
Foundations of Work-Systems
Modeling

H.A. (Erik) Proper
Version of: 30-01-06

The Art & Science of Work Systems Engineering

Foundations of Work-Systems
Modeling

H.A. (Erik) Proper

This textbook was produced by means of LATEX.

Contents

The DAVINCI Series 9

Course Description 13

Preface 15

1 Introduction 17

1.1 Organizations . 17

1.2 Information systems . 18

1.3 Work-systems . 19

1.4 A fundamental view on work-systems modeling . 19

1.5 Formal approach . 20

Questions . 20

Bibliography . 20

2 Work Systems 23

2.1 Exploring systems . 23

2.2 Observing systems . 24

2.2.1 Subjectivity . 24

2.2.2 Observing the universe . 26

2.2.3 Conceptions . 28

2.2.4 Model . 35

2.2.5 System . 35

2.3 Studying systems . 37

2.3.1 Sub-systems . 37

2.3.2 Describing systems . 39

2.3.3 Classes of systems . 40

2.4 Dealing with evolution of conceptions . 42

2.5 Conclusion . 45

Questions . 45

Bibliography . 47

5

6 CONTENTS

3 Basic Object-Role Modeling 49

3.1 Natural language grounding of modeling . 49

3.2 The logbook heuristic . 49

3.3 Verbalizing conceptions . 50

3.4 Elementary facts . 51

3.5 From instances to types . 53

3.6 Subtyping . 57

3.7 Overlap of populations . 59

Questions . 59

Bibliography . 61

4 Object-Role Calculus 63

4.1 Introduction . 63

4.2 Computational domain . 64

4.3 Logic layer . 65

4.4 Path expression layer . 66

4.4.1 Atomic path expressions . 66

4.4.2 Composing paths . 67

4.4.3 Evolution and path expressions . 68

4.4.4 Path expressions as logic . 69

4.5 Graphical constraints . 69

4.5.1 Mandatory roles . 69

4.5.2 Uniqueness . 69

4.5.3 Subsets . 70

4.5.4 Temporal ordering . 70

4.6 Information-descriptor layer . 73

4.6.1 Naming of types . 73

4.6.2 Basic information descriptors . 74

4.6.3 Complex information descriptors . 74

4.6.4 Domain rules . 75

Bibliography . 75

5 Advanced Object-Role Modeling 77

5.1 Subtyping . 77

5.2 Overlap of populations . 79

5.3 Abstraction . 80

5.4 Set types . 89

CONTENTS 7

5.5 Multi-set types . 89

5.6 Sequence types . 91

5.7 Schema types . 91

Questions . 91

Bibliography . 93

6 The Act of Modelling 95

6.1 What to model? . 95

6.2 The modeling challenge . 95

6.2.1 Goal-bounded and communication-driven 95

6.2.2 Aspects of a method . 96

6.2.3 The process of modeling . 97

6.3 Ambition levels for modeling . 98

6.4 Meeting the challenge . 98

6.4.1 Modeling a singular domain . 98

7 Natural-Language Foundations of Information-Systems Modeling 101

7.1 Classes of roles . 101

7.2 Activity types . 104

Questions . 105

Bibliography . 105

I Apendixes 107

A Mathematical Notations 109

A.1 Sets . 109

A.2 Functions . 109

A.3 Relations . 110

B Answers to questions 111

B.1 Questions from Chapter 1 . 111

B.2 Questions from Chapter 2 . 112

B.3 Questions from Chapter 3 . 119

B.4 Questions from Chapter 5 . 122

B.5 Questions from Chapter 7 . 123

Bibliography 125

List of Symbols 133

8 CONTENTS

Dictionary 135

Author Index 139

Subject Index 141

The DAVINCI Series

Version:
30-08-05The subtitle of the DAVINCI series of lecture notes is The Art & Science of Work Systems Engineering.

On the one hand, this series of lecture notes takes a fundamental view (craft) on the field informa-
tion systems engineering. At the same time, it does so with an open eye to practical experiences
(the art) gained from information system engineering in industry.

The kinds of information systems we are interested in range from personal information appli-
ances to enterprise-wide information processing. Even more, we regard an information system
as a system that “handles” information, where “handling” should be interpreted in a broad fash-
ion. The actors that do this “handling” can be computers, but can equally well be other “symbol
wielding machines”, but can also be humans. The mix of humans and computers/machines in
information systems makes the field of information system engineering particularly challenging.

The concept of “information” itself is very much related to the concepts of data, knowledge and
communication. Based on [FVV+98], we will (throughout the DAVINCI series) use the following
definitions:

Data – Any representation in some language. Data is therefore simply a collection of symbols
that may, or may not, have some meaning to some actor.

Information – The knowledge increment brought about when a human actor receives a message.
In other words, it is the difference between the conceptions held by a human actor after
interpreting a received message and the conceptions held beforehand.

Knowledge – A relatively stable, and usually mostly consistent, set of conceptions posessed by
a single (possibly composed) actor.

In more popular terms: “an actor’s picture of the world”.

Communication – An exchange of messages, i.e. a sequence of mutual and alternating message
transfers between at least two human actors, called communication partners, whereby these
messages represent some knowledge and are expressed in languages understood by all
communication partners, and whereby some amount of knowledge about the domain of
communication and about the action context and the goal of the communication is made
present in all communication partners.

When referring to an information system, we therefore really refer to systems that enable the
communication/sharing of knowledge by means of the representation (by human actors), stor-
age, processing, retrieval, and presentation (to human actors) of the underlying representations
(data). This also implies that we will treat information retrieval systems, knowledge-based systems,
groupware systems, etc., as special classes of information systems.

The lecture notes in the DAVINCI series have been organized around four key key processes in
an information system’s life-cycle:

Definition process – A process leading to a definition description.

Where definition is defined as:

9

10 THE DAVINCI SERIES

The requirements that should be met by a desired work system as well its system
description including the descriptions of the system’s definition, design as well
as documentation for the operational system.
These requirements will typically identify: what it should do, how well it should
do this, and why it should do so.

Design process – A process leading to a design description.

Where design is defined as:

The identification and motivation of how a work system will meet the require-
ments set out in its definition. The resulting design may (depending on the de-
sign goals) range from high-level designs to the detailed level of programming
statements or specific worker tasks.

Realization process – The combination of a construction process and a deployment process.

Where construction process is defined as:

A process aiming to realize and test a system that is regarded as a (possibly arti-
ficial) artifact that is not yet in operation.

Where deployment process is defined as:

A process aiming to make a system operational, i.e. to implement the use of the
system by its prospective users.

Architecting – The processes which tie definition, design and deployment and to the explicit and
implicit needs, desires and requirements of the usage context. Issues such as: business/IT
alignment, stakeholders, limiting design freedom, negotiation between stakeholders, enter-
prise architectures, stakeholder communication, and outsourcing, typify these processes.

Domain modeling – Modeling of the domains that are relevant to the information system be-
ing developed. The resulting models will typically correspond to ontologies of the domains.
These domains can pertain to the information that will be processed by the information sys-
tem, the processes in which the information system will play a role, the processing as it will
occur inside the information system, etc. Understanding (and modeling) these domains is
fundamental to the other activities in information system engineering.

For each these aspects, attention will be paid to relevant theories, methods and techniques to
execute the tasks involved. When put together, these aspects can be related as depicted in fig-
ure 1. Note that we regard maintenance of systems as being functionality that should be designed
“into” the system. If a system needs to be maintained, and in most cases one indeed wants to,
then the maintenance should be designed into the workings of this system and/or its context.

The use of the name DAVINCI originates from earlier work [Pro98] done on architecture-driven
information systems engineering. The work reported in [Pro98] was the result of a confronta-
tion between industrial practice and a theoretical perspective on information systems and their
evolution [Pro94a]. The result was a shared vision on the architecture-driven development of
information systems by a Dutch IT consultancy firm. In this shared vision, a foundation was laid
for an integrated view on information system engineering. At that stage, the name “DAVINCI”
was also selected. Not as some artificial acronym, but rather to honor an inspiring artist, scien-
tist, inventor and architect. To us he personifies a balance between art and engineering, between
human and technology.

After the development of the first DAVINCI version, a more elaborate version [Pro04] was de-
veloped at the Radboud University Nijmegen in the form of lecture notes associated to a course
on Architecture & Alignment. In this version, a more fundamental outlook on information system
development was added to complement the practical orientation of the first version.

THE DAVINCI SERIES 11

Domain Modelling

D
e
fin
itio
n

D
e
s
ig
n

R
e
a
liz
a
tio
n

Architecting

Figure 1: Aspects of Information Systems Engineering

As a third step, we have now taken on the underlying philosophy of the first two DAVINCI doc-
uments, and used this as the source of inspiration to shape an entire line of lecture notes for
a number of mutually related courses on different aspects of information systems engineering.
In making this step we have also been able to anchor some of the fundamental research results
from the co-authors, on subjects such as information modeling [BHW91, BW92a, HW93, HPW93,
PW94, BBMP95, CHP96, CP96, PW95, BFW96, HPW97, Pro97, HVH97, FW02, FW04a], informa-
tion retrieval [BW90, BW91, BW92b, BB97, WBW00, SFG+00, PB99, PPY01, WBW01], (enterprise)
information architecture [JLB+04] and information system engineering [Pro01, VHP04] into the
core of the DAVINCI series.

12 THE DAVINCI SERIES

Course Description

Version:
18-06-05Short description

Organizations can by found anywhere. A University is an organization, a sports club is an orga-
nization, a bank is one, government departments are, etc. Organizations are everywhere. In our
modern western society, most organizations use some information systems to support the activi-
ties of the organization. Large parts of these information systems are likely to be computerized.

Organizations and (computerized) information systems are examples of so-called work-systems.
For information system engineers it is relevant to be able to model relevant aspects of the design
of such systems. This may be the design of a currently existing system or the design of the future
evolution/development of the current system. In this course we will discuss several examples of
work-systems from organizational, information systems, biological and sociological domains.

Learning goals
After this course, students are able to:

1. given a case-description of an work-system (such as an organization):

(a) produce models for different aspects of this system,
(b) understand and evaluate given models of that system,

2. argue about, and prove, properties regarding the syntax & semantics of the models,

3. reason about the link between an work-system’s strategy, and the services & processes it
uses to realize this strategy,

4. reason about the position of work-system modeling the context of information systems
engineering.

Topics

1. Work-systems as a generalization of organizations and information systems

2. Temporal ordering, actors, actions, actands.

3. Activity modeling.

4. Actor modeling.

5. Actand modeling.

6. Design patterns.

7. Work-system strategy.

13

14 COURSE DESCRIPTION

Preface

Version:
17-01-06In 2006, the course “Modeling of Organizations” is taught for the third time. This third time will

be the second time we will use the new lecture notes “Work Systems Modelling” from the DA
VINCI series. These lecture notes, however, will be evolved further hand-in-hand with the actual
process of lecturing. In the academic year 2005/2006, a second incarnation of these lecture notes
will be created, where the aim is to deliver these lecture notes in three increments.

An important step that will be taken in this academic year is the integration of the ICIS Work
Systems Modelling lecture notes with the NICI course on Organisational Dynamics. The first
results of this integration will start to appear in the second and third trimester.

Needless to say that any feedback from either students or colleagues is more than welcome.

The priority of this initial version of this textbook is on completeness of the topics that need to
be covered, rather than readability and completeness of text. Students are advised to make notes
during lectures.

Special thanks go out to the students attending the “Information Intensive Organizations” course
in 2004/2005. They where the guinea pigs for the new Lecture Notes, pointing out several major
shortcomings. Also thanks go out to Arnoud Vermeij, for adding several questions and answers,
as well as commenting on draft versions of these lecture notes.

15

16 PREFACE

Chapter 1

Introduction

Version:
17-01-06The focus of these lecture notes is on modeling of different aspects of work systems. In doing so,

we will build on top of the general modeling foundations laid in the Domain Modeling course.

In this chapter, we provide a brief exploration of the concept of work systems. The understand-
ing of this concept as provided in this chapter will serve as a starting point. In the next chapters,
this concept will be put in a more fundamental context. We will do so by discussing the con-
cept of work system, from the bottom up. We will start (??) with a fundamental discussion of
the underlying ontology of systems, modeling and work systems from which we will approach
these phenomenon. We will then proceed (??) by discussing specific modeling techniques for the
modeling of an work system’s formal structures as well as their potential evolution over time.
In the last part (??), we will consider the design of work systems from the perspective of their
strategies.

Note: Not all parts of these lecture notes will be used in the “Modelleren van Organisaties”
course.

1.1 Organizations

Organizations are an ubiquitous phenomenon in our modern day society. Most of our lives are
spent in the context of organizations. We are born in hospitals, we receive an education from
schools and universities. Later on we work for factories, enterprises, etc. In our spare-time, we visit
restaurants, sportclubs, etc. These are all examples of organizations. Our modern-day lives are
surrounded by a plethora of organizations.

However, the ubiquity of organizations is not something new. Also in the past organizations
have always been dominantly present. In line with our working definition, organizations can
be regarded as a more or less stable network of social relationships. In doing so, the concept of
organizations can be said to be as old as humanity itself.

At first glance, the concept of organization comes natural to us. Organizations can be found
anywhere. A University is an organization, a sports club is an organization, a bank is one, gov-
ernment departments are, etc. Organizations are everywhere. In general, an organization could
be an enterprise, an institution, a company, a factory, etc., or it could be a functional, geographic
or organizational part thereof, typically a department or a specific kind of the business. The
concept of organization, however, is not limited to such “formal” and “explicit” organizations.
Ad-hoc groupings of people, such as a group of friends regularly having a beer after office hours
in order to relax after a day of work, may also classify as (ad-hoc) organizations. In this textbook,
we will use the following definition of organization:

17

18 CHAPTER 1. INTRODUCTION

Organization – A group of actors with a purpose, who:

• interact with each other,
• form a network of roles,
• make use of (the services of) other actors.

An organization in itself is an actor as well, and may as such participate in yet another
organizations.

Note the term purposely. An organization is formed by a group of actors. They will typically do
so in order to achieve some shared/private goals.

1.2 Information systems

In our modern western society, most organizations use some form of information systems to sup-
port the activities of the organization. With “information system” we (informally) refer to infor-
mation processing activities that may be performed by computerized as well as non-computerized
actors. Without these information systems, most organizations would no longer be able to exist.
Even more, some organizations are actually large information systems themselves. For exam-
ple, banks, insurance companies, taxation offices, are really ‘just’ very large information systems
comprising human, physical (money, bankcards, etc.) and computerized actors.

The concept of information system can roughly be defined as that aspect of an organization that
provides, uses and distributes information. An information system may contain computerized
sub-systems to automate certain elements. Some information system may not even be computer-
ized at all. A filing cabinet used to store and retrieve several dossiers is, in essence, an information
system. The kind of information systems we are interested in, however, are indeed presumed to
have some computerized core parts.

What we may perceive to be an information system, may vary highly in terms of their scope.
Some examples would be:

• Personal information appliances, such as electronic agenda’s, telephone registries in mobile
phones, etc.

• Specific information processing applications.

• Enterprise wide information processing.

• Value-chain wide information processing.

Some concrete examples are:

• An insurance-policy administration is an information system

• A bank is (primarily) an information system

• Clients are actors in that information system

• The taxation department is an information system

• The PDA you use as an agenda

• The phone number collection in your mobile phone

In practice, the concept of “information system” is used quite differently by different groups of
people. It seems (see e.g. [FVV+98]) to be interpreted in at least three different ways:

• As a technical system, implemented with computer and telecommunications technology.

• As a social system, such as an organization, in connection with its information processing
needs.

• As a conceptual system (i.e. an abstraction of either of the above).

1.3. WORK-SYSTEMS 19

1.3 Work-systems

In the field of information systems, this has also lead to a generalisation of the notion of orga-
nization and information systems to work systems, focusing on the essential common properties
such as actors, resources, etc. In [Alt99, Alt02] Alter defines a work system as:

A work system is a system in which human participants and/or machines perform business
processes using information, technologies, and other resources to produce products and/or
services for internal or external customers.

