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The Internet has led to an increase in the quantity and
diversity of information available for searching. Further-
more, users are bombarded by a constant barrage of
electronic messages in the form of e-mail, faxes, etc.
This has led to a plethora of search engines, “intelligent”
agents, etc., that aim to help users in their quest for
relevant information, or shield them against irrelevant
information. All these systems aim to identify the poten-
tially relevant information in among a large pool of avail-
able information. No unifying underlying theory for infor-
mation discovery systems exists as yet. The aim of this
article is to provide a logic-based framework for infor-
mation discovery, and relate this to the traditional field
of information retrieval. Furthermore, the often ignored
user receives special emphasis. In information discov-
ery, a good understanding of a user’s (sometimes hid-
den) needs and beliefs is essential. We will develop a
logic-based approach to express the mechanics of in-
formation discovery, while the pragmatics are based on
an analysis of the underlying informational semantics of
information carriers and information needs of users.

If you know
what you are looking for

why are you looking
and if you do not know

what you are looking for
how can you find it?

—Old Russian proverb

1. Introduction

With the increased use of the Internet (the net) comes an
increase in quantity and diversity of information carriers

offered on the net. Most visible is the increased use of the
World Wide Web. Information carriers accessible through
the net include web pages, newsgroups, mailing-list ar-
chives, networked databases, applications, business ser-
vices, as well as indexing services. For users of the net,
these carriers are at their disposal for doing business,
searching for other information, educational purposes, or
relaxation. The net can therefore be seen as a large market-
place where information demand meets information supply.
Since the net literally spans the world, the number of
accessible information carriers is astronomical. This makes
life rather difficult for the average user who shops aroundto
discover information carriers that fulfill his or her given
information need. Existing Internet search tools return many
information carriers. Users are still required to manually
wade through large result sets in search of relevant infor-
mation carriers.

On top of this, most users are bombarded by a (mostly
unsolicited) stream of messages in the form of e-mail,
notifications of new WWW pages, news-feeds, faxes, and
phone messages. This constant, and still increasing, bom-
bardment of information has led to a feeling of information
overload. Users need mechanismsto shieldthemselves from
irrelevant information.

On the eve of what is sometimes called the information
age, already two serious long-term problems can be identi-
fied: Discovering the relevant information in a huge ocean
of information, and simultaneously shielding ourselves
from irrelevant information coming at us. No unifying un-
derlying theory for information discovery systems exists as
yet. The aim of this article is to provide a framework of
understanding for information discovery, and relate this to
the traditional field of information retrieval.

1.1. Information Discovery

The problem of discovering information carriers on the
net is related to the classical field of information retrieval
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(Rijsbergen, 1979). However, there are a number of clear
differences as well. Theinformation retrieval field has
traditionally focused on searching relevant documents in
fixed document collections; usually textual documents. Us-
ers are presumed to have a very clear understanding of their
information need. Although it is acknowledged in, e.g., the
Cranfield tests (Cleverdon, 1991) that users have difficulty
in expressing this need in a formal language, the fact that
searching for information is more of an interactive process
of learning and discovery is not taken into account. This
latter limitation of the information retrieval field is most
apparent in the way systems are evaluated. The effective-
ness of an information retrieval system is measured in terms
of precision and recall1 for a fixed set of queries on a
standardized document collection.

Information retrieval can clearly been distinguished from
information discovery.For example, information discovery
is performed in an open networked environment. As a
consequence, the document collection is not fixed. More-
over, the documents, or rather information carriers, are not
necessarily textual but may be of a heterogeneous or aggre-
gated nature. Aggregation makes the problem of discover-
ing the right information carriers to fulfill a user’s needs
even harder. We agree with Lynch (1995) that information
discovery is

a complex collection of activities that can range from sim-
ply locating a well-specified digital object on the network

through lengthy iterative research activities which involve
the identification of a set of potentially relevant networked
information resources, the organization and ranking re-
sources in this candidate set, and the repeated expansion or
restriction of this set based on characteristics of the identi-
fied resources and exploration of specific resources.

There has been much recent work on web-based infor-
mation discovery, for example, Chen, Houston, Sewell, and
Schatz (1998) and Desai (1997) are recent expositions in
this area. Information discovery is sometimes equated with
the termresource discovery.The latter term is prevelant in
digital library circles. We will adhere to the terminforma-
tion discoveryin this article.

This brings us to theinformation discovery paradigm.
Figure 1 portrays the essential aspects of the information
discovery problem. On one side (the right hand side), there
are information carriers as provided by the collections of
information carriers that are at our disposal. These informa-
tion carriers, which may be aggregated, are characterized in
some way to facilitate their discovery. Note that even
though we shall use the terminformation carrier, the car-
riers actually only carrydata. The data carried does not
become information until a user interprets the data. Never-
theless we will adhere to the terminformation carrier.

Facing the information carriers is the user with an infor-
mation need. The user expresses this need in terms of an
information request; a query. The query will usually only be
a crude description of the actual carrier(s) needed to fulfill
the given information need. Therefore, it is also useful to
allow further refinements of this need as the search pro-
ceeds. This refinement process is usually referred to as
relevance feedback.

1 Recall is the ratio of relevant retrieved objects to retrieved objects,
whereas precision is the ratio of relevant retrieved objects to retrieved
objects. These effectiveness criteria are generally applied in a controlled
experimental environment.

FIG. 1. Information discovery paradigm.
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The need for information can be caused by a number of
reasons. The focus in this article is when the information
need arises from a gap in the user’s knowledge. For exam-
ple, the user needs to know something in order to complete
a task. Relevant information is discovered and then ab-
sorbed by the user to fill the knowledge gap. A knowledge
gap may also arise out of idle curiosity. For example, some
users of the Internet begin surfing the Internet with no
specific goal and then encounter some topic that engages
their curiosity in the sense they want to learn more about it.

