
from an application model history H. This is done by defining 
the five main components, which determine an application 
version: 

DEFINITION 13. 

object types: 0, = (h(t)[h E Hiype A h 1 I} 

constraints: R, = { c(t)Ic E H,,,,, A c 4 t} 

methods: 34, = (m(t)lm E Hmerh A m L t} 

population: HasTypes, = g(t) ( / .Hf,m,,dt > 

concretisations: Dom, =~(t)~dEHdO.iidLl} 

In this definition f 1 t is an abbreviation of 3$[(t,s) E f], 

stating that (partial) functionfis defined at time t. 

C. Enforcing Constraints 

As a next rule of well-formedness on the evolution of an 
application model history H, the following axiom states that all 

constraints must hold: 

[EWZ] (constraints hold). For all 

c  E %m.w . ‘c 4 t * H[T]/c(t)], , where T is the largest time 
interval such that: VIIET [t’s tr\c(t’) = c(t)]. Furthermore: 

H[ZJ = {h[a I h E H}. 

Note that the constraint c  is only enforced for the population 
valid during the validity of the constraint itself. 

D. Evolution of the Identification Hierarchy 

Thus far we discussed the wellformedness of the evolution 
of application model elements. However, as a result of object 
type evolution, the identification hierarchy will evolve-as well. 
This evolution is not completely free, some conservatism with 
respect to such evolution is appropriate. The motivation of this 
approach is our tendancy to strong typing and strict object 
identification. In the remainder of this section, we provide 
some rules which exclude undesirable evolutions. It should be 
stressed that attacking the wellformedness problem from an- 
other vantage-point may result in other rules. 

Firstly, the order in the identification hierarchy should not 
change in one step, since this could lead to conflicting identifi- 
cation schemas in the course of time: 

[EW3] (monotonous ancestors). If 
h&z E f&xv h,&t, h,kt, hl&Dtandh2LPt 

then: 

h,(t)+h, (t)/xh,(tz t) - h,(l, t) 3 h,(b t)-+h,(rz t). 

Pn the CD store running example, when CDs are a special 
kind of Medium, the reversal of this relation in one step is ex- 
cluded by this rule, as this would lead to identification prob- 
lems for LPs. In the airplane example, registered airplanes are 
identified as airplanes in general. Suppose registered airplanes 
need an identification of their own. Then this is only possible 
after breaking the type relatedness between both object types, 
i.e., breaking up the identification hierarchy. 

This is not only true at the type level, but also at the evolu- 
tionary level. A direct consequence of this axiom is that all 
ancestors of an object type have to be terminated when this 
object type is promoted to be a root object type: 

LE?AMA&.If 

then: 

h,(t)+h,(t)Ah,(p t) - h ,@ t) 
/\Root(h(D t))3 Th,J D t. 

The following rule for identification hierarchy evolution 
states that the type-instance relation (derived from the relation 
HasTypes) is to be maintained in the course of evolution, 
Like the previous rule, the motivation of this rule is to prevent 
conflicting identification schemas in the course of time. This 
leads to the axiom of guided evolution: 

[EWQ] (guided evolution). If g E H,,, g L t and gL D t 
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then 

where x w Y is defined as 3,,,,[x w y]. The types that are as- 
sociated with an instance evolution g, at point of time t, are 
introduced by: 

Types,(g)+ u X. 
X:g~as~ypes,X 

As an example, consider the evolution of registered air- 
planes to an object type with its own identification, within a 
separate identification hierarchy. Then it would not make any 
sense if the instances of this object type would not follow this 
evolution step, the only exception being instances that violate 
newly introduced constraints. This latter aspect will be elabo- 
rated further in the next subsection. Finally, we can introduce 
Is AMH formally: 

DEFINITION 14. 

IsAMH(f!) 4 ~&AM(c,)] 
A H a.dheres to the EW axioms. 

E. Propagating Modifications 
When an element of the application model evolves (is modi- 

fied), other elements may have to be modified accordingly as 
these modifications may invailidate others or may result in con- 
flicts. For instance, when the ;subtyping of object type Medium is 
terminated in the LP and CD store running example, all its sub- 
types must be terminated as well. Even more, any relationship 
type in which such a subtype is involved must be modified or 
terminated within the same tr,ansaction. 

Other dependencies can be found, for example in the con- 
text of constraints. Whenever a new constraint is added, exist- 
ing instances may be in conflict with this new rule, and must 
be adopted to meet the new requirements within the same 
transaction. 

These dependencies are enforced on application model his- 
tories by the relations IsSch, ISPOP, and Depends, which 
require at each point in time. the population (at that moment) to 
be in accordance with the information structure version (at that 
moment). Besides, the information structure version should 
satisfy the wellformedness rules of the underlying data model- 
ling technique. A detailed discussion of propagation of de- 
pendencies can only be given in the context of an application 
to a concrete modelling technique. When doing so, the issues 
concerning propagation of changes as discussed in, e.g., [33], 
[2] come into play. For maIre details of the propagation of de- 
pendencies in the context of some applications of the general 
theory to existing modelling techniques, refer to [30] or 1261. 

VII. CONCLUSIONSANDFURTHERRESEARCH 

In this paper we presented a first attempt to a general theory 
for the evolution of application models, supporting evolving 
information systems. In order to validate the theory, it must be 
applied to some modelling techniques. 

In the mean time the theory has been applied to PSM, result- 

ing in EVORM [30], [26], and the conceptual transaction 
modelling technique Hydra [ 131, [ 121, leading to Hydrae [26]. 

Furthermore, based on the notion of evolution as laid down 
in the axioms of the general theory, a query and manipulation 
language has been defined supporting the evolution of infor- 
mation systems, and disclosure of information in an evolving 
context [27], [ 161. Query formulation in the context of an 
evolving information system poses extra requirements for the 
query language and mechanisms used to formulate the queries, 
since the underlying conceptual schema evolves in the course 
of time, and data stored in the old schemas must be retrievable 
as well. 

Remaining issues for further research are the implementa- 
tion of an actual evolving information system, the development 
of an adequate modelling procedure to cope with evolution of 
the universe of discourse and reflect these correctly in the in- 
formation system, Finally, the consequences of evolution for 
the internal representation of information structures should be 
studied in more detail. 
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