Typical business organizations contain work systems that procure materials from suppliers, pro-
duce products, deliver products to customers, find customers, create financial reports, hire em-
ployees, coordinate work across departments, and perform many other functions.

We will actually generalize the definition of work-system even further to:

Work system – An open active system in which actors perform processes using information,
technologies, and other resources to produce products and/or services for internal or ex-
ternal actors.

where we have purposely generalized “human participants and/or machines” as used in Alter’s
definition of work systems to the notion of actors in order to abstract from the fact wether these
actors are of a biological, mechanical, chemical, electronical, or whichever, means. Actors are
presumed to perform activities (work!) in order to achieve some purpose. We have furthermore
replaced any explicit reference to business like terminology as work-systems is intended to be a
more general notion that just organisations, enterprises, etc.

As discussed in [Alt99, Alt02], the work-system concept can be used as a common denominator
for many types of systems. Enterprises, value chains, organizations, operational information
systems, projects, supply chains, and ecommerce web sites can all be viewed as special cases of
work systems. Organisations are work systems. An information system is a work system whose
work practices are devoted to processing information. A project is a work system designed to
produce a product and then go out of existence. A supply chain is an interorganizational work
system devoted to procuring materials and other inputs required to produce a firm’s products.
An ecommerce web set can be viewed as a work system in which a buyer uses a seller’s web
site to obtain product information and perform purchase transactions. The relationship between
work systems in general and the special cases implies that the same basic concepts apply to all
of the special cases, which also have their own specialized vocabulary. In turn, this implies that
much of the body of knowledge for the current information systems discipline can be organized
around a work system core.

Specific information systems exist to support (other) work systems. Many different degrees of
overlap are possible between an information system and a work system that it supports. For
example, an information system might provide information for a non-overlapping work system,
as happens when a commercial marketing survey provides information to a firm’s marketing
managers In other cases, an information system may be an integral part of a work system, as
happens in highly automated manufacturing and in ecommerce web sites. In these situations,
participants in the work system are also participants in the information system, the work system
cannot operate properly without the information system, and the information system has little
significance outside of the work system.

1.4 A fundamental view on work-systems modeling

Modeling is at the very heart of the field of information systems engineering as well as organiza-
tional engineering. Any course on the modeling of work systems should therefore also provide

20 CHAPTER 1. INTRODUCTION

a fundamental understanding of modeling, in particular the modeling of work systems. As we
will see in the next chapter, when two people model the same domain, they are likely to produce
quite different models. Even when they use the same information (informants, documents, etc.)
to produce the models, the models are still likely to differ considerably. This also means that if
two people communicate about the same work system, they are likely to do so with different
models of this work system in mind. Why do these differences occur What are the origins of these
different models? What happens when people produce models? Questions that beg for a fundamental
answer. These lecture notes try to provide some of the answers.

1.5 Formal approach

In developing our understanding of modeling organizations, we will discuss several modeling
languages for different aspects of organizations. When discussing these modeling languages, we
will also discuss their syntax and semantics from a formal (mathematical) perspective. In [HW92,
Hof93, HP98] three major reasons for a formal approach to the syntax and semantics of modeling
techniques are given.

Even though in literature it has often been emphasized that modeling languages should have
a rigorous formal basis (see e.g. [Coh89, TP91, Spi88, Jon86, HL89], somehow this need for for-
mality has not been generally acknowledged in the field of information systems engineering and
organization engineering. This has contributed greatly to the appearance of the “Methodology
Jungle”, a term introduced in [Avi95]. In [Bub86] it is estimated that during the past years, hun-
dreds if not thousands of information system development methods have been introduced. Most
organizations and research groups have defined their own methods. The techniques advocated
in these methods usually do not have a formal foundation. In some cases their syntax is defined,
but attention is hardly ever paid to their formal semantics. The discussion of numerous exam-
ples, mostly with the use of pictures, is a popular style for the “definition” of new concepts and
their behavior. This has led to fuzzy and artificial concepts in information systems development
methods (see also [Bub86]).

Questions
Version:
17-01-06 1. What is an organization? Give some examples of groupings of people that are not an orga-

nization.

2. Produce a model of the hierarchical structure of a university (faculties, departments, schools,
etc). Why is the model organized this way?

3. Produce a model of the educational process of attending a course at a university. What are
the contributions of the different elements in this process.

4. Describe why it is important to realize that organizations can be part of yet other organiza-
tions. Use the term ‘level of abstraction’ in your answer.

5. If two people were to produce a model of the same organization. Would you expect them
to produce the same model? If not, why do you think these models would differ?

Bibliography

[Alt99] S. Alter. A general, yet useful theory of information systems. Communications of the
Association for Information Systems, 1(13), 1999.
http://cais.isworld.org/articles/1-13/default.asp

http://cais.isworld.org/articles/1-13/default.asp

BIBLIOGRAPHY 21

[Alt02] S. Alter. The work system method for understanding information systems and in-
formation system research. Communications of the Association for Information Systems,
9(9):90–104, 2002.
http://cais.isworld.org/articles/default.asp?vol=9&art=6

[Avi95] D.E. Avison. Information Systems Development: Methodologies, Techniques and Tools.
McGraw–Hill, New York, New York, USA, 2nd edition, 1995. ISBN 0077092333

[Bub86] J.A. Bubenko. Information System Methodologies – A Research View. In T.W.
Olle, H.G. Sol, and A.A. Verrijn–Stuart, editors, Information Systems Design Method-
ologies: Improving the Practice, Amsterdam, The Netherlands, EU, pages 289–318. North–
Holland/IFIP WG8.1, Amsterdam, The Netherlands, EU, 1986.

[Coh89] B. Cohen. Justification of Formal Methods for System Specification. Software Engineer-
ing Journal, 4(1):26–35, January 1989.

[FVV+98] E.D. Falkenberg, A.A. Verrijn–Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson,
J.L.H. Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information
Systems Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU,
1998. ISBN 3901882014

[HL89] I. van Horenbeek and J. Lewi. Algebraic specifications in software engineering: an intro-
duction. Springer, Berlin, Germany, EU, 1989.

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis,
University of Nijmegen, Nijmegen, The Netherlands, EU, 1993.

[HP98] A.H.M. ter Hofstede and H.A. (Erik) Proper. How to Formalize It? Formalization
Principles for Information Systems Development Methods. Information and Software
Technology, 40(10):519–540, October 1998.

[HW92] A.H.M. ter Hofstede and Th.P. van der Weide. Formalisation of techniques: chop-
ping down the methodology jungle. Information and Software Technology, 34(1):57–65,
January 1992.

[Jon86] C.B. Jones. Systematic Software Development using VDM. Prentice–Hall, Englewood
Cliffs, New Jersey, USA, 1986.

[Spi88] J.M. Spivey. Understanding Z: A Specification Language and its Formal Semantics. Cam-
bridge University Press, Cambridge, United Kingdom, EU, 1988.

[TP91] T.H. Tse and L. Pong. An Examination of Requirements Specification Languages. The
Computer Journal, 34(2):143–152, April 1991.

http://cais.isworld.org/articles/default.asp?vol=9&art=6

22 CHAPTER 1. INTRODUCTION

Chapter 2

Work Systems

Version:
30-01-061In this chapter, we discuss our fundamental view on work systems, organizations and informa-

tion systems. We will provide a definition of terms, which is based on a system theoretic [Ber01]
foundation.

2.1 Exploring systems

Even though the notion of system is, in an IT context, often equated to ‘software system’, the
original sense of the word is much broader. The notion of system2 is also not uniquely defined
in the literature, but typically, it can be found explained as: “A collection of interrelated parts char-
acterized by a boundary with respect to its environment” [Iiv83] or just as: “A set of objects with a set
of links” [Lan71]. In general, humans refer to all sorts of things as ‘systems’. The broadness of
our understanding of the concept of ‘system’ comes, for example, to the fore in the definition as
found in [Mer03]:

A regularly interacting or interdependent group of items forming a unified whole, as:

1. a group of interacting bodies under the influence of related forces,
2. an assemblage of substances that is in or tends to equilibrium,
3. a group of body organs that together perform one or more vital functions,
4. the body considered as a functional unit,
5. a group of related natural objects or forces,
6. a group of devices or artificial objects or an organization forming a network es-

pecially for distributing something or serving a common purpose,
7. a major division of rocks usually larger than a series and including all formed

during a period or era,
8. a form of social, economic, or political organization or practice.

The IEEE Recommended Practice for Architectural Description of Software-Intensive Systems [IEE00]
provides a functionality-oriented perspective on systems:

A collection of components organized to accomplish a specific function or a set of
functions.

1Parts of this chapter are based on work the author was doing with A.A. (Xander) Verrijn-Stuart on a revised edition
on the FRISCO report [FVV+98]. As Xander passed away unexpectedly, the revised edition was never finished.

2The term ‘System’ is derived from the Greek phrase ‘Syn histanai’ (συν ı́στηναι): ‘to put together’.

23

24 CHAPTER 2. WORK SYSTEMS

In practice, most people intuitively agree on such simple definitions of systems. Apparently these
definitions are broad enough to cover the meaning of usual linguistic constructs where ‘system’
is used. But system is a much more difficult concept. If we look at what in practice are considered
systems, and if we really think about it, it becomes obvious that some very important aspects of
the system concepts are missing in the traditional definitions. In [FVV+98] some examples are
given of what we would, and would not, observe to be systems in our daily life:

Example 2.1.1
One can regard an organization or a bicycle as systems. Also a Hitchcock film recorded on
a video cassette, which is inserted in a video cassette player, which again is connected to a
TV-set, could easily be interpreted as a system. Nothing is unusual with such system views,
and they are well covered by the definitions. But if you buy some eggs from a farmer and
use two of them for breakfast, then the domain of obviously interrelated phenomena: You,
the farmer, the farmers hen that laid the eggs, the frying pan you used to prepare the eggs,
and the two eggs now in your stomach (and thereby in some transformed form a part of
yourself) – this domain might probably not be regarded as a system, because it might be
difficult to see a purpose for that. But it fits the definitions.

Or consider a single raindrop in an April shower: It consists of a vast number of water
molecules, kept together by surface tension and constantly moving around among each
other in a complicated manner controlled by a set of (thermo-) dynamic forces. Again ac-
cording to the simple definitions above, the drop qualifies as a system. But that is strange,
because when you on your way back from the farmer, happen to get soaked in the shower,
you might feel it is caused by raindrops – not by systems.

On the other hand, a meteorologist studying possible weather situations that could cause
rain, may see a purpose in regarding a raindrop as a system in interaction with the sur-
rounding atmosphere, but in most other situations a raindrop is just a raindrop.

However, when looking at what is regarded as a system in practice, it becomes apparent that
some very important aspects of the system concept are missing from the traditional definitions.

In [Rop99] it is argued that, strictly speaking, there exist three different interpretations of systems:

Structural – The structural interpretation is known best. According to this interpretation, a sys-
tem includes a set of elements and a set of links between these elements. This interpretation
complies with the ancient definition of the holon by Aristotle.

Functional – The functional interpretation views a system as an entity, sometimes called black
box, which transforms inputs into outputs. Depending on specific internal states; the kind
of transformation is called a function (in the descriptive meaning of the word).

Hierarchical – The structural interpretation turns into the hierarchical interpretation, if (some of)
the constituting elements are regarded as subsystems. Concluding by analogy, the original
system may be considered as a subsystem of a more extensive supersystem.

2.2 Observing systems

The aim of this section is to more precisely define the concept of system, also giving more foun-
dation to our earlier definitions of work system, organizational system, and information system.

2.2.1 Subjectivity

When two people discuss a system, do they really mean the same system? One serious cause for
confusion in our professional domain is, that people, usually, think about a system as something

2.2. OBSERVING SYSTEMS 25

that can be objectively determined, for example by a specification of its parts and their relation-
ships, as the above quoted definitions may indicate. But even then, the problem remains. Are
both people indeed discussing the same system?

As an example take the simple domain of a car and its driver in the traffic of a city. One person
may see it as a useful transport system in action, which is able to move large objects from one
location to another in a convenient way. The driver alone cannot, nor can the car, but in combi-
nation they can. However, a policeman on his job will regard the same domain differently – as a
controllable system which behavior can be directed by road regulations, traffic lights, arm signals
and by certain traffic rules. Again, an environmental activist would probably regard the car as a
dangerous polluting system, which is a potential cause of injury or death to persons in the traffic.

Here we have three views of the same domain, but with quite different sets of properties. All
three persons could in fact be the same viewer of the same system, e.g. a transport conscious
public servant caring about the conditions for people in the city, who just conceives different
properties by regarding the same system from different points of view.

Let us elaborate this car example a little further in order to illustrate the difficulties we face when
we regard something as a system. Consider for example the question about which parts and
which activities are involved in the possible system view: Are the driver and the car two inter-
acting sub-systems – one with the property of being able to observe the traffic and to control the
car, and the other with the property of being able to transform chemical energy into movement
in a controlled manner. Or is the car to be regarded as a single system with the driver, motor,
gear, and steering devices as sub-systems each with their own properties? Is the motor the active
part and the chassis a passive component, or is it the other way around – the car as a device
transporting among other things the motor. Quite another view – but still one from the same do-
main – could be to regard the car as a moving cage of Faraday protecting the driver from certain
kinds of dangerous electrical fields. There are many possible system views, and still the domain
is extremely simple compared with the organizational domains usually considered as systems.

If we regard a business enterprise, an institution or any other kind of organization as a system –
an organizational system – we have a domain which is much more complicated than a car and
driver. Furthermore, the number of possible views of an organization is most often enormous.

Key to understanding the system concept, and ultimately organizations is therefore to realize
that a system is a subjective phenomenon. In other words, it is not an absolute or objective
thing. Systems are not a priori given. As Checkland [Che81] expresses it, there must be a de-
scriber/observer who conceives or thinks about a part of the world as a system. In other words,
it is important, that there is a viewer who can see a purpose in regarding some ‘set of elements’ as
a system.

Viewers may also be regarded at an aggregated level. For example, a single business manager,
observing an organization, is indeed a viewer, but the collective business management can be seen
as a viewer of the organization as well.

The purpose in regarding some set of elements as a system should be expressed in terms of at
least one meaningful links between the set of elements and its environment. Such a link is called
a systemic property. It is a property the viewer associates with the set of elements they experience
as a system. One viewer may regard the set of elements as a system having one set of systemic
properties, while another viewer may see other systemic properties concerning the same set of
elements.

Most often, the systemic properties of a system cannot be attributed exclusively to any of its con-
stituent components. For example, none of the constituent parts of a train has the exclusive ‘train
property’. A separate carriage is not a train. A locomotive on its own is (from the perspective of
a passenger) also not a train. Together, however, the parts do have the ‘train property’. In other
words, the whole is more than just the collection of its parts. The farmer-you-frying-pan-eggs-
hen situation as discussed in the above example, is a situation which may not constitute a ‘whole’

26 CHAPTER 2. WORK SYSTEMS

with any sensible systemic property. In which case we will not consider it to be a system. In the
case of the train, we have an interesting situation if the train consists of two connected train-sets.
In this case, each of the individual train-sets still has the ‘train property’.

In order for us to gain a fundamental understanding of systems, and ultimately the kind of sys-
tems we refer to as organizations, we first need to introduce some core concepts, most of which
are based on the ones found in [FVV+98].

2.2.2 Observing the universe

Let us start by considering what happens if some viewer observes ‘the universe’. It is our as-
sumption, based on the work of C.S. Peirce [Pei69a, Pei69b, Pei69c, Pei69d], that viewers perceive
a universe, leading to a perception of this universe and then produce a conception of that part they
deem relevant. Peirce argues that both the perception and conception of a viewer are strongly
influenced by their interest in the observed universe. This leads to the following (necessarily
cyclic, yet irreflexive) set of definitions:

Universe – The ‘world’ under consideration.

Viewer – An actor perceiving and conceiving (part of) a domain.

Perception – That what results, in the mind of a viewer, when they observe a domain with their
senses, and forms a specific pattern of visual, auditory or other sensations in their minds.

Conception – That what results, in the mind of a viewer, when they interpret a perception of a
domain.