The knowledge gap can range from being fairly specific
such as learning the latest price of 19 micron wool, to the
very broad, such as learning about the theory of relativity. A
specific need can usually be satisfied by a small collection
of facts, while a broad need usually requires a wider variety
of facts. Observe that during the search process users may
learn more and more about their knowledge gap, and may
thus discover aspects of this gap they were initially not
aware of. This means that the actual information need of a
user may evolve as they are exposed to new information.

Given a query, a selection of information carriers that are
considered relevant can be made. This selection mechanism
can be compared to an automatic brokering service, match-
ing demand to supply. Initially, only a limited number of the
selected carriers can be shown to the user to obtainrele-
vance feedbackfrom the user to further refine the query.

The information discovery problem boils down to find-
ing the right information carriers that will fill the user’s
given knowledge gap. Three issues play a central role in the
information discovery problem:

1. Formulation of information requests;
2. characterization of information carriers;
3. selection of information carriers.

The formulation of information requests involves two
important issues. First of all, it requires some formal lan-
guage in which to express the query. Secondly, a precise
formulation of the true information need is required. Ob-
taining such a formulation has proven to be a non-trivial
task (Cleverdon, 1991).

Good characterization of information carriers is impera-
tive for effective information discovery, as poor character-
izations inevitably lead to the retrieval of irrelevant infor-
mation, or the missing of relevant information. An impor-
tant question is, of course, which properties to include in a
characterization. A useful property to include seems to be
what an information carrier is about. In addition, properties
like authorship, price, medium, etc., may be included. In the
literature, standard attribute sets to characterize information
carriers can be found in the context of metadata standard-
ization efforts (Berners-Lee, 1994; Sollins & Masinter,
1994; Weibel, Grodby, Miller, & Danierl, 1995).

The selection of relevant information carriers for a given
queryq is a well-understood problem. For finding unstruc-
tured information carriers, the field of information retrieval
has developed a number of retrieval models. However, this

field is still very much at the stage of simply returning
information carriers which the user must then peruse in
order to glean the information that fills their knowledge gap.

A next step would be to supportknowledge discovery.In
knowledge discovery, one would try to derive the exact
fragments of knowledge the user is after from the relevant
information. So users would not have to read entire docu-
ments, but the system would give an exact and concise
answer to the user. This would require the system to some-
times interpret the information found and autonomously
infer new information.

1.2. Information Routing

Besides actively searching for information, users and
organizations are confronted with a constant stream of elec-
tronic messages. These messages range from simple notifi-
cations, via e-mail messages and notifications of new
WWW pages, to voice mail. For this, a more passive form
of information discovery is required. Incoming messages
need to be filtered in order to partition the potentially
relevant messages from the irrelevant ones.

Conceptually, messages can be seen as a pointer to a
freshly created information carrier (the actual body of the
message). This view concurs with the view that modern
software for messaging seems to take with, for example, a
universal inboxfor all incoming messages be it e-mail, fax,
or voice messages. These messages need to be routed to the
appropriate message-box(es) of the right person(s), and
should then be prioritized within the message-boxes. This
means that information filtering, discovering relevant mes-
sages in the incoming stream, involves two activities: Rout-
ing and ranking.

In Figure 2, it is illustrated how we view this process of
routing and ranking. Each incoming message passes
through a layer of routing modules that select the appropri-
ate message-box(es), which could be from a multitude of
users. Each message-box has an associated ranking module
that ranks the messages currently in the message-box using
user-specified criteria.

In the remainder, we shall use the terminformation
discoveryfor the process of actively searching information,
as discussed in subsection 1.1, and the terminformation
filtering for passively discovering relevant information in an
incoming message stream. The theory that will be devel-
oped in this article is focused on a reasoning mechanism for
relevance of information carriers. This theory will then be
applicable to the selection process of information discovery,
as well as the routing and ranking of messages for informa-
tion filtering.

1.3. Structure of the Article

In section 2, the philosophical preliminaries (way of
thinking) are discussed, and special attention is paid to the
user in the discovery process. A generic reasoning mecha-
nism for the relevance of information carriers is provided in

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—July 1999 739



section 3. A discussion on how user and information need
specific requirements can be introduced in the discovery
process is put forward in section 4. As we will argue,
aboutnessplays an important role in determining the rele-
vance of an information carrier. In section 4.3, we therefore
take a closer look at this property before concluding the
article.

2. Towards a Theory for Information Discovery

In developing a theory for information discovery, one
must first resolve two fundamental questions. What is an
information carrier, and what is the information carried by
it. The latter question of course raises the issue ofwhat is
information?This section aims to provide our view on these
questions.

2.1. What Is an Information Carrier?

Thus far, the term information carrier has been used
without actually providing a definition. In the context of the
net, an information carrier can be defined as:

Any entity that is accessible on the net, and which can
provide information to other entities connected to the net.

A definition that truly supports the open character of the
net. Examples of information carriers included are:

● Web pages (including free text, sound, images, and video
fragments)

● Free text databases
● Traditional (relational, object-oriented, . . .) databases.

Both the databases as such, as well as theirinstances
● People’s e-mail addresses
● Information about the location of non-electronic informa-

tion carriers
● Aggregations/groupings of information carriers

A very special class of information carriers are aggre-
gated information carriers. An obvious example of an ag-
gregation is a database. A database in itself is an informa-
tion carrier. However, it can also be seen as a collection of
information carriers since each of its instances in itself
carries information. Besides database-based aggregations,
one can imagine creating general collections of information
carriers that are strictly based on some thematic common-
ality, or some common purpose. Information carriers can
obviously be present in multiple aggregations.

2.2. Infomantics

What information exactly is has been studied intensively
before. Different authors have provided alternative theories

FIG. 2. Information routing.
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of information (Barwise, 1989; Landman, 1986; Losee,
1990, 1997; Shannon, 1948). The goals of this article do not
include a definition of what information exactly is. We take
a very modest approach to information theory. It is only
assumed that information can be conceptualized as consist-
ing of information particlescalled infons as suggested by
Barwise (1989), and applied to the field of information
retrieval by Huibers (1996); Huibers and Bruza (1996);
Huibers, Lalmas, and Rijsbergen (1996); Rijsbergen and
Lalmas (1996). The set of all such infons is denoted by(^.
Some information particles will contain more information
than others, therefore it is reasonable to presume the exis-
tence of an information containment relationf with, as
intuition:

If f f g then f contains at least the same information
asg.

Two special elements in(^ are presumed to exist. One
element that representsthe mostinformation:Ái, and one
that containsthe leastinformation: ' i. The subscripti is
used to denote that these elements belong to the infon space.

Infons express information about objects. Therefore, we
also introduce a set of objects(2. In Barwise (1989) a
concrete notation for infons is proposed. For example, con-
sider the infoni 5 ^^R, o1, . . . , oAn; 1&&. This denotes
that the objectso1 . . . on stand in relationR to each other.
(In predicate logic, this would be denoted asR(o1, . . . ,
on)). In this article, we are only interested in the objects that
play a role in a given infon. To this end, a functionInvolve:
(^ 3 ` ((2) is presumed to exist. By way of illustration
Involve(i) 5 {o1, . . . , on}.

The conceptualization of information discussed above
can be captured formally by what will be termedinfon
space:

(6 ^(^, (^2, Involve, f, Ái, 'i&.

In infon space, three axioms are presumed to hold.
Firstly, the information containment relationship is assumed
to be transitive. This is in line with Dretske’s Xerox prin-
ciple (Barwise & Etchemendy, 1990). Intuitively, this prin-
ciple states that information is nested, so ifA contains
information aboutB and B contains information aboutC,
thenA contains information aboutC.

@IS1] (Transitivity) f f g f hff f h

Furthermore, the special constants behave as they are
expected to do:

@IS2] (Extremes); f[(^@ Á i f f f ' i#.

Finally, information containment leads to containment
on the objects involved:

@IS3] (Containment)f f gf Involve~f!$ Involve~g!.

Note that the reverse implication does not generally apply.
The broad view of what information is, as taken in this

article, is in line with the approaches taken in Landman
(1986) and Barwise (1989).

2.3. Infomantics of Information Carriers

The information need a userU may have corresponds to
the need for infons. This is modeled by the functionDe-
mandU : (^1 3 `((^), where(1 represents the set of
possible information needs. This latter set is an imaginary
set in the sense the elements cannot be denoted or named.
An information need is an abstract and subjective concept
that only exists in a user’s mind. However, for the purpose
of our discussions, it is convenient to presume such a set to
exist.

Depending on the media used for an information carrier,
users can read the carrier, listen to it, or view it. As a
generalization, the termexperienceshall be used. By stating
that a user experiences an information carrier, it is meant
that the user reads, or views, or listens to, the information
carrier; in other words, a user using their sense organs to
take up the information provided by the information carrier.

The information needed by users is provided on infor-
mation carriers. Formally, information carriers are intro-
duced as the set(#, which is presumed to be closed under
carrier composition (so any combination of given informa-
tion carriers is another information carrier). As stated be-
fore, a carrier really only carries data. The information
carried by a carrier depends on the user. In other words,
information is transferred to the user via the carrier. The
information transferred can be expressed in terms of infons:

SupplyU:(#3`~(^!.

The supply function is highly user dependent. Barwise
(1989) discusses an illustrative example of a person encoun-
tering a tree stump. Inspired by this example, now consider
the following:

When some person encounters a tree stump, they may
simply conclude from this situation that there used to be a
tree here. Another person may come along and see from the
rings on the stump that the tree was in fact 20 years old
when it was felled. Yet another person may see from the
colorations of the rings that in its tenth year, the tree
survived a forest fire.

This example goes to illustrate the subjectivity of the
SupplyU function as each person is extracting different
infons from the situation. Additionally, it is reasonable to
assume that for a given userU, the supply function is not
constant. Depending on the mood, fatigue, etc., a user may
absorb differing amounts of information.

The semantics of an information carrierc, its infoman-
tics as it will be termed, in the context of a userU is defined
as the set of infons it provides to the user:
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SupplyU~c!*

where for anyx [ (^ andX # (^, we use the following
definition of infomantic closureof X:

x* $f u f f x%

X* ø
x[X

x*.

The intuition behind infomantic closure is the following.
Given some informationX (represented by a set of infons),
the closure is all information contained in these infons. The
infomantic closure captures implicit information. In this
way, we can model, for example, that in the infomantic
closure of “salmon” we have the information “fish.”

The information needN will be satisfied by a set of
infons which relieves the need. The infon set is referred to
as the demand of the need, denotedDemandU(N). The
subscriptU reinforces the intuition that the demand is user
dependent.

A notion of relevancebetween an information needN
and a carrierc can be modeled as a supply and demand of
infons:

c Relevant ToUN DemandU~N!*5 SupplyU~c!*.