In general, people tend to think of the universe as consisting of elements. In [FVV+98] this
approach is indeed taken. In our view, presuming that the universe consists of a set of elements
constitutes a subjective choice, which essentially depends on the viewer observing the universe.
Nevertheless, taking this assumption has proven to be a sensible assumption, in particular in the
context of systems. However, we do not presume the universe itself to consist of elements, but
rather the conception of a universe. This makes the identification of elements relative to a viewer.

The conceptions harbored by a viewer are impossible to communicate and discuss with other
viewers unless they are articulated somehow. In other words, a conception needs to be described
somehow in terms of a description:3

Description – The result of a viewer denoting a conception, using some language to express
themselves.

The resulting situation is illustrated in Figure 2.1. Descriptions may be:

• Formal or informal

• Complete or incomplete

• More refined/less refined

A system description may have a formal semantics, in mathematical terms, and will also have an
intensional (pragmatics!) semantics. Formal semantics is needed when approaching design. The
latter is likely to be of more use when communicating with different stakeholders.

The underlying relationships between viewer, universe, conception and description can be ex-
pressed in terms of the so-called FRISCO tetrahedron [FVV+98], as depicted in Figure 2.24.

3In [FVV+98] the term representation is used rather than the term description as it is used here. We have chosen to favor
the term description, as it is the term of choice of [IEE00].

4The original FRISCO tetrahedron uses ‘domain’ where we use ‘universe’. This difference is due to the above, more
refined, discussion on the subjectivity of viewing the universe as a set of elements.

2.2. OBSERVING SYSTEMS 27

Conceptionconceiving

perceiving

Description

describing
Universe

Figure 2.1: A viewer, having a conception of the universe, and describing this in terms of a
description.

Conception

Viewer

Universe Description

Figure 2.2: The (revised) FRISCO tetrahedron.

28 CHAPTER 2. WORK SYSTEMS

2.2.3 Conceptions

To express the above discussions more formally, let UN 5 be the set of universes that may be
observed, and let VW6 be the set of all possible viewers. Let furthermore, EL be the set of elements
that may be part of conceptions. These basic sets should be disjoint:

[S1] VW , UN and EL are mutually disjoint.

Let |=c ⊆ UN ×VW ×℘(EL) be the links expressing which conception is held by which viewer.
The fact that a viewer v ∈ VW harbors a conception C ⊆ ℘(EL) for universe U ∈ UN can be
expressed as U |=c v C. This situation is depicted more graphically in Figure 2.3. A viewer, when
observing a domain, draws a picture of the observed universe (their conception). In painting this
picture of the world, they will use certain ‘constructs’. At the moment the only constructs we
presume to exist are elements. Note: the fact that viewers can change their conception over time
is ignored for the moment.

Conception

perceiving

conceiving

Elements

Viewer’s "picture of the universe"

Viewer

Universe

Figure 2.3: Painting a picture of the universe

Domains and their environments

A viewer may zoom in on a particular part of the universe they observe, or to state it more
precisely, they may zoom in on a particular part of their conception of the universe.

Domain – Any ‘part’ or ‘aspect’ of the universe a viewer may have an interest in.

When reasoning about systems, which we will regard as a particular class of domains, it is com-
monplace to also identify their environments [Ber01]. Even more, the very definition of a system
depends on our ability to distinguish it from its environment. This is illustrated in Figure 2.4.

5The reader is advised that appendix A provides an overview of the mathematical notations/conventions used in this
textbook.

6One should actually regard this set as the set of states a viewer may have. A viewer may for example have, in differing
states, different interests with which they conceive the universe. The elements from VW should really be regarded as the
states of these viewers.

2.2. OBSERVING SYSTEMS 29

Conception

perceiving

conceiving

Elements

Viewer’s "picture of the universe"

Viewer

Universe

Figure 2.4: Identifying a domain and its environment

To be able to define the environment of a domain in general and a system in particular, however,
we must first be able to define the direct environment of a domain. Formally, a domain D can
be regarded as a subset of a conception C, in other words a sub-conception D ⊆ C. If U |=c v C
and D ⊂ C is some domain within C, then the environment of D will not generally be C −D as
a whole, but rather a subset E ⊆ C −D. For E to be a sensible environment of domain D, the
elements in E must have some links to the elements in D. In order to more precisely define the
notion of environment, we should therefore first refine our notion of elements of a conceptions.
There are really two types of elements: concepts and links connecting the concepts. We will
define these notions as follows:

Element – The elementary parts of a viewer’s conception.

Concept – Any element from a conception that is not a link.

Link – Any element from a conception that relates two concepts.

The distinction between a link and an concept for the elements of a given conception, may not
always be that clear, as the distinction is rather subjective. It all depends, to no surprise, on the
viewer of a domain.

Let CO ⊆ EL be the set of concepts and let LI ⊆ EL be the set of links. These sets should form a
partition of EL:

[S2] CO∩LI = ∅ and EL = CO∪LI.

In terms of Figure 2.4, our viewer can now select from two classes of elements: concepts and
links. This is depicted in Figure 2.5. In the next chapter, we will provide an even more refined
view on the classes of elements we identify.

If X ⊆ EL, then we will use the following abbreviations:

COX , X ∩CO and LIX , X ∩LI

Links run between concepts. We furthermore presume functions From : LI→CO and To :
LI→CO to exist, providing the source and destination of these links respectively. As an ab-
breviation we will use:

Involved(r) , {From(r),To(r)}

30 CHAPTER 2. WORK SYSTEMS

Conception

perceiving

conceiving

Viewer’s "picture of the universe"

Viewer

Universe

RelationshipsEntities

Figure 2.5: Painting a more refined picture of the observed domain

to select the concepts involved in a link, and:

e LinkedToC f , ∃l∈LIC [From(l) = e ∧ To(l) = f]

to represent the fact that a concept e is connected to concept f .

A conception C is considered to be closed iff:

∀r∈LIC [Involved(r) ⊆ C]

Conceptions of viewers should indeed be closed:
[S3] If U |=c v C, then C is closed.
Figure 2.6 provides a model, our ontology, of the classes of elements which a conception may
consist of and their mutual relationships. The notation we have used there is the ORM (Object-
Role Modeling) [Hal01]7 notation, which is the same notation as used in the Domain Modeling
course.

A conception C which is closed under LI can essentially be regarded as a graph:

〈COC ,LIC ,From,To〉

A conceptionC is called connected iff the associated graph is connected. A conception is required
to be a connected graph:
[S4] If U |=c v C, then C is connected.
Note: if a conception would not be a connected graph, it would be a conception of multiple
universes.

We generalise From and To to sets of links as follows:

From(L) ,
{
From(l)

∣∣ l ∈ L}
To(L) ,

{
To(l)

∣∣ l ∈ L}
We are now in a position to properly define the environment of a domain:

7We have used the extension introduced in [HP95] to signify that Concept and Link are really self-defining subtypes,
i.e. not requiring a dedicated subtype defining rule.

2.2. OBSERVING SYSTEMS 31

Element

LinkConcept

from

to

Figure 2.6: The ontology of a viewer’s conception

Environment – The environment of a domain is that part of a viewer’s conception of a universe,
which has a direct link to the domain.

Formally, we view a domain D and an environment E as being a subset of a conception C, in
other words a sub-conception D,E ⊆ C. Let |=d 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL)
now be the relation expressing which domain and environment a viewer conceives. The fact that
a viewer v harbors a conception of domainD and environmentE for universe U can be expressed
as U |=d v 〈C : E : D〉. This link should limit itself to the conceptions held by viewer v:
[S5] If U |=d v 〈C : E : D〉, then U |=c v C and E,D ⊆ C.
A domain and its environment should not overlap:
[S6] If U |=d v 〈C : E : D〉, then E ∩D = ∅.
The domain and environment should be closed:
[S7] If U |=d v 〈C : E : D〉, then D is closed.
[S8] If U |=d v 〈C : E : D〉, then E ∪D is closed.

A domain should be connected:
[S9] If U |=d v 〈C : E : D〉, then D is connected.
The combination of a domain and its environment is connected as well:
[S10] If U |=d v 〈C : E : D〉, then D∪E is connected.
Note that an environment does not have to be connected!

Concepts in the environment are related somehow to concepts in the domain:
Lemma 2.2.1

Let U |=d v 〈C : E : D〉with a non-empty environmentE. If P is a maximum8 subset ofE such
that it is connected, then:

∃e∈COP ,r∈LIE ,d∈COD
[{e, d} = Involved(r)]

Proof:
Left as an exercise to the reader.

The authors of [FVV+98] also define the notions of domain and environment. However, they do
not take the subjectivity with regards to viewing the universe as a set of elements into consider-
ation. As a result, they define domain and environment as being parts of the universe as opposed
to being parts of a viewer’s conception of the universe.

In the remainder of this book, we will use the phrase: a viewer v observing a domain (of interest) D
(with environment E) as an abbreviation for: a viewer v having a conception of the universe, zooming
in on domain D (with environment E).

8In other words, there is no P ′ such that P ⊂ P ′ ⊆ E while P ′ is still connected.

32 CHAPTER 2. WORK SYSTEMS

Decomposition of conceptions

When a viewer conceives a domain, we presume there to be an concept in their conception rep-
resenting the whole of the domain as well as one representing the whole of the environment. The
same applies to the universe. In other words, the concepts in the domain and the environment
can be regarded as decompositions of entities representing the whole of the domain and en-
vironment, while these latter concepts are decompositions of another concept representing the
universe as a whole. This is illustrated in figure 2.7.

Environment Domain

Universe

Figure 2.7: Decomposition of the universe

This ‘decomposition game’ can be played repeatedly. When viewing a domain a viewer may
decide to zoom in further into a specific part of this domain. For example, when observing an
insurance claim-handling process, involving amongst other things an evaluation of the claim,
one may decide to zoom in closer into the actual evaluation process. This has been illustrated in
figure 2.8.

The fact that one concept is in the ‘decomposition’ of another concept really means that there is a
link between them in the viewer’s conception. This has been illustrated in figure 2.9. This really
implies we need to identify a specific class of links called decomposers. Let us therefore presume
we have a set: DC ⊆ LI of links.

To more easily reason about decompositions within a conception, we will introduce the derived
relationship → ⊆ CO×℘(EL) × CO. If x→C y, the concept x in conception C is decomposed
into (possibly amongst others) concept y. This relationship is defined (precisely) by the two
following (recursive) derivation rules:

1 : ∃d∈DCC [x = From(d) ∧ y = To(d)] ` x→C y

2 : x→C y ∧ y→C z ` x→C z

The decompositions should be acyclic:

[S11] x→C y⇒x 6= y

As an abbreviation we introduce: x→C y , x = y ∨ x→C y.

To enforce the fact that a viewer’s conception of a universe consists of one ‘top’ concept repre-
senting the universe as a whole, we require:

[S12] If U |=c v C, then: ∃u∈COC
∀x∈COC

[u→C x]

2.2. OBSERVING SYSTEMS 33

Environment Domain

Universe

Figure 2.8: Decomposition of a part of a domain

Environment Domain

Universe

Figure 2.9: Decomposer relationships

34 CHAPTER 2. WORK SYSTEMS

Even more, the u ∈ C is unique:

Corollary 2.2.1
If U |=c v C, then: ∃!u∈COC

∀x∈COC
[u→C x]

Proof:
Left as an exercise to the reader.

Similarly, for domains and environments we have:

[S13] If U |=d v 〈C : E : D〉, then: ∃d∈D∀x∈COD
[d→D x]

[S14] If U |=d v 〈C : E : D〉, then: ∃e∈E∀x∈COE
[e→E x]

Corollary 2.2.1 applies to each of these as well. So for C, D and E there are unique tops in the hi-
erarchies. This unique top elements will be referred to as Top(C), Top(D) and Top(E) respectively.
For these tops, we should have:

[S15] If U |=d v 〈C : E : D〉, then: ∃!d∈DCC [Top(C) = From(d) ∧ Top(E) = To(d)]

[S16] If U |=d v 〈C : E : D〉, then: ∃!d∈DCC [Top(C) = From(d) ∧ Top(D) = To(d)]

[S17] If U |=d v 〈C : E : D〉, then: ∃!r∈LIC −DCC [Top(D) = From(d) ∧ Top(E) = To(d)]

These three axioms require the top part of a conception to have the structure as depicted in Fig-
ure 2.9.

By adding the set of decomposers, we have now enriched our ontology to the situation as de-
picted in figure 2.10. Note that the asterisk (*) attached to the is decomposed into relationship
signifies this to be a derived relationship.

*

"is decomposed into"
Decomposer

Element

LinkConcept

from

to

Figure 2.10: Ontology refined with decomposers

2.2. OBSERVING SYSTEMS 35

2.2.4 Model

In the context of organizations, we are not interested in all types of conceptions. Our interest is
limited to those conceptions, that may be referred to as a model:

Model – A purposely abstracted domain (possibly in conjunction with its environment) of some
‘part’ or ‘aspect’ of the universe a viewer may have an interest in.

For practical reasons, a model will typically be consistent and unambiguous with regards
to some underlying semantical domain, such as logic.

As a model is a conception, it also consists of elements, which can be specialized further into
concepts and links:

Model element – An element from a conception which is a model.

Model concept – A concept from a conception which is a model.

Model link – A link from a conception which is a model.

We are now also in a position to define more precisely what we mean by modeling:

Modeling – The act of purposely abstracting a model from (what is conceived to be) a part of
the universe.

For practical reasons, we will understand the act of modeling to also include the activities involved
in the description of the model by means of some language and medium.

To represent the fact that some viewer produces a model in an environment when they observe
some part of the universe, we introduce the relation:

|=m 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL)

Formally, the fact that a viewer v views the universe U and in doing so has a conception C
including a model M with environment E is represented by: U |=m v 〈C : E : M〉. Every model is a
conception. We should therefore have:

[S18] If U |=m v 〈C : E : M〉, then U |=d v 〈C : E : M〉.

Corollary 2.2.2
If U |=d v 〈C : E : M〉, then U |=c v C.

Proof:
Left as an exercise to the reader.

Note that not all conceptions of a domain produce models. So the reverse of the above axiom
does not hold! As an abbreviation we also introduce:

U |=m v M , ∃C,E [U |=m v 〈C : E : M〉]

2.2.5 System

Using the above general definitions, we can, in line with [FVV+98], more precisely define the
way we view systems:

System domain – A domain that is conceived to be a system, by some viewer, by the distinction
from its environment, by its coherence, and because of its systemic property.

Systemic property – A meaningful relationship that exists between the domain of elements con-
sidered as a whole, the system domain and its environment.

System viewer – A viewer of a system domain.

36 CHAPTER 2. WORK SYSTEMS

System – A special model of a system domain, whereby all the things contained in that model
are transitively coherent, i.e. all of them are directly or indirectly related to each other and
form a coherent whole.
A system is conceived as having assigned to it, as a whole, a specific characterisation (a
non-empty set of systemic properties) which, in general, cannot be attributed exclusively
to any of its components.

System description – The description of a system.
The elements, concepts and links concepts can be further specialized to systems:
System element – Any element from a system.
System concept – Any element from a system that is a concept.
System link – Any element from a system that is a link.
As identified in [FVV+98], there is a potential objection against our subjectivity-based definition
of system. In daily life, it is quite sensible to talk about “designing, constructing and implement-
ing a system” or “to interact with a system”. The use of the terms ‘system’ gives associations to
this term as denoting something that can be interacted with in a rather concrete way and not just
as a conception. These associations, however, do not lead to any inconsistencies. These example
phrases are simply convenient abbreviations for more elaborate expressions. For instance, “to
interact with a system” really means:

to interact with phenomena in the system domain that is conceived as a system (because of its
systemic properties).

To “design, construct and implement” a system really means:

to bring together and structure phenomena in a particular part of the world (which then be-
comes the system domain) with the purpose of constructing them such that they together have
certain systemic properties.