Observe that carriers are considered relevant if, and only
if, they meet the whole demand, and nothing but the whole
demand. In practice, however, this is too strong a require-
ment. Carriers will only provide parts of the information
need, or may provide too much information. Therefore, an
order based on preference, a so-called preferential ordering,
on information carriers needs to be introduced. This order
needs to be such that the closer an information carrier
matches the actual need, the more preferred the carrier is.

In an ideal situation, for a given information needN,
information discovery now involves searching for the
proper information carriers such that they are considered
relevant:

SearchU~N! $c[(#uc Relevant ToUN%.

This paints an idealistic situation. In practice, theseDe-
mandU and SupplyU functions will not be available as
concrete and well-defined functions.

The above discussion on the nature of information dis-
covery allows us to highlight a key difference between
information filtering and information discovery. In the case
of information filtering, the information needs (the informa-
tion interests) involved have a more static and persistent
nature. Information need in the context of information dis-
covery tends to have a more temporary and ad hoc nature.

With regards to information filtering, the view can be
taken that a user (or work-group) may have a number of
different interests they would like to be kept informed

about. Theseinformation interestscan be expressed as a set
of (dormant) information needsN1, . . . , Nn. A set of
incoming messagesX can then simply be viewed as a subset
of all (at that moment) known information carriers(#. If X
is a set of such incoming messages, then for each interest
Ni, the relevant messages are given by:

FilterU~Ni, X! $c[Xuc Relevant ToUNi%.

If c [ FilterU(Ni, X), then carrierc is deemed relevant
for interestNi. This definition illustrates that in the ideal
situation, the filtering mechanism must also have an under-
standing of the supply function of userU.

2.4. Preferential Ordering in Information Discovery

Each relevant information carrier is preferred over each
irrelevant information carrier. This can be generalized into
a preferential ordering of information carriers:^(#, N&. If
c N d, then c is preferred overd to fulfill the user’s
information needN.

There are two requirements on a preferential ordering
that express its semantics in terms of the infon space. These
requirements state that if the supply of infons from an
information carrierc more closely matches the demand of
an information needN, than the supply of a carrierd, then
c is preferred overd (in the light of this information need).
In other words,c “fits” N better thand. The first require-
ment states thatc is preferred overd as it over-supplies the
demand of the information more closely thand does:

@PO1] DemandU~N!*# SupplyU~c!*,

SupplyU~d!*fc N d.

The second requirement states thatc is preferred overd
as it under-supplies the information need less thand does:

@PO2] SupplyU~d!*, SupplyU~c!*#

DemandU~N!*fc N d.

The above requirements express how the preferential
ordering on information carriers is a consequence of the
supply of information offered by the carriers in relation to
the demand of the information imposed by the need. This
sheds light on the nature of the preferential ordering as-
sumed by several authors (Amati and Georgatos (1996);
Berger and Huibers (1995); Bruza and Huibers (1996);
Wondergem (1996). The requirements do not (and cannot)
lead to an operational definition of the preferential ordering.
In practice, this ordering must be approximated. For exam-
ple, Amati and Georgatos (1996) employ a standard rele-
vance feedback mechanism to construct a preferential or-
dering on terms (primitive information carriers). Berger and
Huibers (1995) use a navigation path through a thesaurus as
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a means of gleaning a preferential ordering on situations
(sets of infons). Bruza and Linder (in press) and Wonder-
gem (1996) propose using a query by navigation mechanism
to distill positive and negative user preferences for infor-
mation. A correspondence theorem shows how these pref-
erences identify a preferential ordering on the underlying set
of documents.

In short, preferential orderings are an emerging semantic
framework for information retrieval theory. Later in this
article, we will show how they can be used to underpin a
theory of information discovery.

2.5. Preferential Ordering in Information Filtering

In the case of information filtering, preferential ordering
can be used to provide an ordering on the contents of
message-boxes; i.e., the ranking modules from Figure 2.
Each message-box has an associated information interest
Ni. This information interest will be used by the routing
modules to do the actual routing, but it can also be used to
provide a ranking on the messages within a message-box.

2.6. Summary

This section has presented a formal framework for de-
fining some essential concepts in information discovery.
The user’s information need has been conceptualized as a
supply and demand situation involving information parti-
cles. More specifically, the information need is a demand
for information particles. Information carriers supply infor-
mation particles. Relevance is defined as supply meeting
demand. Additionally, it is proposed that preferential order-
ings on the information carriers is a consequence of the fact
that some information carriers meet the demand of the
information need better than others.

3. Logical Foundations of Information Discovery

Information discovery has its roots in the field of infor-
mation retrieval. Over the last 30 years, a number of infor-
mation retrieval models have been developed. These have
mostly been numeric models conceived solely for driving
the information retrieval process. Such models have ad-
vanced the field of information retrieval from a practical
point of view, but have not proven to be instructive in
answering the more fundamental questions about informa-
tion retrieval itself. This has led some researchers to turn to
logic as a means to find the answers to these questions.

In recent years the logic-based approach to information
retrieval has clearly come to the fore as a framework for
investigating such questions (Bruza, 1993; Crestani & Lal-
mas, 1996; Huibers, 1996; Lalmas, 1996; Lalmas & Rijs-
bergen, 1992; Nie, 1990; Rijsbergen, 1993; Rijsbergen &
Lalmas, 1996). Recent surveys of the area have been pre-
pared by Lalmas (1998), Lalmas and Bruza (1998), and
Sebastiani (1998). These investigations appeal as they place
information retrieval in a neutral framework (independent

of any given retrieval model) and allow it to be described at
a level of semantic detail hitherto not possible. Revealing
insights have thus been gained, and as a by-product, an
underlying theory for information retrieval is beginning to
take shape.