To represent the fact that some viewer ‘sees’ a system in an environment when they observe some
part of the universe, we introduce the relation:

|=s 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL)

Formally, the fact that a viewer v views the universe U and in doing so has a conception C
including a system S with environment E is represented by: U |=s v 〈C : E : S〉. Every system is a
model. We should therefore have:
[S19] If U |=s v 〈C : E : M〉, then E 6= ∅ and U |=m v 〈C : E : M〉.
Note that not all conceptions of a domain produce models. So the reverse of the above axiom
does not hold! As an abbreviation we also introduce:

U |=s v S , ∃C,E [U |=s v 〈C : E : S〉]

In our informal exploration of the concept of system, we already discussed that there are three
major ways of viewing systems [Rop99]: structural, functional and hierarchical (as a specific class of
structural). A major difference between a structural and a functional perspective is the distinction
between the white-box and black-box approach when regarding systems. In other words, is one
looking inside the system (white-box) or is one only looking at the outside of the system. This does
seem to raise the question whether, when viewing a system as a black-box, one can still argue
that the system consists of elements? The answer to this question is a resounding yes. When a
viewer, for some reason, views a domain as a system, and does so using a black-box approach,
that what they conceive of as being a system is still a conception consisting of elements. The
difference between a white-box and a black-box approach when viewing a system, however, is
in the concepts and links one will see. When taking a black-box approach, one will only see
the external behavior of the system, while when taking the white-box approach one will see the
internal structure/behavior of the system as well.

2.3. STUDYING SYSTEMS 37

2.3 Studying systems

In order to really to understand the concept system it is necessary to be aware of a number of
important aspects:

• that the system domain always comprises several elements,

• that all elements are related to each other such that it constitutes a transitively coherent
whole,

• that the whole is conceived to have at least one systemic property,

• that it is only relevant to incorporate a thing as an element of the particular system domain
if in the system view it somehow contributes to the systemic property,

• that when viewing a thing as an element of a system domain then only those aspects of the
thing that directly or indirectly contributes to the systemic properties are relevant for the
system view.

2.3.1 Sub-systems

To gain a better understanding of complex systems it has proven to be useful to identify smaller-
scale systems within a larger system, leading to sub-system. A detailed discussion on dealing
with complexity by systems in general, and the role played by hierarchical decomposition, may
be found in e.g. [Sim62]. In this textbook, for example, information systems will be positioned as
sub-systems of organizational systems.

However, when it comes to the point of being less intuitive and more explicit about the concept,
there is little consensus about what really characterizes a sub-system – or rather what should
characterize it, if the concept is to be a useful one. The influence from the absoluteness of the
‘classical’ system concept together with some apparent preference to associate the understanding
of sub-system with the subset concept seem to be the main cause of the confusion.

The ‘old’, simple interpretation of the concept system as being just ‘a set of interrelated parts’,
made it rather obvious to think of sub-system as: A subset of the parts together with an appro-
priate subset of their mutual relationships. However, with the introduction of the notion that
in order for something to be a system, it must have at least one systemic property, the matters
became more difficult: Should the definition of sub-system then also involve the specification
of a subset of the systemic properties? Intuitively this notion could be reasonable, and it may
even work in some cases, but the problem is that this is not always so. Consider, for example, a
well-functioning mechanical watch. It can be conceived to have the systemic property that un-
der certain conditions it ‘shows the time’. A possible sub-system of such a watch is the energy
supplying device for the clockwork consisting of the spring, the winding knob, the exchange and
click mechanism for tightening the spring, and a part of the frame to support these mechanical
parts. The only sensible systemic property of such a sub-system is that it serves as a storage of
mechanical energy. But then we have a serious problem with the subset notion applied on the
systemic property, because being an energy storage is in no way a subset of the systemic property
of showing the time.

The problem of defining a sensible sub-system concept by means of subset relationships becomes
even more difficult with the notion of a system as a subjective issue. Apart from the systemic
properties not being absolute, but rather depending of the viewer, one element in the system
domain may now also potentially be viewed as several different components in the system. Con-
sider, for example, an organization that is viewed as an and a person from that organization: Here
the person may appear as an actor of the type salesman that is the agent of various sales activi-
ties. But independent hereof, the same person may also be conceived as having the type employee
relevant in connection with calculations of salaries and the planning of sales campaigns. The

38 CHAPTER 2. WORK SYSTEMS

person may even be regarded as being of type transportable object in the context of an activity
transport by car during sales trips. This causes the following question: Should a possible subset re-
lationship applied in attempts to define a sub-system concept then refer to the domain alone, or
to the system alone, or to both? It is certainly difficult to find logical or pragmatic arguments
that universally justify any of these choices. (For further aspects of the problems encountered
when one is aiming at defining sub-system by means of subsets, see the more comprehensive
discussion in [FVV+98].)

It is necessary to consider the sub-system concept differently – in fact, in a way that very well
is in accordance with the way people intuitively apply it in practice. The ‘solution’ is to realize
that when viewing something as a system then only one system should be considered at a time.
Applied here, either one must consider that which is regarded as the system or that which is
regarded as the sub-system. The advantage of this sub-system interpretation is exactly what
appears to be the main positive feature of the intuitively applied concept: Depending on which
level of detail as regard potential components you want to consider, you can use the concept to
encapsulate unnecessary details on a chosen level of abstraction. Applied to organizations one
obvious way to consider the relationship between an organization and a sub-system of it, is to
conceive the sub-system equivalent with what an actor in the organization does (or a part of
that). Typically a whole department (a possible system candidate in itself) may be considered a
single actor in the organization, and (part of) what is done in that department in respect to other
departments (i.e. possible systemic properties of the “department system”) may be conceived as
a single action at the organizational-level. A data-processing system may be conceived as a single
(artificial) actor carrying out data-processing actions in the organization, even if we know that it,
in fact, is composed of a lot of components.

A sub-system may, in line with [FVV+98], defined as:

Sub-system – A sub-system S′ of a system S, is a system where the set of elements in S′ is a
subset of the elements in S.

Formally, this can be expressed as:

U |=s v S
′ ⊂ S , U |=s v S, U |=s v S

′ and S′ ⊂ S

Corollary 2.3.1
If U |=s v S

′ ⊂ S, then: ∃s∈S′∀x∈COS′ [s→S′ x]

Proof:
Left as an exercise to the reader.

Two common dimensions along which to define sub-systems are: component system and aspect
system.

Component system – A component-system S′ of a system S, is a sub-system, where the set of
model concepts in S′ is a proper subset of the set of entities in S.

Formally:
U |=s v S

′ ⊂c S , U |=s v S
′ ⊂ S and (S′ ∩CO) ⊂ S

Aspect system – an aspect-system S′ of a system S, is a sub-system, where the set of model links
in S′ is a proper subset of the set of the links in S.

Formally:
U |=s v S

′ ⊂a S , U |=s v S
′ ⊂ S and (S′ ∩LI) ⊂ S

Note that some authors, for example [Vel92, Bem98], use the term sub-system to refer to the above
defined concept of component system. However, we prefer to use the term sub-system as defined
above (following the definition in [FVV+98]), as it allows us to view it as a generalization of the
concepts component system and aspect system.

2.3. STUDYING SYSTEMS 39

Different viewers may disagree on the fact whether some sub-system is an aspect system or a
component system (or a combination thereof). This can be traced back to the subjectivity involved
in distinguishing between links and concepts. Whenever there is a ‘clear’ analogy to physical
structures, it will be easier to identify the difference. Consider a freight-train as an example
system. Typical component systems of such a system are: the locomotive, the engine-driver,
several types of box-cars, etc. An aspect system of a freight-train would be the hydraulic braking
system of the train as a whole.

A sub-system is indeed a system. As such, a sub-system S′ of a system S will also have its
own systemic properties. However, these properties are most likely no subset of the systemic
properties of S. For example, the engine-driver’s systemic properties are by no-means a clear
subset of the systemic properties of a freight-train.

2.3.2 Describing systems

When a system developer in a system viewing or modeling process gradually realizes what (cur-
rently) ‘is the system’, i.e. becomes conscious of all relevant aspects of the involved elements and
of each of the systemic property, it is very useful to be aware of the type of system in question
and to produce a system exposition in accordance with the system type.

System type – A type that determines the potential kinds of systemic properties, elements of the
system domain and roles of the elements in achieving the systemic properties.

System exposition – a description of all the elements of the system domain where each element
is specified by all its relevant aspects and all the roles it plays, being of importance for the
interest of the viewer. (The system viewer may conceive one and the same thing in the
system domain to play more than one role in the system.)

A system type can be regarded as a viewing template to be used by a system developer, analyst
or modeler in order to decide which kinds of things (and thereby which aspects of the things) to
consider relevant in realizing what actually ‘is the system’. A system type comprises:

• Properties determining ‘the nature’ of the systemic properties, for example for open active
systems that the system is seen as something that changes things in the domain of the
environment and that the environment is seen as changing things in the system domain.
This set of properties may be called the system characteristic.

• Properties determining the kinds of things which are relevant to incorporate in the expo-
sition of the system domain, and for each kind the kinds of roles they may play in respect
to the potential kinds of systemic properties. Examples of such kinds of things are for dy-
namic systems: states, transitions and transition occurrences, and for open active systems
(among other things): actions, subjects, agents, transitions in the domain of the environ-
ment caused by actions in the system, etc. This set of properties may be called the exposition
characteristic.

A more detailed elaboration of concepts related with the system viewing process can be found
in [FVV+98]. A semi-formal description of it based on an example is presented in [Lin92].

In conceiving a domain as an organization, several classes of elements may be relevant to include
in a system exposition of that domain. As part of the domain it may also be relevant to incor-
porate a number of concepts generally relevant in an organizational context, for example public
services, laws or other kinds of constraints imposed by society, or aspects of the particular profes-
sional field of the organization. However, for an organization it is generally relevant to consider
the following kinds of things as candidates to (at least) be included in a system exposition:

Actors – human actors as well as artificial actors and all kinds of symbiotic compositions of these
two kinds.

40 CHAPTER 2. WORK SYSTEMS

Actions – (together with the associated goals) such that a (not exclusive) distinction is made
between those influenced by impressions from the environment and those either directly
constituting expressions of the system or only contributing to (or in some cases even ex-
plicitly counteracting) the expressions. Actions that are irrelevant for the expression of the
system should be ignored in the exposition.

Co-actions – i.e. co-ordinated actions performed by several actors together.

Knowledge – that is necessary for the actors to know the relevant pre-states of their actions and
the respective goals. A goal may be situation dependent.

Triggers – involving internal and/or external dynamic criteria for the initiation of actions (tem-
poral, impressive and actor- or action-caused transitions).

Communication – between actors to ensure that they have the information necessary to perform
their actions.

Representation – of the information/knowledge relevant to the organization’s activities, in or-
der to enable the preservation or communication of it. That includes all relevant aspects of
the use of data technology and/or data-technical sub-systems to accomplish the preserva-
tion or communication.

In practice, aspects of organizational culture, social norms, empation (i.e. knowledge that cannot
be properly represented), resources in general (energy, skills, intellect, etc.), ecology, economy,
etc., may be added to this list.

2.3.3 Classes of systems

A work system, a organization, as well as an information systems belong to a system type that
primarily is characterized as being open and active (where the latter implies also that it is dy-
namic). We can define these specific types of systems as:

Active system – A special kind of system that is conceived of as begin able to change parts of the
universe.

Dynamic system – A special kind of system that is conceived of as undergoing change in the
cause of time.

Open system – A special kind of dynamic system that is conceived as reacting to external trig-
gers, i.e. there may be changes inside the system due to external causes originating from
the system’s environment.

Note that a system may be active and yet be non-dynamic. For example, the mere presence of a
dummy speeding camera, i.e. one that is not able to capture speeding vehicles on film, may lead
drivers to drive more slowly. The dummy speeding camera may thus be seen as an active, yet
non-dynamic, system.

Note that the sub-system of an open active system does not have to be an open active system.
In other words, even though our main interest lies with open active system, we may quite well
need to consider non-open or non-active sub-systems of these systems.

For open active systems – therefore for organizations too – it is relevant to consider the following.
The behavior of an open active system is generally reflected as:

Internal function – Conceptions of changes in the system domain caused by processes in the
domain itself.

External function – Here the following two kinds are distinguished:

Impression – Conceptions of changes in the system as caused by the environment.
Expression – Conceptions of changes in the environment as caused by the system.

2.3. STUDYING SYSTEMS 41

The very fact that something is regarded as a system often serve the purpose of hiding the internal
function and focus on the external function. (Like the phrase “a black-box system”). The internal
function of an open active system is referred to as “the function in the system”, while the external
function is “the function of the system”. The latter is equivalent with the systemic property of an
open active system.

One can classify open active systems in several ways according to their behavior (for details
see [Ack71]). Here we shall only distinguish between three kinds of open active system based on
the following distinctions. A reaction of an open active system is an expression that is seen as
unconditionally caused by an impression. An action of an open active system is an expression
that is seen as being completely independent on any kind of impression. Thereby we can define
the three additional types of open active systems:

Reactive system – An open active system where each expression of the system is a reaction, and
where each impression immediately causes a reaction.

Responsive system – An open active system (possibly also a reactive system) where it holds for
at least one expression that a certain impression or a temporal pattern of impressions is a
necessary, but not a sufficient dynamic condition for its occurrence. The receipt of an order
is a necessary impression to a “sales system”, for the expression “delivery of the ordered
goods”, but it is not a sufficient condition.

Autonomous system – an open active system (possibly also a responsive system, but not a reac-
tive system) where at least one expression is an action. A human being and most (if not all)
organizations can be regarded as autonomous systems.

As mentioned before, in [Alt99, Alt02] Alter defines a work system as:

A work system is a system in which human participants and/or machines perform business
processes using information, technologies, and other resources to produce products and/or
services for internal or external customers.

where information systems are to be regarded as special classes of work systems. We will therefore
operate under the assumption that we have the following hierarchy of systems:

1. Systems in general.

2. Open active systems: Subclass of systems

3. Work systems: Subclass of open active systems.

4. Organizational systems: Subclass of work systems.

5. Information systems: Subclass of work systems and a sub-system of organisational systems.

6. Computerised information systems: Subclass of work systems and a sub-system of infor-
mation systems.

Based on [FVV+98] and [Alt99], we can provide the following stacked set of definitions:

Work system – An open active system in which actors perform processes using information,
technologies, and other resources to produce products and/or services for internal or ex-
ternal actors.

Organizational system – A special kind of work system, being normally active and open, and
comprising the conception of how an organization is composed and how it operates (i.e.
performing specific actions in pursuit of organizational goals, guided by organizational
rules and informed by internal and external communication), where its systemic property
are that it responds to (certain kinds of) changes caused by the system environment and,
itself, causes (certain kinds of) changes in the system environment.

Computerized information system – A sub-system of an information system, whereby all activ-
ities within that sub-system are performed by one or several computer(s).

42 CHAPTER 2. WORK SYSTEMS

Information system – A sub-system of an organizational system, comprising the conception of
how the communication and information-oriented aspects of an organization are com-
posed and how these operate, thus leading to a description of the (explicit and/or im-
plicit) communication-oriented and information-providing actions and arrangements ex-
isting within the organizational system.

2.4 Dealing with evolution of conceptions

Before concluding this chapter, there is one final issue to deal with. An organizational system is
an open active system. This specifically means that it is a system which changes over time. Thus
far we have taken the assumption that the conception of a viewer is a static notion. If we write
U |=c v C it really means that viewer v has at some point in time the conception C when observing (a
part of) universe U . However, in the course of time this conception will evolve, which raises the
question: How to deal with evolution of conceptions?.

Time

Figure 2.11: Modeling evolution by snapshots

Several strategies exist to deal with evolution [Pro94a]. One strategy to deal with this evolution
is to take snapshots, like photographs, of a viewer’s conceptions. This leads to the situation
depicted in figure 2.11. This approach, however, does have as drawback that one cannot ‘trace’
the evolution of a specific element in a viewer’s conception. The approach we take, therefore, is
illustrated in figure 2.12.