For the above reasons, as well as clarity of exposition, we
propose a logic-based approach to information discovery.
This logic will be based on the preferential ordering intro-
duced in the previous section.

3.1. Carrier Logic

When judging whether a given information carrier is
more preferred than another carrier, a user first needs to
determine the relevance of the carriers involved.

When humans judge the relevance or irrelevance of
information carriers, they tend to do so in terms of proper-
ties they observe the carriers to have. These properties are
collectively referred to as metadata, and each of the indi-
vidual properties as a metadata attribute (Weibel et al.,
1995). Metadata attributes may range from fairly simple
such as: Authorship, medium, pricing, quality, and location,
to extremely complicated such as: The information provided
(infomantics). No explicit choice on the set of metadata
attributes for information carriers will be made in this
article; a more general approach is adopted. The following
signature format is used as a basis for for the syntax of the
carrier logic:

O ^}$1, . . . , }$ l; f1, . . . , fm; R1, . . . , Rn&.

In this signature,}$1, . . . , }$l represent sets of
}eta$ata values, such as Price and Author. Functions on
these values are provided by the function symbolsf1, . . . ,
fm, for instance1 and 2 on Prices. The set of relations
symbolsR1, . . . , Rn provide relations over the metadata
attributes. Example relation symbols would beAuthor and
About (more about this relation shortly).

For example,

^Author, String, RegExpr;; FirstName,

LastName, Author, Like&

whereAuthor is a set of authors,String a set of strings,
RegExpr a set of regular expressions,FirstName, Last-
Name # Author 3 Name predicates matching first and
last names to authors, andLike # Name 3 RegExpr a
regular expression checker that sees if the given name
matches the regular expression. Note that this example
signature does not include any function symbols. An exam-
ple requirement for the relevance of an information carrier
would be:

' a, f@Author~a!∧ FirstName~a, f!∧ Like~f,0E{a2z}* 0!#
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which requires the information carrier to be written by an
author with a first name starting with anE.

One relevance criterion does deserve explicit attention.
This is theaboutnessof information carriers, i.e., a repre-
sentation of the infomantics. Aboutness of information car-
riers is at the very heart of information discovery. The
underlying hypothesis is that if an information carrier is
about the request from the user, then there is a high likeli-
hood that the information carrier is indeed relevant to this
need. For any information carrier, it is relevant to discuss its
infomantics in terms of what it is about. An aboutness
specific metadata signature is defined as follows:

^_0; % ; About&

where_0 is a set of keywords andQ is used to combine
simple keywords into composed keywords. For example:

tiger prawn tiger Q prawn.

Saying that a document is about tiger-prawns but not
about tigers, can be expressed as:

About (tiger Q prawn) ∧ ¬ About (tiger).

Now that we have defined what the signatures for a
carrier logic look like, the actual logic itself can be dis-
cussed. Given a signature¥, a language#+ of well-formed
logic formulae can be derived in the usual fashion. The
resulting logic will be referred to as thecarrier logic. A
carrier c is deemed relevant to a formulaA via the satis-
faction relationship over (# 3 #+. It is not the aim of
this article to go into detail on the definition of. Different
ways of “implementing” this satisfaction relationship exist,
for example, using a first order logic approach (Meghini,
Sebastiani, Straccia, & Thanos, 1993), or an approach based
on Kripke structures (Nie, 1992). Our aim is to study
aboutness in more general terms, and rather define generic
requirements on the definition of (and thus implicitly on
the way it is “implemented”) than limiting ourselves to one
particular approach.

To summarize, for a given signature¥ of metadata, we
have the following carrier logic:

CL ^#+, (#, &.

3.2. Carrier Reasoner

With a carrier logic, we have a logic with which we can
reason about the relevance of information carriers. How-
ever, the logic is not complete without a set of formulae, a
theory, which defines the semantics of the different meta-
data attributes and operations. For example, for the meta-
data attributePrice, and operations1 and 2, we would
expect to hold:

~a 1 b! 2 b 5 ~a 2 b! 1 b.

Formally, acarrier reasoning system(carrier reasoner
for short) can now be defined as a tuple:

CR ^CL, F&.

whereF is the theory defining the semantics of the opera-
tions and relations of the metadata attributes. The satisfac-
tion relationship should honor the theory for the given
carrier reasoner, so we should have:

F.

3.3. Measuring the Quality of the Carrier Reasoner

Inspired by the recall and precision measures found in
the field of information retrieval, quality measures for car-
rier reasoners can be formulated. The satisfaction
relationship expresses what the carrier reasoner “be-
lieves” to be relevant information carriers. This is the “com-
puter” perspective. We should also take the user’s perspec-
tive into consideration. To do this, we need to introduce an
alternative semantics for the carrier logic:

c f iff userU observesc to supportf

in the context of information needN.

In other words: Would the user find carrierc to be relevant
for queryf when trying to satisfy information needN?

Whenf only deals with simple metadata attributes like
prices, authors, etc., the user-based semantics will generally
be clear and most likely be an exact match to the semantics
of the carrier reasoner. However, in the case of aboutness,
these semantics become less obvious due to the subjectivity
of aboutness. Therefore, this is not yet a satisfactory defi-
nition of the user’s view. We can go even one step further.
When formulating their information need, users will express
this in terms of some formulae taken from#+. These
formulae are referred to ascluesas they provide the carrier
reasoner with clues on the information need of the user.

3.4. Formulating Information Needs

In the remainder of this section, we will look at how
realistic the assumption that users can formulate clear clues
about their information need really is. We will also highlight
how a system can help users with the task of providing these
clues.