Time

Figure 2.12: Modeling evolution by functions in time

Based on the approach taken in [Pro94a], the evolution of the elements in a viewer’s conception
is treated as a set of (partial9) functions over time. At each point in time, a specific element (a
version) may be associated to such a function. This means (as also illustrated in figure 2.13),
the situation depicted in figure 2.11 can still be derived. When we know the entire evolution

9For a discussion on the difference between total and partial functions, see appendix A.

2.4. DEALING WITH EVOLUTION OF CONCEPTIONS 43

of a nation, we can also provide a detailed descriptions of the state-of-affairs as it holds at any
arbitrary point in time.

Time

Figure 2.13: Deriving snapshots

In order to introduce the notion of evolution formally, we first need to define a time axes. We
presume all viewers to agree that the time axes (at least) consists of:

• A set of points in time TI.
• A complete and total order < ⊆ TI ×TI.

We also define: t1≤ t2 , t1<t2 ∨ t1 = t2.

Since we have a complete order on the points in time, we can define the relation � ⊆ TI ×TI
with intended intuition: if t1 � t2, then t2 is the next point in time immediately after t1. Formally,
this relation is defined as:

t1 � t2 , t1<t2 ∧ ¬∃s [t1<s< t2]
As, < provides a complete and total order, for a given t1 there is always at most one t2 such that
t1 � t2:
Corollary 2.4.1

t1 � t2 ∧ t1 � t3⇒ t2 = t3
Proof:

Left as an exercise to the reader.
As a result, we can actually view � as a function: � : TI →TI and write � t as an abbreviation
for: the unique t′ such that t� t′.

The evolution over time of an element from a conception, can now indeed be modelled formally
as a function: h : TI� EL. By means of h(t) we obtain the “version” of the element’s evolution
as described by h at point of time t, while h(� t) would yield the version at the next point in
time. These functions, which represent an element’s evolution, will be referred to as element
evolutions. This also requires us to think of the elements in EL as the possible versions an element
evolution may take on. Whenever we need to emphasize this, we shall therefore use the term
element version.

Element evolutions are partial functions, which means that they are not required to be defined for
all points in time. In other words, at some point in time an element evolution may not have an
element version associated, which really means that the element evolution does not exist yet at
that point in time (it has not been born yet), or that it has ceased to exist (it died). In other words,
element evolutions are allowed to be re-born. We could, for example, have a situation where: h
is an element evolution, t1<t2<t3 are points in time, while: h↓tt ∧¬h↓t2 ∧h↓t310.

The set of all element evolutions is defined as: EE , TI� EL, in other words the set of par-
tial functions from the time axes to the possible element versions. The evolution of an entire
conception can then be represented formally as a set of element evolutions. In other words:
CE , ℘(EE). To formally express the fact that H ∈ CE is a conception of viewer v for universe U ,
we will write U |=c v H .

10Please refer to appendix A for an explanation of the notion used.

44 CHAPTER 2. WORK SYSTEMS

Time

Environment

Domain

Figure 2.14: An element evolution migrating from the environment to the domain

If H ∈ CE , then we will use as abbreviation: H(t) ,
{
h(t)

∣∣ h ∈ H }
, yielding the entire “state”

of H at time t. If H is a conception of some viewer, then each of the states should be a valid
conception:

[S20] If U |=c v H , then: ∀t∈TI [U |=c v H(t)].

Similarly, to |=c we want to extend |=d 〈 : : 〉, |=m 〈 : : 〉 and |=s 〈 : : 〉 to deal with
evolution as well. We might, for example, view U |=d v 〈HC : HE : HD〉 to means: viewer v has a
conception evolution HC , environment evolution HE and domain evolution HD of universe U ,
where HD,HE ⊆ HC . The difficulty with this is that an element evolution might start out as
being in the environment, but might evolve into the domain, or vice versa. This is illustrated in
Figure 2.14. To properly deal with such evolution, we will need to regard HE and HD as a classi-
fication of the element evolutions from HC at each point in time. In other words as functions:

HE ,HD : TI →℘(HC)

yielding the set of conception evolutions from HC that are part of the environment/domain re-
spectively at a given point in time. This means that HE(t),HD(t) ⊆ HC are sets of element
evolutions, while HE(t)(t) and HD(t)(t) yield the actual environment and domain as it holds at
t. For this we have:

Corollary 2.4.2
If U |=d v 〈HC : HE : HD〉, then: ∀t∈TI [HE(t)(t) ⊆ HC(t)] and ∀t∈TI [HD(t)(t) ⊆ HC(t)].

Proof:
Left as an exercise to the reader.

Note: the same would hold for U |=m v 〈HC : HE : HD〉 and U |=s v 〈HC : HE : HD〉. In each case, the
states of the evolutions should be valid conceptions/environments/domains as well:

[S21] If U |=d v 〈HC : HE : HD〉, then ∀t∈TI
[
U |=d v 〈HC(t) : HE(t)(t) : HD(t)(t)〉

]
[S22] If U |=m v 〈HC : HE : HD〉, then ∀t∈TI [U |=m v 〈HC(t) : HE(t)(t) : HD(t)(t)〉]

[S23] If U |=s v 〈HC : HE : HD〉, then ∀t∈TI [U |=s v 〈HC(t) : HE(t)(t) : HD(t)(t)〉]

Adding evolution of conceptions to our ontology from figure 2.10, leads to the refinement of our
ontology to the situation as depicted in figure 2.15.

Mainly due to Axiom S6 (page 31), we have:

Corollary 2.4.3
If U |=d v 〈HC : HE : HD〉, then: ∀t∈TI [HE(t)(t)∩HD(t)(t) = ∅]

Proof:
Left as an exercise to the reader.

Even more specifically, we have:

Lemma 2.4.1
If U |=d v 〈HC : HE : HD〉, then: ∀t∈TI [HE(t)∩HD(t) = ∅]

Proof:
Left as an exercise to the reader.

2.5. CONCLUSION 45

*

"is decomposed into"
Decomposer

Element

LinkConcept

from

to

Environment evolution: SET OF

Element evolution: SET OF

occurs at

Domain evolution: SET OF

Conception evolution: SET OF

in domain at

in environment at

Time

Figure 2.15: Ontology with evolution added

2.5 Conclusion

In this chapter we have taken a highly fundamental and formal outlook on information systems,
organizations and work systems, and the way they are modeled, including their decompositions
and evolutions.

Questions
Version:
16-03-051. How are the terms ‘organization’, ‘domain’ and ‘universe’ be related to each other, given

the definitions provided in this textbook?

• Describe this relation in natural language.
• Describe this relation in the formal language given in this chapter.

2. Proof Axiom S8 (page 31).

3. Proof Lemma 2.2.1 (page 31).

4. Not all conceptions of a domain produce models. Why not?

5. Beschouw een Autoproducent, zoals bijvoorbeeld Seat, BMW en Toyota.

(a) Wat zijn de belangrijkste systemische eigenschappen?
(b) Beschrijf het primaire gedrag van deze organisatie in termen van interne en externe

functies.

6. Give an example of a reactive system, of a responsive system and of an autonomous system
(other examples than the ones already given, of course).

7. From a modeling point of view, organizations can be considered as systems containing a.o.
concepts and links.

46 CHAPTER 2. WORK SYSTEMS

• Why is it important to be aware of the aspect of subjectivity when creating models?
• What view does an information system developer have when modeling organizations?
• Why would an information system developer want to start by creating a model of an

organization, instead of directly focusing on modeling an information system?
8. Waarom zullen verschillende mensen wanneer ze verschillende domeinen modelleren toch

verschillende modellen opleveren? Hoe kun je deze situatie verbeteren? Waarom zou je dit
willen verbeteren?

9. Stel U |=s v S
′ ⊂ S, bewijs/beargumenteer dan dat:

|LIS′ |+1 ≥ |COS′ |

10. Beschouw Axiom S3 en Axiom S4. Daarin worden de voorwaarden voor een gesloten,
connected graph gegeven. Stel dat we te maken hebben met een niet-connected graph.
• Is het waarschijnlijk dat we het hier over hetzelfde Universe hebben? Beargumenteer

je antwoord.
• In een connected graph is de relatie tussen het aantal concepten en links |LIC |+1 ≥
|COc|.
Kun je ook een soortgelijke relatie onderkennen als een graph niet connected is? Zo ja,
welke? Zo nee, waarom niet?

11. Proof Corollary 2.2.1 (page 34).
12. Suppose you are requested by a large organization (a holding company holding some

daughter companies) to create more insight into their own activities by creating some mod-
els of their organization. The focus of this models must, according to the board of directors,
be on their internal information flows, since the organization has the impression that a lot
of business efficiency is lost due to an incompetent set of information systems. Keeping in
mind what is explained in the two previous chapters, give an impression of:

(a) Where would you start modeling?
(b) What would you model?
(c) Why model that?

13. Proof Corollary 2.3.1 (page 38).
14. Consider a home cinema set.

(a) Describe the systems elements.
(b) Distinguish proper sub-systems.
(c) Can you derive typical aspect systems and component systems?

Explain your answers.
15. Consider a travel agency.

(a) Describe the most important system characteristics and exposition characteristics.
(b) Describe its behavior in terms of internal and external functions.

16. Describe why information systems contain databases. Use the descriptions of the terms data,
information and knowledge as described in Chapter 2 in your description.

17. Give some examples of:
(a) Work systems that are not organizational systems.
(b) Organizational systems.
(c) Information systems.

18. Describe, in your own words, the differences between knowledge, information and data.
19. Proof Corollary 2.4.1 (page 43).
20. Proof Corollary 2.4.2 (page 44).
21. Proof Corollary 2.4.3 (page 44).
22. Proof Lemma 2.4.1 (page 44).

BIBLIOGRAPHY 47

Bibliography

[Ack71] R.L. Ackoff. Towards a System of System Concepts. Management Science, 17, July 1971.

[Alt99] S. Alter. A general, yet useful theory of information systems. Communications of the
Association for Information Systems, 1(13), 1999.
http://cais.isworld.org/articles/1-13/default.asp

[Alt02] S. Alter. The work system method for understanding information systems and informa-
tion system research. Communications of the Association for Information Systems, 9(9):90–
104, 2002.
http://cais.isworld.org/articles/default.asp?vol=9&art=6

[Bem98] T.M.A. Bemelmans. Bestuurlijke Informatiesystemen en Automatisering. Kluwer, Deventer,
The Netherlands, EU, 7th edition, 1998. In Dutch. ISBN 9026727984

[Ber01] L. von Bertalanffy. General Systems Theory – Foundations, Development, Applications.
George Braziller, New York, New York, USA, revised edition, 2001. ISBN 0807604534

[Che81] P. Checkland. Systems thinking, systems practice. John Wiley & Sons, New York, New
York, USA, 1981. ISBN 0471279110

[FVV+98] E.D. Falkenberg, A.A. Verrijn–Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson,
J.L.H. Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information Systems
Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU, 1998. ISBN
3901882014

[Hal01] T.A. Halpin. Information Modeling and Relational Databases, From Conceptual Analysis to
Logical Design. Morgan Kaufmann, San Mateo, California, USA, 2001. ISBN 1558606726

[HP95] T.A. Halpin and H.A. (Erik) Proper. Subtyping and Polymorphism in Object–Role Mod-
elling. Data & Knowledge Engineering, 15:251–281, 1995.

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471–2000, The Architecture Working Group of the Software
Engineering Committee, Standards Department, IEEE, Piscataway, New Jersey, USA,
September 2000. ISBN 0738125180
http://www.ieee.org

[Iiv83] J. Iivari. Contributions to the theoretical foundations of systemeering research and the
PIOCO model. Technical Report 150, University of Oulu, Oulu, Finland, EU, 1983. ISBN
9514215435

[Lan71] B. Langefors. Editorial notes to: Computer Aided Information Systems Analysis and Design.
Studentlitteratur, Lund, Sweden, EU, 1971.

[Lin92] P. Lindgreen. A General Framework for Understanding Semantic Structures. In E.D.
Falkenberg, C. Rolland, and E.N. El Sayed, editors, Information System Concepts: Improv-
ing the understanding – Proceedings of the second IFIP WG8.1 working conference (ISCO–2),
Alexandria, Egypt, Amsterdam, The Netherlands, EU, April 1992. North–Holland/IFIP
WG8.1. ISBN 0444895078

[Mer03] Meriam–Webster Online, Collegiate Dictionary, 2003.
http://www.webster.com

[Pei69a] C.S. Peirce. Volumes I and II – Principles of Philosophy and Elements of Logic. Collected Pa-
pers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969. ISBN
0674138007

http://cais.isworld.org/articles/1-13/default.asp
http://cais.isworld.org/articles/default.asp?vol=9&art=6
http://www.ieee.org
http://www.webster.com

48 CHAPTER 2. WORK SYSTEMS

[Pei69b] C.S. Peirce. Volumes III and IV – Exact Logic and The Simplest Mathematics. Collected Pa-
pers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969. ISBN
0674138005

[Pei69c] C.S. Peirce. Volumes V and VI – Pragmatism and Pragmaticism and Scientific Metaphysics.
Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA,
1969. ISBN 0674138023

[Pei69d] C.S. Peirce. Volumes VII and VIII – Science and Philosophy and Reviews, Correspondence
and Bibliography. Collected Papers of C.S. Peirce. Harvard University Press, Boston,
Massachusetts, USA, 1969. ISBN 0674138031

[Pro94] H.A. (Erik) Proper. A Theory for Conceptual Modelling of Evolving Application Domains.
PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN
909006849X

[Rop99] G. Ropohl. Philosophy of Socio–Technical Systems. In Society for Philosophy and Technol-
ogy, 4(3), 1999.

[Sim62] H.A. Simon. The architecture of complexity. In Proceedings of the American Philosophical
Society, volume 106, pages 467–482, 1962.

[Vel92] J. in ‘t Veld. Analyse van organisatieproblemen – Een toepassing van denken in systemen
en processen. Stenfert Kroese, Leiden, The Netherlands, EU, 1992. In Dutch. ISBN
9020722816

Chapter 3

Basic Object-Role Modeling

Version:
30-01-06The previous chapter did (see Figure 2.1) refer to the fact that viewers are able to provide a de-

scription of the conception. However, we did not really follow up on this. This chapter, however,
will indeed take these descriptions as a starting point. In this chapter, we will essentially provide
a brief summary of the modeling approach from Domain Modeling. In Chapter 5, we will enrich
this modeling approach with constructs that allow us to model work systems.

3.1 Natural language grounding of modeling

It is not an uncommon approach to base modeling on natural language analysis:

• ORM [Hal01],

• NIAM [Win90, NH89],

• UML use cases [BRJ99],

• DEMO [RMD99],

• KISS [Kri94] and

• OOSA [EKW92].

When people work together, they are bound to use some language. The language skills of the
human race evolved hand-in-hand with the levels of organization of our activities. From or-
ganization of hunting parties by our pre-historic ancestors, to the organization of factories and
businesses in the present. Without the use of language, it would not have worked. As a re-
sult, most (if not all) organizations we see around us are social constructs that are the result of
communication between actors, mostly human actors.

This makes it all the more natural to base our modeling endeavors on the language we use most
to talk about organizations, i.e. natural language.

3.2 The logbook heuristic

Natural language based modeling approaches such as ORM employ different variations of the
so-called telephone heuristic. This heuristic presumes some viewer to observe a domain (includ-
ing its evolution), and use a ‘telephone’ to convey their observations to some other person (or
computer). This is depicted in Figure 3.1. The left hand viewer tells the right hand viewer ‘what
they see’.

49

50 CHAPTER 3. BASIC OBJECT-ROLE MODELING

Conceptionconceiving Conceptionconceiving

interpreting

perceiving

describing
Universe

Telephone Conversation

Figure 3.1: The telephone heuristic

In this chapter we are interested in having a “transcript” of the telephone conversation from Fig-
ure 3.1. More specifically, we want to maintain a logbook of this telephone conversation, leading
to the situation as depicted in Figure 3.2.

Conceptionconceiving Conceptionconceiving

interpreting

perceiving

describing
Universe

Telephone Conversation

Logbook

Conception Ontology

Figure 3.2: Logging the telephone conversation

Even more, we could actually replace the second person from Figure 3.1, leaving only the original
viewer and the logbook to maintain the transcript. This leads to the logbook heuristic as depicted
in Figure 3.3.