The clues which a userU is able to give us about their
information need can be captured by a predicateHasClueU

# (1 3 #+, where(1 is the set of possible information
needs and#+ is the carrier logic language.
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Suppose a student is writing a report on river-pollution
in The Netherlands. However, the student is not familiar
with pollution at all. The student does know that Green-
peace has, on numerous occasions, shown their concern
about the pollution, and therefore assumes this is the case.

To find more information, the student turns to an infor-
mation discovery system to learn more about pollution. All
this student knows about the needed information at this
stage is that it must deal about pollution of rivers in The
Netherlands. So if the student’s information need related to
the task of writing the report isN, then we have:

HasClueU(N, pollution of rivers in The Netherlands).

To the information discovery system, this is the first clue
about the student’s real information need.

With the above predicate, and theRelevant ToU predi-
cate as introduced in section 2.3, the following more exact
definition of can be provided:

c f c Relevant ToUN∧N HasClueUf.

In other words, the user would say that carrierc supports
f, iff carrier c is about an information needN with as clue
f. In Figure 3 this definition is put in context. What should
not be forgotten is that while a user is searching for infor-
mation, they may already be learning more information that
is relevant to their knowledge gap, possibly leading to a
change in the actual information need.

Using the above user-based semantics, two quality mea-
surements for a carrier reasoner can be asserted. A carrier
reasoner is calledpreciseif:

if c f thenc f

andexhaustiveif:

if c f thenc f.

A precise carrier reasoner leads to a high degree of precision
when used for retrieval, while an exhaustive reasoner would
lead to a high recall.

The art of defining a carrier reasoner lies in finding a
good balance between the resulting precision and recall.
Building a carrier reasoner that is both exhaustive and
precise is still an ideal, and may in fact be impossible. In
practical situation a well-founded trade-off needs to be
made between these two.

For example, information filtering systems may some-
times want to focus on exhaustivity. Missing important
news items that are relevant will be considered more harm-
ful than having to discard the “odd” irrelevant carrier which
evades the filtering mechanism. On the other hand, in in-
formation discovery systems, which help users in discover-
ing new information in “unchartered waters,” precision will
be preferred to prevent users from drowning in new infor-
mation. What cannot be stressed enough though, is that
carrier reasoning is a delicate balancing act between preci-
sion and exhaustivity.

The relation depends on individual users and their
specific information needs. This would imply that the qual-
ity of a carrier reasoner needs to be evaluated for each
individual user and information need. In practice, this is
obviously very hard. An often used pragmatic way to cir-
cumvent this is to assume a definition of which would
satisfy the “average” user and information need; a consen-
sus definition. In the context of the TREC (Text Retrieval
Conference) conference series, a standardized database of
information carriers, queries, and subsets of relevant carri-
ers are used to evaluate information retrieval systems. This
would lead to a pre-defined consensus definition ofthat
can be used to evaluate a carrier reasoner.

FIG. 3. A user’s view on relevance of information carriers.
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For a carrier reasoner, it means that some mechanism is
required to make more user and information need aware.
The defaults harbored by a user should somehow be taken
into consideration during the reasoning process. To this end,
we shall introduce a preference logic.

3.5. Summary

In this section, we have explored some of the logical
foundations of information discovery. More specifically, we
have introduced a carrier logic that enables the formal
reasoning about the relevance of an information carrier for
a user’s information need.

It cannot be assumed that users will always be able to
formulate exactly what their information needs are. There-
fore, specific attention was paid to a mechanism to aid users
in expressing their information needs.

4. User Preferences and the Carrier Logic

Whenever humans communicate with each other, a con-
textual background is often assumed. One way to view this
background context is via a frame-based cognitive model
(Barsalou, 1992). The frames are constructed by attributes
which may take on certain values. For example, the attribute
surfing may take on the valuewave, thus modeling the
conceptwave Q surfing. It turns out that humans prime
certain attributes with default values. A mismatch in de-
faults between two people communicating can therefore
lead to mis-communication.

4.1. Preferences

In an information discovery setting, a mis-communica-
tion between user and discovery system may occur; usually
resulting in the selection of irrelevant information. When a
users wants to learn something aboutsurfing, while har-
boring the defaultwave Q surfing, the system should
preferably not present information sources aboutwind surf-
ing and certainly not aboutinternet surfing. An advanced
information discovery system will learn a user’s preferences
and anticipate further preferences based on those it has.

User preferences are intimately tied to the preferential
ordering. For example:

About (surfing) About (wave Q surfing)

states

All preferred information carriers about “surfing” are
also about “wave surfing.”

About (nuclear Q physics) Author (A. Einstein)

expresses that

All preferred information carriers about “nuclear phys-
ics” are authored by A. Einstein.

User preferences can be derived from relevance feed-
back. Bruza and Linder (in press) propose translating a
user’s navigation path through a hyperindex into prefer-
ences. A hyperindex is a partially ordered set of index terms
that can be browsed. For example, a given user may browse
from surfing to surfing in Hawaii to surfing conditions in
Hawaii. Such a path can be translated into the following
preferences:

1. true About (surfing)
2. About (surfing) About (Hawaii)
3. About (surfing Q Hawaii) About (conditions)

The first preference states that the preferred information
carriers are about surfing. The second preference expresses
that the preferred information carriers about surfing deal
with Hawaii. The third preference states that the preferred
information carriers about surfing and Hawaii are also about
conditions. (This reflects the information need being about
surfing conditions in Hawaii).