Note that the logbook is regarded as having a conception based on an ontology as well. As a starting
point, we will presume this ontology to consist at least of the situation as depicted in Figure 2.15
(page 45).

Let λ be a logbook, logging the transcript as produced by a viewer leads to a situation where the
logbook has its own conception of the observed universe (by way of the viewer). In the case of a
viewer observing a system, we will denote this as: U |=s λ 〈HC : HE : HS〉.
All of the S axioms apply to the conception held by logbook λ.

In the remainder of this text book, we will further refine the ontology as presented in Figure 2.15
(page 45)

3.3 Verbalizing conceptions

We presume the transcriptions that are entered into the logbook to refer to events ‘in the life’ of
specific element evolutions. These events refer to changes in the state of the elements, and are

3.4. ELEMENTARY FACTS 51

Conceptionconceiving

Logbook

Conception Ontology

perceiving

describing
Universe

Account of events

Figure 3.3: The logbook heuristic

presumed to be reported in terms of facts about the elements. An example would be:

Person #001 was born 22-05-1967
Person #001 received name Erik Proper 23-05-1967
Person #001 lives at address: Koperwiekstraat 6, Rheden, The Netherlands, EU 23-05-1967
Person #001 lives at address: 3/26 Rylatt Street, Brisbane, Australia 28-06-1994
Person #002 lives at address: Koperwiekstraat 6, Rheden, The Netherlands, EU 29-06-1994
Person #001 works for employer: University of Queensland 28-06-1994
Person #003 works for employer: University of Queensland 22-04-1995

When considering this transcript, it is easy to spot that it really deals with more than one element
evolution. The following element evolutions might be discerned:

persons: #001; #002; #003
name Erik Proper
addresses: Koperwiekstraat 6, Rheden, The Netherlands, EU; 3/26 Rylatt Street, Brisbane, Australia
employer: University of Queensland
ownership of the name Erik Proper by person #001
living of person #001 at some address
living of person #002 at some address
habitation of address Koperwiekstraat 6, Rheden, The Netherlands by some person
habitation of address 3/26 Rylatt Street, Brisbane, Australia by some person
coworkership of person #001 for some employer
coworkership of person #002 for some employer
employment offered by University of Queensland to a group of people

In the above example, an important trade-off already comes to the surface. What should be
selected as element evolutions:

coworkership of person #001 for some employer

and/or
employment offered by University of Queensland to a group of people

What is it that evolves? Either? Both? Ultimately, this is a subjective matter. To be able to better
understand the underlying trade-off, we will now first focus on the transcription of a specific
snapshot of a conception.

3.4 Elementary facts

Similarly to Domain Modeling, we require the facts in the transcripts to be elementary, in other
words, no logical connectors like and and or, and most likely no nots either.

Consider, the following domain:

A person with name Erik is writing a letter to his loved one, at the desk in a romantically lit room, on a mid-summer’s day,
using a pencil, while the cat is watching.

52 CHAPTER 3. BASIC OBJECT-ROLE MODELING

We can rephrase this as the set of elementary facts:

A person is writing a letter
This person has the name Erik
This letter has a romantic nature
This letter has intended recipient Erik’s loved one
The writing of this letter by Erik, occurs on a mid-summer’s day
The writing of this letter by Erik, is done using a pencil
The writing of this letter by Erik, is done while the cat is watching
The writing of this letter by Erik, is taking place at a desk
This desk is located in a room
This room is romantically lit

Within these elementary facts, several players can be discerned, such as: person Erik, letter, etc.
Such players can be any ‘object’, be it human, physical, social, fictive, etc. The players are re-
garded as playing a role in the facts. In the above example, we can isolate the players and facts as
follows:

[A person] is writing [a letter]
[This person] has [the name Erik]
[This letter] has a [romantic nature]
[This letter] has intended recipient [Erik’s loved one]
[The writing of this letter by Erik], occurs on a [mid-summer’s day]
[The writing of this letter by Erik], is done using [a pencil]
[The writing of this letter by Erik], is done while [the cat] is watching
[The writing of this letter by Erik], is taking place at [a desk]
[This desk] is located in [a room]
[This room] is lit in [a romantic] way

The roles played by the players can be made more explicit as follows:

[A person (writer)] is writing [a letter (written)]
[This desk (positioned object)] is located in [a room (location)]

The roles involved in a fact are linked to the players of these roles and to the facts in which these
roles take part by means of the relationships:

Player,Fact ⊆ LinkedTo

respectively, with intuition:

r Player x = role r is played by x
r Factx = role r is involved in fact x

The set of roles is defined as:

RO ,
{
r

∣∣ ∃x [r Player x ∨ r Factx]
}

The Player and Fact relationships are exclusive:

[S24] Player∩Fact = ∅

Even more, they behave as total functions from roles to concepts:

[S25] Player,Fact ∈ RO→CO

This allows us to write Player(r) and Fact(r). We generalize these functions to sets of roles as
follows:

Player(R) ,
{
Player(r)

∣∣ r ∈ R}
Fact(R) ,

{
Fact(r)

∣∣ r ∈ R}

3.5. FROM INSTANCES TO TYPES 53

With this we can define the set of facts and players as:

FC , Fact(RO)
PL , Player(RO)

The set of objects is defined as:
OB , FC ∪PL

Objects and roles are disjunct classes of concepts:

[S26] RO∩OB = ∅

The set of roles involved in a fact is defined as:

RolesOf(f) ,
{
r

∣∣ Fact(r) = f
}

Facts are to be regarded as complex objects. In other words, the roles and players involved in a
fact are part of its decomposition:

[S27] ∀r∈RolesOf(f) [rDecompOf f]

[S28] r ∈ RO∧rDecompOf f⇒Player(r) DecompOf f

At this moment, we have actually refined our ontology from Figure 2.15 (page 45) to the situa-
tion as depicted in Figure 3.4 (where we have omitted the aspects pertaining to the evolution of
conceptions for reasons of compactness).

Our formal considerations take place in the context of some logbook λ. In other words, we have:
U |=s λ 〈HC : HE : HS〉. Given a HC , the set of elements of the conception at some point in time t is
given by: HC(t). For any subset X ⊆ EL of elements we introduce the abbreviation:

Xt , X ∩HC(t)

A conception version should be closed with regards to the roles included in it:

[S29] r ∈ ROt⇔Fact(r) ∈ FCt and r ∈ ROt⇔Player(r) ∈ PLt

As a direct consequence we have:

Corollary 3.4.1
FCt = Fact(ROt) and PLt = Player(ROt).

Proof:
Left as an exercise to the reader.

3.5 From instances to types

Consider the elementary sentences:

Person ”Erik” is examined by Doctor ”Jones”
Person ”Wil” is examined by Doctor ”Smith”
Person ”Marc” is examined by Doctor ”Jones”

As we have learned in Domain Modeling, we can generalize these sentences to the “type” level:

A Person is examined by a Doctor

54 CHAPTER 3. BASIC OBJECT-ROLE MODELING

Role

Concept

"Link"

is linked to

Decomposition

Element

Object

Fact Player

Figure 3.4: Our ontology refined with facts and participants

3.5. FROM INSTANCES TO TYPES 55

with sample population:

Person Doctor
Erik Jones
Wil Smith
Marc Jones

Formally, we introduce typing as a special kind of decomposition HasType ⊆ DecompOf. The set
of instances (IN) and the set of types (TP) can be defined as:

TP ,
{
y

∣∣ ∃x [xHasType y]
}

IN ,
{
x

∣∣ ∃y [xHasType y]
}

Types and instances form a partition of the set of concepts:

[S30] TP ∩IN = ∅ and TP ∪IN = CO.

All instances have some type:

Corollary 3.5.1
∀x∈IN∃y∈TP [xHasType y]

Proof:
Left as an exercise to the reader.

Note that the reverse does not hold. In other words, we do not generally have:

∀y∈TP∃x∈IN [xHasType y]

Some types may have an empty population.

We actually require Corollary 3.5.1 to hold at each point in time:

[S31] Let t ∈ TI, then: ∀x∈IN∃y∈TP [xHasTypet y]

Sets such as FC, PL, etc, contain both types and instances. To be able to refer to the types and
instances respectively, we introduce:

X̂ , X ∩TP and X̌ , X ∩IN

for any set X ⊆ EL of elements. As a direct consequence we have:

Corollary 3.5.2
P̂L , Player(R̂O) P̌L , Player(ŘO)
F̂C , Fact(R̂O) F̌C , Fact(ŘO)

Proof:
Left as an exercise to the reader.

As abbreviations we will also use:

Typest(x) ,
{
y

∣∣ xHasTypet y
}

Typest(X) ,
⋃

x∈X

Typest(x)

Popt(y) ,
{
x

∣∣ xHasTypet y
}

Popt(Y) ,
⋃

y∈Y

Popt(y)

56 CHAPTER 3. BASIC OBJECT-ROLE MODELING

The extra temporal versions are defined as:

xHasType y , ∃t∈TI [xHasTypet y]

Types(x) ,
⋃

t∈TI
Typest(x)

Types(X) ,
⋃

t∈TI
Typest(X)

Pop(y) ,
⋃

t∈TI
Popt(y)

Pop(Y) ,
⋃

t∈TI
Popt(Y)

Typing should adhere to the classification in our ontology. In other words:

[S32] For all X ∈ {FC,RO,PL} we have:

xHasType y⇒(x ∈ X⇔ y ∈ X)

The Fact and Player functions should never cross the type/instance level:

[S33] ∀r∈RO [r ∈ TP ⇔Fact(r) ∈ TP]

[S34] ∀r∈RO [r ∈ TP ⇔Player(r) ∈ TP]

All non-typing forms of decomposition should also not cross the type/instance level:

[S35] If xDecompOf y, then:
xHasType y ∨ x, y ∈ TP ∨x, y ∈ IN

Players involved in role instances should behave as stipulated at the type level:

[S36] If r ∈ R̂O, then: Player(Pop(r)) ⊆ Pop(Player(r))

The same applies to facts:

[S37] If r ∈ R̂O, then: Fact(Pop(r)) ⊆ Pop(Fact(r))

Even more, as all role types of a fact type should be populated, the reverse should hold as well:

[S38] If r ∈ R̂O, then: Fact(Pop(r)) ⊇ Pop(Fact(r))

As an immediate result we have:

Corollary 3.5.3
If f ∈ F̂C, then:

Pop(f) = Fact(Pop(RolesOf(f)))

Proof:
Left as an exercise to the reader.

We can express this at the type level as:

Corollary 3.5.4
Let f ∈ F̌C, then:

Types(RolesOf(f)) = RolesOf(Types(f))

Axiom S38 does not have a pendent for players. In other words, we do not generally have:

Player(Pop(r)) ⊇ Pop(Player(r))

as this would require all instances of a player type to be involved in all roles in which the type is
involved. However, we do have a weaker version as we will see in Section 3.6.

Facts should behave as a function from role types to instances:

3.6. SUBTYPING 57

[S39] Let r ∈ R̂O and s1, s2 ∈ Pop(r), then:

Fact(s1) = Fact(s2)⇒ s1 = s2

This axiom allows us, for any fact instance f ∈ F̌C, to define the partial function ~f : R̂O� ǑB as:

~f ,
{
〈r,Player(s)〉

∣∣ s ∈ Pop(r) ∧ Fact(s) = f
}

If f is some fact and R ⊆ RolesOf(Types(f)), then we define the total function ~f [R] : R→ǑB as:

~f [R] ,
{
〈r, ~f(r)〉

∣∣ r ∈ R}
The ontology resulting after this refinement is depicted in Figure 3.5.

Role

Concept

"Link"

is linked to

Decomposition

Element

Object

Instance

Type

Typing

Fact Player

Figure 3.5: Our ontology refined with typing

3.6 Subtyping

Sub-typing is an important feature of object-role modeling. Figure 3.6 shows an example of sub-
typing in terms of a specialization hierarchy.

In general, sub-typing involves the identification of a sub-set of the population of some super-
type. For example, in the situation depicted in Figure 3.6 flesh eater is a specific sub-set of animals.
In different versions of ORM, different rules apply to sub-typing [HW93, HP95, Hal01]. In this
textbook we present a rather generic interpretation.

Formally, sub-typing is captured as a relationship Sub ⊆ LinkedTo with intuition: if xSub y, then
type x is considered to be a subtype of y. We will also refer to x as the sub-type and y as the
super-type. Sub-typing is a relationship over object types:

58 CHAPTER 3. BASIC OBJECT-ROLE MODELING

Animal

(name)

Flesh eater
 Plant eater

Omnivore
Carnivore
 Herbivore

is of

{'carnivore',

 'omnivore',

 'herbivore'}

AnimalType

(name)

Figure 3.6: Example of a specialization hierarchy

[S40] Sub ⊆ ÔB × ÔB

The sub-typing relationship should be transitive and acyclic:

[S41] xSub y Sub z⇒xSub z

[S42] ¬xSubx

The semantics of sub-typing in terms of populations is that the population of a specialized type
should be a subset of the population of the supertype:

[S43] xSub y⇒Pop(x) ⊆ Pop(y)

We will also use as an abbreviation: xSub y , xSub y ∨ x = y.

The population of a subtype can be restrained further. In ORM, this is commonly done using a
so-called sub-type defining rule. Using the language introduced in the next chapter, Section 5.1
will return to the issue of precisely defining the population of a subtype.

As promised, we would introduce a weaker pendant of Axiom S38 for players. First, the set of
roles types which are played by an object type as:

Plays(p) ,
{
r

∣∣ pSub Player(r)
}

This is actually the set of role-types that may be played by the instances of x, which we enforce
by:

[S44] If p ∈ P̂L, then:
Pop(p) ⊆ Player(Pop(Plays(p)))

In other words, instances of a player type must be active in one of the associated roles. With
Axiom S36 we have:

Corollary 3.6.1
If p ∈ P̂L, then:

Pop(p) = Player(Pop(Plays(p)))

Proof:
Left as an exercise to the reader.

3.7. OVERLAP OF POPULATIONS 59

3.7 Overlap of populations

When considering the ORM schema as depicted in Figure 3.7, one would expect the populations
of Vehicle and Distance to be disjoint, while the populations of Vehicle and Product are expected to
overlap. Thus far, we have not introduced any formal mechanism to enforce this type of behavior
other that the inclusion of populations for sub-types. To properly formalize this, we first define
the family (as it is ‘alive’ at some point in time) of an object type based on the sub-typing hierarchy
as follows:

Familyt(x) ,
{
y ∈ ÔBt

∣∣ y Subx ∨ y = x
}

Two object types are deemed type related iff their families overlap:

x∼t y , Family(x)∩Family(y) 6= ∅

If the population of object types overlaps, then they mus be type related:

[S45] Popt(x)∩Popt(y) 6= ∅⇒x∼t y

Note that the converse does not necessarily hold.

Distance
(km)

Vehicle

has driven

Delivery van
(call sign) (reg. nr)

Car

is of

Car type
(name)

Spare part
(part id)

Product

is used for

is of

Money Amt
(Euro)

Figure 3.7: Example of a multi-rooted specialization hierarchy

Questions
1. Given the situation:

A person with name Erik is writing a letter to his loved one, at the desk in a
romantically lit room, on a mid-summer’s day, using a pencil, while the cat is
watching.

Produce a graph consisting of concepts and links depicting this domain.

2. Stel je maakt een ontwerp voor een geldautomaat. Wat zijn voor dat domein de belangrijk-
ste concepten en hun onderlinge links? Hoe werken ze samen?

3. Proof Corollary 3.4.1 (page 53).

4. Proof Corollary 3.5.1 (page 55).

5. Proof Corollary 3.5.2 (page 55).

6. Proof Corollary 3.5.3 (page 56).

7. Proof Corollary 3.5.4 (page 56).

8. Proof Corollary 3.6.1 (page 58).

9. Consider the following case:

60 CHAPTER 3. BASIC OBJECT-ROLE MODELING

Een onderneming produceert en verkoopt een tiental soorten gevulde chocolade-
artikelen. De verkoop geschiedt aan grossiers tegen prijzen die voor lange tijd
vast zijn. In verband met achteruitgang in kwaliteit wordt op de verpakking een
uiterste verkoopdatum vermeld. Alle afleveringen geschieden met eigen auto’s.
Voor de produktie van chocolade importeert de inkoopafdeling van de onderne-
ming verschillende soorten cacaobonen uit tropische landen. Daartoe worden
inkoopcontracten afgesloten die de behoefte voor ca. een half jaar dekken. De ca-
caobonenprijs is aan sterke schommelingen onderhevig. De ingekochte partijen
hebben belangrijk uiteenlopende vetgehaltes, hetgeen mede in de inkoopprijs tot
uitdrukking komt.
De cacaobonen ondergaan afzonderlijk per partij in de voorbewerkingsafdeling
enkele machinale bewerkingen, zoals zuiveren, schillen, breken, branden, malen
en walsen.
Aan het onstane halffabrikaat worden door de afwerkingsafdeling suiker, smaak-
stoffen en – in verhouding tot het vetgehalte – cacaoboter toegevoegd. Het al-
dus verkregen halffabrikaat is cacaomassa van een bepaalde standaardkwaliteit,
dat in speciaal daartoe geconditioneerde opslagtanks wordt bewaard. De ver-
schillende benodigde vulsels worden ingekocht bij derden. Naar rato van de
ontwikkeling van de verkoop en de gewenste voorraadvorming worden de eind-
produkten gemaakt. Dit geschiedt in één arbeidsgang met behulp van automa-
tische vorm-, vul- en droogmachines.
In de pakafdeling worden de goedkopere soorten gevulde chocolade automatisch
en de duurdere soorten met de hand in sierdozen verpakt, waarna opslag in een
magazijn volgt. Bij alle bewerkingen ontstaan gewichtsverliezen.
In verband met de kwaliteitsachteruitgang kunnen de grossiers de niet tijdig
door hen verkochte artikelen retourneren, mits dit gebeurt binnen 10 dagen na
de uiterste verkoopdatum; meestal geschiedt deze teruglevering via de chauf-
feurs. De teruggenomen artikelen worden vernietigd. Creditering vindt plaats
voor 20 van de door hen betaalde prijs. Verrekening hiervan geschiedt slechts bij
gelijktijdige nieuwe afname.
Elk van de artikelen is voorzien van een of twee cadeaubonnen, afgedrukt op
de verpakking. De waarde van deze bonnen is e 0,10 per stuk. Op de artikelen
met een prijs tot e 5,- komt één, op de overige artikelen (tussen e 5,- en e 11,-)
komen twee bonnen voor. Op deze bonnen kunnen cadeau-artikelen (hand- en
theedoeken e.d.) zonder bijbetaling worden verkregen.
Voorts kunnen op deze bonnen meer duurzame gebruiksgoederen tegen ver-
laagde prijs worden verkregen. Hiervoor wordt elk halfjaar een folder uitgegeven,
waarin per artikel is aangegeven hoeveel bonnen moeten worden ingeleverd en
hoeveel daarnaast moet worden bijbetaald. In het algemeen is het door de afne-
mers bij te betalen bedrag iets lager dan de inkoopprijs voor de fabriek. Veelal
dient de halfjaarlijkse behoefte door de fabrikant in één keer te worden besteld;
latere aanvulling is in het algemeen niet mogelijk.
Op de duurzame gebruiksgoederen wordt veelal garantie of service verleend. Hi-
ervoor is met een gespecialiseerd bedrijf een contract afgesloten waarbij tegen een
eenmalig vast bedrag per apparaat de garantie- en serviceverplichtingen worden
overgedragen

Answer the following questions:

(a) Produce elementary facts for this domain.
(b) Produce an ORM model for this domain.

BIBLIOGRAPHY 61

Bibliography

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language User Guide.
Addison Wesley, Reading, Massachusetts, USA, 1999. ISBN 0201571684

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object–Oriented Systems Analysis –
A model–driven approach. Yourdon Press, New York, New York, USA, 1992. ASIN
0136299733

[Hal01] T.A. Halpin. Information Modeling and Relational Databases, From Conceptual Analysis to
Logical Design. Morgan Kaufmann, San Mateo, California, USA, 2001. ISBN 1558606726

[HP95] T.A. Halpin and H.A. (Erik) Proper. Subtyping and Polymorphism in Object–Role Mod-
elling. Data & Knowledge Engineering, 15:251–281, 1995.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data mod-
elling. Data & Knowledge Engineering, 10(1):65–100, February 1993.

[Kri94] G. Kristen. Object Orientation – The KISS Method, From Information Architecture to Infor-
mation System. Addison Wesley, Reading, Massachusetts, USA, 1994. ISBN 0201422999

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a
fact oriented approach. Prentice–Hall, Englewood Cliffs, New Jersey, USA, 1989. ASIN
0131672630

[RMD99] V.E. van Reijswoud, J.B.F Mulder, and J.L.G. Dietz. Commucation Action Based Busi-
ness Process and Information Modelling with DEMO. The Information Systems Journal,
9(2):117–138, 1999.

[Win90] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice. Kluwer,
Deventer, The Netherlands, EU, 1990.

62 CHAPTER 3. BASIC OBJECT-ROLE MODELING

Chapter 4

Object-Role Calculus

Version:
10-10-054.1 Introduction

This chapter is concerned with a language to express rules over domains that are modeled by
means of an ORM model. An ORM model is typically produced in a natural-language driven
process. As a side-product, the fact types in an ORM model receive verbalizations that closely
match natural language. In a rule language we would like to be able to re-use these verbaliza-
tions to arrive at rules that also closely resemble natural language. This resemblance will allow
different stakeholders to understand (and validate) the rules.

In this chapter, we therefore propose a fact-based approach to the formulation of rules, and rea-
soning with these rules, which is based entirely on concepts that are familiar to a domain expert,
as modeled through ORM. In doing so, we will built on conceptual rule languages such as Lisa-
D [HPW93], RIDL [Mee82] and ConQuer [Pro94b, BH96]. These languages allow for the specifi-
cation of rules in a semi-natural language format that can be more easily understood by domain
experts than languages such as predicate calculus, Z [Spi88] or OCL [WK03].

The language we introduce in this chapter will be referred to as the object role calculus (ORC), a
name which clearly signifies its relation to object role modeling and the fact that it is a language
in which one cannot only express rules but also reason/calculate with these rules analogously to
predicate calculus.

Note: In the current version of this chapter, we do not yet include reasoning.

The ORC is built up in four layers:

Computational layer – Instances from the population of an ORM model will occur in the result
of a rule with a certain frequency. This frequency may be binary: Does a specific instance
occur: yes/no?, but it may also be natural number: How many times does a specific instance
occur? Even more, one may associate uncertainties to these frequencies.

Logic layer – The ORC is built on top of a multi-valued logic (using the underlying computa-
tional layer), where the computational domain is used as (one of) the underlying domains.
Theoretically, this could be any kind of logic, but for practical purposes we will use tradi-
tional predicate calculus with some minor temporal extensions. This could be replaced by
more advanced modal logics.

Path-expression layer – In its most basic form, rules formulated in ORC correspond to paths
of fact-types strung together using connectors. At this layer we are concerned with the
construction of these paths. Path expressions form the bones of ORC rules, while the logic
layer provides the atoms from the these bones are constructed.

63

64 CHAPTER 4. OBJECT-ROLE CALCULUS

Information-descriptor layer – Path expressions still not utilize the rich verbalizations that are
typical for ORM models. In the last layer we finally add skin to the bare bones in terms of
natural looking expressions that can be understood by a wide(r) audience.

4.2 Computational domain

Let FR be a set of quantities. In a concrete case this could be boolean, natural numbers, probabil-
ities, etc. These frequencies are best thought of as stating the frequency at which an element may
occur in a set of results.

We need six operations to combine quantities:

∨,∧,⊕,⊗,	 : FR×FR→FR

and two constants:
1, 0 ∈ FR

These operations have the following intended meaning:
• a ∨ b is the resulting frequency when counting elements occuring a times or b times.
• a ∧ b is the resulting frequency when counting elements occuring a times and b times.
• a⊕ b is the resulting frequency of when adding an element occuring a times to an element

occuring b times.
• a ⊗ b is the resulting frequency of a cartesian combination of an element occuring a times

and b times.
• a	 b is the resulting frequency when doing a set exclusion on an element occuring a times

and b times.
The ∨, ∧, ⊕ and ⊗ operations should be cummutative and associative. Let Θ be one of these
operations, then:

aΘ b = bΘ a

aΘ(bΘ c) = (aΘ b) Θ c

The 1 and 0 constants should behave as neutral elements:
a⊗ 0 = 0
a ∧ 0 = 0
a ∨ 0 = a
a⊕ 0 = a
a⊗ 1 = a
a ∧ 1 = a

If X is some set, then ||X|| =
⊕

x∈X 1.

This leaves us with the task of defining these operations and constants for specific computational
domains.

For normal logic we would have:

FRB , B
a ∨ b , Max(a, b)
a ∧ b , Min(a, b)
a⊕ b , Max(a, b)
a⊗ b , Min(a, b)
a	 b , Max(a− b, 0)

1 , 1
0 , 0

4.3. LOGIC LAYER 65

Note that in this case, ⊕ and ⊗ have the samen semantics as ∨ and ∧ respectively.

For multi-sets we have:

FRN , N
a ∨ b , Max(a, b)
a ∧ b , Min(a, b)
a⊕ b , a+ b

a⊗ b , a× b

a	 b , Max(a− b, 0)
1 , 1
0 , 0

We might define generalized frequency sets as:

FRZ , Z
a ∨ b , Max(a, b)
a ∧ b , Min(a, b)
a⊕ b , a+ b

a⊗ b , a× b

a	 b , a− b

1 , 1
0 , 0

Let FRd
F be one of the three above computational domains for frequencies, then we can define a

probabilistic distribution version over FR as follows:

FRd
F , FRF →[0..1]

aΘ b , λn.1− (Πi,j∈N:i Θ j=n(1− a(i)× b(j)))

where Θ is any of ∨, ∧, ⊕, ⊗ and 	.

4.3 Logic layer

If φ is a well-formed formula, we will use V[[φ]](Pop, t) to express the valuation of φ, where we
will also write:

Pop |=v
t φ iff v = V[[φ]](Pop, t)

Given an ORM model with role type r ∈ R̂O, object types o ∈ ÔB, instances i, j ∈ ǑB and
population Pop, we have the following atomic constructions:

V[[o(i)]](Pop, t) ,
∣∣∣∣{x ∈ Popt(o)

∣∣ x = i
}∣∣∣∣

V[[r(i, j)]](Pop, t) ,
∣∣∣∣{x ∈ Popt(r)

∣∣ i = Player(x) ∧ j = Fact(x)
}∣∣∣∣

If Θ is one of the operators ∨, ∧, ⊕, ⊗ and 	, then we have:

V[[φΘψ]](Pop, t) , V[[φ]](Pop, t) Θ V[[ψ]](Pop, t)
V[[¬φ]](Pop, t) , 1	 V[[φ]](Pop, t)

V[[∀x [φ]]](Pop, t) ,
∧

c
V[[φ 〈x/c〉]](Pop, t)

V[[∃x [φ]]](Pop, t) ,
∨

c
V[[φ 〈x/v〉]](Pop, t)

66 CHAPTER 4. OBJECT-ROLE CALCULUS

Using the traditional logic operators, path expressions would only be able to deal with specific
points in time only. Since we take the evolution of a domain (conception) into account we need
rules that refer to time as well. We therefore also introduce the following constructions into the
logical layer:

V[[alwaysφ]](Pop, t) ,
∧

s∈TI
V[[φ]](Pop, s)

V[[nextφ]](Pop, t) , V[[φ]](Pop,� t)

In addition we introduce the following abreviations:

sometimeX , ¬ always¬X
X precedesY , always((X ∧ nextY)⇒(next¬X ∧ ¬Y))

4.4 Path expression layer

Path expressions are essentially paths through an ORM model. As a path has a head and a tail,
path expressions can be regarded as binary predicates in a logic, where the head and tail are the
first two parameters. However, we will not only maintain heads and tails, but also the frequencies
in which a path from head to tail is available. This leads to the view that a path expression is a
ternary predicate. Even more, to enable us to express such rules as:

People who work for a department must be involved in a project conducted by that department,
where the project is managed by another person.

we need to be able to introduce additional variables. So, in general, path expressions need to
have an arity of n+ 3.

The semantics of path expressions is defined by means of a set of re-write rules, in the style
of denotational semantics [Sto77]. If P is a path expression, each rule will aim to rewrite P in
terms of logic expressions, breaking down P into its constituent elements. Formally we will
write x[[P]]y at the left hand side of each of these rewrite rules. The x and y are variables
representing the head and tail of a path expression, while t is a sequence representing the actual
path of instances from x to y combination. In addition to x and y, the path expression P can
contain other variables. These will be drawn from a special set ω. Let, in the remainder of this
chapter, x, y, z be variables that are not in ω.

4.4.1 Atomic path expressions

At this point we can describe the meaning of elementary path expressions as follows. Let o be an
object type and r a role type, then o and r are (atomic) path expressions with semantics:

x[[o]]y , o(x) ∧ x = y

x[[r]]y , r(x, y)

If c is a constant and v ∈ ω is some variable, then we also have:

x[[c]]y , c = x ∧ x = y

x[[v]]y , v = x ∧ x = y

4.4. PATH EXPRESSION LAYER 67

As special atomic path expressions we introduce:

x[[1]]y , x = y

x[[0]]y , 0
x[[∞]]y , true

As an example, consider the ORM model depicted in Figure 4.1.

A B C
p srq

F G

1

2

3

1

A

B

A

C

A

B

C

l

l

k

Figure 4.1: Basic ORM model

In this case we would have for x[[p]]y, x[[q]]x and x[[B]]y:

x y frequency
1 〈1, A〉 1
2 〈2, B〉 1
3 〈3, A〉 1
1 〈1, C〉 1

x y frequency
〈1, A〉 1 1
〈2, B〉 2 1
〈3, A〉 3 1
〈1, C〉 1 1

x y frequency
A A 1
B B 1
C C 1

4.4.2 Composing paths

If P and Q are path expressions, then we can concatenate path expressions as follows:

x[[P ◦Q]]y , ∃z [x[[P]]z ⊗ z[[P]]y]

We immediately have:

Corollary 4.4.1
P ◦ 1 = P and P ◦ 0 = 0.

For the manipulation of heads and tails we introduce:

x[[P←]]y , y[[P]]x
x[[hdP]]y , x = y ∧ ∃z [x[[P]]z]
x[[tlP]]y , x = y ∧ ∃z [z[[P]]y]

where we use as an abbreviation: x[[P]]y , ∃a [x[[P]]y].

As an example, in the case of Figure 4.1 we would have for x[[p ◦ q←]]y, x[[p ◦ q← ◦ r ◦ s←]]y and
x[[p ◦ q← ◦ v ◦ r ◦ s←]]y (where v is a variable):

x y frequency
1 A 1
2 B 1
3 A 1
1 C 1

x y frequency
1 l 2
2 k 1
3 l 1
1 k 1

68 CHAPTER 4. OBJECT-ROLE CALCULUS

A special construction operator for path expression is the confluence operator. This operator is
essential in formalizing graphical uniqueness constraints. Let P1, . . .Pn be path expressions,
then:

x[[〈P1, . . . , Pn〉]]y , ∃x1,...,xn [x1[[P1]]y ∧ . . . ∧ xn[[Pn]]y ∧ x = 〈x1, . . . , xn〉]

By combining this operator with ∞, we can also construct cartesian products:

P1 × . . .× Pn , 〈P1 ◦∞, . . . , Pn ◦∞〉

In addition to path composition operators, we also have the following ways of combining path
expressions. If Θ is one of the operators ∨, ∧, ⊕, ⊗ and 	, then we have:

x[[P ΘQ]]y , x[[P]]yΘx[[P]]y
x[[¬P]]y , ¬(x[[P]]y)

Note that these logical connectives ‘reset’ the paths between heads and tails of instances. Impli-
cation and equality of path expressions can be defined as:

P ⇒Q , ¬P ∨Q
P ⇔Q , (P ⇒Q) ∧ (Q⇒P)

For practical purposes, however, we would like to use logical connectives that allow us to com-
bine the heads of paths. For example, in an expressions such as:

Person working for department ‘IRIS’, who also owns a car.