Amati and Georgatos (1996) put forward a method
whereby positive and negative preferences are gleaned via a
relevance feedback on documents in the result set. The
preferences are based onpriority relations denoted byap

and an. Both of these relations are defined over a set of
terms T. The positive priority relationap on terms is
defined in terms of positive relevance feedback:

t1 a p ø t2 iff uDt1
1u # uDt2

1u

In the above formulauDt
1u represents the number of

documents containing termt that the user has identified as
being relevant. Similarly, the negative priority relationan

can be defined. Preferences of the form:

About~t1! About(t2)

can be defined using these relations.
A preference logic can be built using the user prefer-

ences. This allows the possibility to reason with user pref-
erences and deduce new preferences; there will be more
about this in the next section. The preference logic we use
here is defined on top of the existing carrier logic. For a
given carrier logic:CL ^#+, (#, &, we can therefore
define an associated preference logic:

PL ^3+, (#, &.

Let f, g [ #+ be closed formulae, then the language
3+ itself is defined by the following two rules:

1. f g [ 3+
2. f g [ 3+
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The semantics are expressed relative to a preferential
order on information carriers. For the preference logic, we
have a satisfaction relationship:

# `~(# 3 (#! 3 3+.

Let P 5 ^(#, C& be a preferential ordering over in-
formation carriers. Ideally,C will be a close match to the
one( N) harbored by the user. For a given formulaf from
the carrier logic, it can be now expressed that a carrierc is
the most preferred carrier forf according toP by making the
satisfaction relationship from the carrier logic aware of the
preferential ordering:

^c, P& f c f and for eachd c we have:d f.

When stating:

About (surfing) About (wave Q surfing)

the intention was that all preferred information carriers
about surfing were aboutwave Q surfing. So if c P

About (surfing), it should also be the case thatc About
(wave Q surfing).

With such an ordering, the semantics of the preference
logic can be expressed as follows. Letc [ (#, f, g [ #+,
andp, q [ 3+, then:

1. P f g iff for any c [ (# with ^c, P& f we also
havec g

2. P f g iff P f g

Note that there is an important difference betweenP
About (surfing) About (web Q surfing) and P
About (surfing) ¬ About (web Q surfing). The former
rule expresses that some preferred carriers onsurfing are
not aboutweb Q surfing. The latter rule expresses that
none of the preferred carriers aboutsurfing should be about
web Q surfing; i.e., surfing preferentially precludesweb
Q surfing.

A carrier reasonerCR, can now be extended to a pref-
erence reasoner:

PR ^CR, 3+, &.

The preference reasoner is an extension of the carrier
reasoner by explicitly taking user preferences into account
via the preferential ordering. The quality measures intro-
duced earlier, precision and exhaustivity, can be employed
to judge the preference reasoner.

4.2. Preference Reasoning

Preference reasoning requires sound inference rules. The
inference rules allow new preferences to be derived based
on the preferences that the user has expressed. Soundness

insures that derived preferences are consistent with the ones
expressed by the user. The following are a non-exhaustive
selection of inference rules that have been put forward by
several authors (Amati & Georgatos, 1996; Bruza & Linder,
in press; Wondergem, 1996). They are intended to illustrate
patterns of inference available within a preference reasoner.
Let a, b, g be formulae in the preference logic:

a a reflexivity

a b ø a g

a b∧g
and

a b ø a∧b g

a g
cut

a b ø a g

a∧b g
cautious monotonicity

a b ø a ¬g

a∧g b
rational monotonicity.

As a small illustration of preference reasoning, consider
the following: A user who has expressed a preference for
information about surfing in Hawaii (About (surfing)
About (Hawaii) and then refined this preference to surfing
conditions in Hawaii:

About (surfing) ∧ About (Hawaii)

About (conditions).

Using the cut rule, we can conclude that the user is inter-
ested in information about surfing conditions:

About (surfing) About (conditions).

Using the priority relations of Amati and Georgatos (1996),
we could assume that the term “wind” has a high priority in
the relationap. As a consequence, the term “surfing” does
not preclude the term “wind”:

About (surfing) About (wind).

Using rational monotonicity permits the derivation:

About (surfing) ∧ About (wind)

About (conditions).

In other words, the preference reasoner has derived a
preference that the user is interested in wind surfing condi-
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tions. Such inferences could be shown to the user for
relevance feedback (The formulae would not be shown, but
suitable textual representations of the intended preference
represented by the formula). In this way, the user could
navigate the proof space generated by the preference rea-
soner as part of the information discovery process. This has
the additional computational advantage that only a part of
the proof space needs to be computed and shown to the user.
Feedback from the user could then be used to guide further
inferences. A complimentary approach to this has been
advocated by Ohsawa and Yachida (1997) using abuctive
reasoning.

Preferential reasoning can be used in an information
filtering setting as well. As stated above, in our view,
information filtering involves two aspects: Ranking and
routing. For ranking, the above-discussed ranking strategies
for information discovery can be directly applied. Each
message-box (refer to Fig. 2) may have associated a set of
preferences (clues)C that determine the ranking of mes-
sages within that message-box.

Routing of messages can be expressed by means of
predicates over information carriers. The predicate can be
used to evaluate if a given message (or rather the underlying
information carrier) should be routed through a “message
filter” to a next router or a message-box. In other words:

An information carrierc is accepted for a routing filterr iff
its preferences are compatible with the user’s preferences.

The actual predicate can be defined as follows:

Accept~c, r!N?p@P )~r!øx~c!#

where)(r ) is a set of clues expressing the user’s informa-
tion interests defining filterr , andx(c) provides the clues
supported by the information carrier itself. The latter set of
clues can be expressed by the following set of preferences:

x~c! $true fuc f%.

4.3. What Is Aboutness?

An interesting aspect of aboutness is that we need other
information carriers to express what a given information
carrier isabout.If we would not do so, we would not be able
to discuss with fellow humans (e.g., to a librarian), or
computers for that matter, what an information carrier is
about. When stating: “I want to know something about
surfing,” the information carriersurfing expresses what we
want to be informedabout.Aboutness can therefore be seen
as a relationship between information carriers:IsAbout #
(# 3 (#.

Those information carriers that are used to express what
other information carrier are about play a special role. They
will be referred to aspromises.Stating that a given book is
aboutsurfing can be viewed as apromisewith regards to

the information provided in the book. The actual promise
would be: “By reading this book, you will be informed
about the act of surfing.” These promises can be used to
express what information carriers are about.

A number of known mechanisms exist to characterize the
aboutness of information carriers in terms of promises. This
ranges from sets of keywords (Rijsbergen, 1979), (weight-
ed) vectors of keywords (Salton, 1989; Salton & McGill,
1983), index expressions (Bruza, 1993), term phrases
(Lewis, 1992), to conceptual graphs (Myaeng, 1992). These
are all different ways of defining the promise language35.
Each keyword, vector of keywords, index expression, or
conceptual graph makes a promise about the contents of the
information carrier.

Let 35 # (# denote some set of promises, then this
would allows us to more precisely define aboutness (in the
context of a userU and information needN) as a relation-
ship over information carriersIsAbout # (# 3 35 where:

c IsAboutUp c About~p!.

The properly define its semantics, we need to dig deeper
into the issue of aboutness.

In determining if an information carrierc is about prom-
ise p, we are at the mercy of the users. If we were to
confront a user with information carrierc and promisep,
then why would this user say thatc is aboutp? Conversely,
when confronted with a promisep, why would a user select
p as a good description of their information need? To try to
answer this question, we need to study the effect that a given
promisep has on a user.

When a user experiences (usually reads) a promisep,
then this promise will relate to existing knowledge of the
user. This can be modeled by a function:

ActivatesU : 353`~(2!.

This function should yield the objects (in the user’s current
knowledge) that relate to an experienced promise. Using the
popular saying “that rings a bell,” this function returns the
set of “bells” that “start ringing.” For example, when the
promise is surfing, bells like wind, wave conditions, Hawaii
may ring (assuming the user is switched onto the sport
surfing at that point).

The information supplied to the user when experiencing
c is not yetpart of the user’s knowledge when experiencing
the promisep. So the infonsactivatedby p may be different
from the infons supplied byc, especially whenp is close to
the user’s knowledge gap. Therefore, we should only refer
to the actual objects involved in the activation. Theobject
matchbetween a carrierc and promisep can be defined as:

ObjectMatchU~c, p!

Involve(SupplyU~c!*)ù ActivatesU~p!*.
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This leads to the following refined infomantics of about-
ness:

cIsAboutUp iff ObjectMatchU~c, p!ÞA.

So, if there is an overlap between the set of objects activated
when confronted with promisep and the information sup-
plied by carrierc, userU is expected to considerc aboutp.

Similarly, if a user providesp as a clue of their infor-
mation needN, then this has the following infomantics:

N HasClueU About~p! iff ObjectMatchU~N, p!ÞA

where

ObjectMatchU~N, p!

Involve(DemandU~N!*)ù ActivatesU~p!*.

The infomantics ofIsAbout and HasClue also illus-
trates the difficulty of the indexing task. When indexing an
information carrier, promises must be selected that would be
acceptable to most users as proper descriptions of the car-
rier’s aboutness. Additionally, these promises should be
chosen such that its is expected that users would actively
(active memory) use them to provide clues on their infor-
mation needs.

4.4. Summary

This section has formalized the notion of information
preference. It is natural in the information discovery pro-
cess, the user will prefer some information carriers over
others. It is argued that information discovery systems must
be able to reason with user preferences in order to be
effective. User preferences can be gleaned by relevance
feedback and reason with using the inference rules of model
preference logic developed within the AI community. The
aboutness relation between information carriers is clarified
by introducing the notion of promise. Aboutness is defined
in terms of the infomantics by an object overlap function.
Although this function cannot be implemented directly, the
assumption is that it can be approximated via the preference
reasoning system.

5. Conclusions

This article sketches the fundamentals of information
discovery in terms of a logic/information-based framework.
The main contribution of this article is a conceptual model
of information discovery comprising relevant concepts and
their inter-relationships. A feature that has repeatedly ap-
peared is the user-centered nature of information discovery
and, thus, its inherent subjectivity. Although this aspect has
long been acknowledged in the field of information re-
trieval, few attempts have been made to integrate this trou-

blesome aspect into a formal framework. We claim that this
article has made some headway in this area, via (preferen-
tial) orderings and user-based functions.

In a sense, this article has raised more questions than it
has answered. In particular, the model theory and the about-
ness relation are areas deserving more attention. When an
information carrier is treated as a model, what are the
characteristics of this model? We have left this question
unanswered as the model-theoretic underpinnings of infor-
mation discovery are still under active investigation with
little consensus reached. Aboutness is also an issue that is
still crystallizing. A number of logic-based approaches have
recently emerged for studying this relationship and its as-
sociated properties. Once again, no consensus has yet
emerged, though some work using non-monotonic logic has
led to some interesting and comparable formal results
(Bruza & Linder, 1998; Hunter, 1995). A thorough exposi-
tion of an axiomatic approach to aboutness can be found in
Huibers (1996). Our future work will build on this article by
proposing a model theory and defining the aboutness rela-
tion within this theory.
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