In this case we would like to require:

∃y [x[[Person working for Department ‘IRIS’]]y]∧∃y [x[[Person owning a Car]]y]

To be able to expres rules like these, we also introduce the following abbreviations:

P
h∧Q , hdP ∧ hdQ

P h∨Q , hdP ∨ hdQ

P
h⊕Q , hdP ⊕ hdQ

P
h	Q , hdP 	 hdQ

P h=⇒Q , hdP ⇒ hdQ

P h⇐⇒Q , hdP ⇔ hdQ

4.4.3 Evolution and path expressions

To allow for path expressions to refer to evolution of the population, we introduce:

x[[sometimeP]]y , sometime(x[[P]]y)
x[[alwaysP]]y , always(x[[P]]y)

x[[P precedesQ]]y , (x[[P]]y) precedes(x[[Q]]y)

4.5. GRAPHICAL CONSTRAINTS 69

4.4.4 Path expressions as logic

If P is a path expression, then we have the following logic expressions:

∃[[P]] , ∃x,y [x[[P]]y]

∀[[P]] , ∀x,y [x[[P]]y]

4.5 Graphical constraints

In this section we briefly visit some of the graphical constraints that are used in ORM models.

4.5.1 Mandatory roles

If o is an object type and r1, . . . , rn are roles types such that ∀1≤i≤n [oSub Player(ri)], then:

Total(o : {r1, . . . , rn}) , always ∀[[o h=⇒(r1 h∨ . . . h∨ rn)]]

We may even further generalize this to mandatory combination over cartesian products of object
types. Let o1, . . . , om be object types and r1,1, . . . , rn,1, . . . , . . . , r1,m, . . . , rn,m are role types such
that: ∀1≤i,j≤m ∀1≤k≤n [oi Sub Player(rk,i) ∧ Fact(rk,i) = Fact)rk,j], then:

Total(〈o1, . . . , om〉 : {〈r1,1, . . . , r1,m〉, . . . , 〈rn,1, . . . , rn,m〉}) ,

always ∀[[(o1 × . . .× om) h=⇒(〈r1,1, . . . , r1,m〉 h∨ . . . h∨ 〈rn,1, . . . , rn,m〉)]]

4.5.2 Uniqueness

Given a set of role types, we may be able to automatically determine a derived fact type that
joins all fact types involved in these role types. The algorithm to compute the actual derivation is
referred to as the uniquest algorithm [WHB92]. It was designed, initially, to provide the semantics
of graphical uniquess constraints as depicted in Figure 4.2. In the case of roles r and s, the result
would be: 〈r, s〉, while in the case of roles q and s the result would be: 〈q ◦ r, s〉. Note that not all
combinations of role types lead to join paths. In [WHB92] this is discussed in more detail.

X
 Y

Z

p
 q

r

s

Figure 4.2: Example uniqueness constraints

70 CHAPTER 4. OBJECT-ROLE CALCULUS

Let JoinPath(R) be the function determining a join path for some sequence of roles types R,
while o is the central object type, using the uniques algorithm. If JoinPath(R) is defined for some
sequence R of role types, then the uniqueness of the roles types in R is defined as:

Unique(R) , always ∀[[JoinPath(R) ◦ JoinPath(R)←⇒ 1]]

4.5.3 Subsets

The JoinPath function cannot only be used to define uniqueness constraints, but also to define
subset constraints. If R1 and R2 are two sequences of role types with the same length (i.e. |R1| =
|R2|) such that the players are type related: ∀1≤i≤|R1| [R1[i]∼R2[i]], then a subset constraint from
R1 to R2 is defined as:

SubSet(R1, R2) , always ∀[[JoinPath(R1) h=⇒ JoinPath(R2)]]

As an example, consider the model depicted in Figure 4.3. In this case we would have:

always ∀[[〈r, s〉 h=⇒〈p, q〉]]

X
 Y
p
 q

V
 r
 s
 Y

Figure 4.3: Example subset constraint

4.5.4 Temporal ordering

Now consider the following verbalizations (at the type level):

A Person fills in a Form
A Person is examined by a Doctor
A Doctor produces a Diagnose
A Doctor writes a Prescription

This leads to the situation as depicted in Figure 4.4.

Thus far we have not discussed properties pertaining to temporal ordering. Suppose now that in
this domain:

Before a Person can be examined by a Doctor, they should have filled in a Form.
Before a Doctor produces a Diagnose, a Person should have been Examined.
Before a Doctor writes a Prescription, a Person should have been Diagnosed.

This is, however, is still an incomplete picture. The production of a diagnose and the writing of
a prescription should all pertain to the same person. Even more, as a person may visit a doctor
twice for two different reasons, the diagnose and prescription really pertain to one specific doctor
visit. This leads to the situation as depicted in Figure 4.5.

4.5. GRAPHICAL CONSTRAINTS 71

examines

Person

Form

Diagnose

produces

fills out

writes

Prescription

Doctor

Figure 4.4: Basic model of a visit to a Doctor

examines

Person

Form

Diagnose

produces

fills out

writes

Prescription

Visit
Doctor Doctor

Figure 4.5: Model of a visit to a Doctor with explicit entity

72 CHAPTER 4. OBJECT-ROLE CALCULUS

examines

Person

Form

Diagnose

produces

fills out

writes

Prescription

Visit
Doctor Doctor

Figure 4.6: Model of a visit to a Doctor with alternative semantics

Person

Form

Diagnose Doctor

examines

produces

fills out

Prescription

writes

State sequence:

Doctor Visit

Figure 4.7: Compact model of a visit to a Doctor

4.6. INFORMATION-DESCRIPTOR LAYER 73

Person

Form

Diagnose Doctor

examines

produces

fills out

Prescription

writes

State sequence:

Doctor Visit

Figure 4.8: Compact model of a visit to a Doctor with alternative semantics

But also consider the situation as depicted in Figure 4.6. What is the semantic difference?

As a graphical abbreviation, we will use the notation as depicted in Figure 4.7 and Figure 4.8
respectively.

Formally, temporal dependency constraints can be defined as follows:

precedes(R1, R2) , always ∀[[JoinPath(R1) precedes JoinPath(R2)]]

4.6 Information-descriptor layer

4.6.1 Naming of types

To each object type, a name is associated: ONm : ÔB→NM. To each role type, we can actually
associated two names, a normal role name, and a so-called reverse role name: RNm : R̂O→NM
and RRNm : R̂O→NM.

In terms of Figure 4.1, we might have:

ONm(A) = Person RNm(p) = is a coworker in RRNm(p) = has coworker
ONm(B) = Department RNm(q) = is employer in RRNm(q) = has employer
ONm(F) = Department coworkership

When verbalizing facts, one will typically use verbalizations such as:

Person working for Department

The working for phrase is not the name of a role type, but really referring to the combination of two
role types. For example, in the case of Figure 4.1, this might be p ◦ q←. Using the function: CNm :
R̂O × R̂O→NM we associate a name to such role pairs. For example: CNm(p, q) = working for.

74 CHAPTER 4. OBJECT-ROLE CALCULUS

4.6.2 Basic information descriptors

Information descriptors can now be defined by providing their mapping to path expressions. Let
o be an object type with ONm(o) = n, then we have the following atomic information descrip-
tors:

D[[n]] , o

Also the role names lead to atomic information descriptors. Let p a role type with RNm(p) = n
and RRNm(p) = m, then:

D[[n]] , p

D[[m]] , p←

The names for role pairs lead to the following information descriptors. Let p and q be role types
such that CNm(p, q) = n, then:

D[[n]] , p ◦ q←

If v is a variable and c a constant, we also have:

D[[v]] , v

D[[c]] , c

4.6.3 Complex information descriptors

If X and Y are information descriptors, then so is the combination:

D[[X Y]] , D[[X]] ◦D[[Y]]

With this concatenation operator, we for example have:

D[[Person working for Department]] =
D[[Person]] ◦D[[working for]] ◦D[[Department]] =
A ◦ p ◦ q← ◦B

If X1, . . . , Xn are information descriptors, then the confluence operator is introduced at the infor-
mation descriptor level as follows:

D[[THE COMBINATION OF(X1, . . . , Xn)]] , 〈D[[X1]], . . . ,D[[Xn]]〉

The head oriented logical connectives h∧, h∨, h=⇒, h⇐⇒ and h	 lead to the following information
descriptors:

D[[X AND ALSOY]] , D[[X]] h∧D[[Y]]

D[[XMUST ALSO BEY]] , D[[X]] h=⇒D[[Y]]

D[[IFX THEN ALSOY]] , D[[X]] h=⇒D[[Y]]

D[[X IF AND ONLYIFY]] , D[[X]] h⇐⇒D[[Y]]

D[[X OR ISY]] , D[[X]] h∨D[[Y]]

D[[X COMBINED WITHY]] , D[[X]] h⊕D[[Y]]

D[[X BUT NOTY]] , D[[X]] h	D[[Y]]

BIBLIOGRAPHY 75

For the temporal operators we have:

D[[ALWAYSX]] , always D[[X]]
D[[SOMETIMEX]] , sometime D[[X]]

D[[X PRECEDESY]] , D[[X]] precedes D[[Y]]

4.6.4 Domain rules

Using information descriptors we can also define rules/predicates pertaining to the domain mod-
eled by an ORM model. If X is an information descriptor, then we have the following atomic
rules:

R[[ANYX]] , ∃[[D[[X]]]]
R[[SOMEX]] , ∃[[D[[X]]]]

R[[ALLX]] , ∀[[D[[X]]]]

Logical connectives are introduced as:

R[[RANDS]] , R[[R]] ∧ R[[S]]
R[[RORS]] , R[[R]] ∨ R[[S]]

R[[R IMPLIESS]] , R[[R]]⇒R[[S]]
R[[R IFFS]] , R[[R]]⇔R[[S]]
R[[NOTR]] , ¬R[[R]]

As an abbreviation we also use:

NOX , NOT SOMEX

For the temporal operators we have:

R[[ALWAYSR]] , always R[[R]]
R[[SOMETIMER]] , sometime R[[R]]

R[[RPRECEDESS]] , R[[R]] precedes R[[S]]

Bibliography

[BH96] A.C. Bloesch and T.A. Halpin. ConQuer: A Conceptual Query Language. In B. Thal-
heim, editor, Proceedings of the 15th International Conference on Conceptual Modeling
(ER‘96), Cottbus, Germany, EU, volume 1157 of Lecture Notes in Computer Science, pages
121–133, Berlin, Germany, EU, October 1996. Springer.

[HPW93] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. Formal definition
of a conceptual language for the description and manipulation of information models.
Information Systems, 18(7):489–523, October 1993.

[Mee82] R. Meersman. The RIDL Conceptual Language. Technical report, International Centre
for Information Analysis Services, Control Data Belgium, Inc., Brussels, Belgium, EU,
1982.

76 CHAPTER 4. OBJECT-ROLE CALCULUS

[Pro94] H.A. (Erik) Proper. ConQuer–92 – The revised report on the conceptual query language
LISA–D. Technical report, Asymetrix Research Laboratory, University of Queensland,
Brisbane, Queensland, Australia, 1994.

[Spi88] J.M. Spivey. Understanding Z: A Specification Language and its Formal Semantics. Cam-
bridge University Press, Cambridge, United Kingdom, EU, 1988.

[Sto77] J.E. Stoy. Denotational Semantics: The Scott–Strachey Approach to Programming Language
Semantics. MIT Press, Cambridge, Massachusetts, USA, 1977.

[WHB92] Th.P. van der Weide, A.H.M. ter Hofstede, and P. van Bommel. Uniquest: Determining
the Semantics of Complex Uniqueness Constraints. The Computer Journal, 35(2):148–156,
April 1992.

[WK03] J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models Ready
for MDA. Addison Wesley, Reading, Massachusetts, USA, 2nd edition, 2003. ISBN
0321179366

Chapter 5

Advanced Object-Role Modeling

Version:
13-05-05This chapter is mainly based on the work reported in [HW93, BBMP95, HP95, CP96].

5.1 Subtyping

Sub-typing is an important feature of fact-based modeling. Figure 3.6 (page 58) showed an ex-
ample of subtyping in terms of a specialization hierarchy.

The population of a subtype can be restrained further. Rules can be specified that specify the
‘maximum’ and ‘minimum’ population of a sub-type. Normally, if xSub y then the population of
x is bounded by

∅ ⊆ Pop(x) ⊆ Pop(y)

Graphically, this leads to the situation i) as depicted in Figure 5.1.

The population of a subtyping can be restricted further by requiring it to be a sub/superset of
some set of instances specified by a (subtype constraining) rule. Situations ii), iii) and iv) of
Section 3.6 depict this graphically. In situation ii), the population of X should at least consist of
those match rule R. In general, this can be defined as follows:

SubSet(x,R) , always ∀
D[[R]]

h
=⇒ x

Note: for R to be a sensible rule, we should at least have for any y such that xSub y:

Pop |=t always ∀
D[[R]]

h
=⇒ y

otherwise SubSet(x,R) would lead to an inconsistent set of constraints on the population.

While the situation from ii) provides a minimum population for X, the situation depicted in iii)
does the reverse by demanding a maximimum population. The population of X is limited to
those instances of X’s supertypes that match rule S.

SuperSet(x, S) , always ∀
x

h
=⇒D[[S]]

The situation provided in iv) combines the maximum and minimum population. Situation v)
represents a very special case. In this case, the rule R actually fully determines the population of
the subtype, since:

D[[R]] h=⇒x h=⇒D[[R]]

77

78 CHAPTER 5. ADVANCED OBJECT-ROLE MODELING

X

Y

R S

iv)

X

Y

R

v) vi)

X = R

X

Y

X

Y

S

iii)

X

Y

ii)

R

i)

X

Y

Figure 5.1: Restricting subtyping

5.2. OVERLAP OF POPULATIONS 79

in other words:
D[[R]] h⇐⇒x

As a graphical abbreviation we will use the notation provided in situation vi), which corresponds
to the traditional notion of specialization from ORM [Hal01].

A further interesting case of specialization is depicted in Figure 3.7 (page 59). It illustrates how
specialization hierarchies can have multiple roots. This example also introduces two important
classes of constraints: exclusiveness and totality of specializations. If x1, . . . , xn are types, then
we can define:

Exclusive(x1, . . . , xn) , always ∀(x1∧(x2∨...∨xn)⇒ 0)∧...∧(xn∧(x1∨...∨xn−1)⇒ 0)

If x1, . . . , xn are types with a common supertype s (such that x1 Sub s∧ . . .∧xn Sub s) then we can
define:

Total(s : x1, . . . xn) , s h⇐⇒x1 ∨ . . . xn

To express the semantics of totality in general we first need to identify all common supertypes of
a set of types:

CommonSuper(T) ,
{
y

∣∣ ∀x∈T [xSub y]
}

If T is a set of types such that CommonSuper(T) , {y1, . . . , ym}, with n > 0, then we can define:

Total(T) , Total(y1 : T) ∧ . . . ∧ Total(yn : T)

Based on [HW93] a graphical abbreviation can be used for this kind of sub-typing. This is de-
picted in Figure 5.2. The right-hand side provides an abbreviation for the situation depicted in
the left-hand side.

Y

X1 Xn

Y

XnX1

Figure 5.2: Generalization

5.2 Overlap of populations

When considering the ORM schema as depicted in Figure 3.7, one would expect the populations
of Vehicle and Distance to be disjoint, while the populations of Vehicle and Product are expected to
overlap. Thus far, we have not introduced any formal mechanism to enforce this type of behavior
other that the inclusion of populations for sub-types. To properly formalize this, we first define
the family (as it is ‘alive’ at some point in time) of an object type based on the sub-typing hierarchy
as follows:

Familyt(x) ,
{
y ∈ ÔBt

∣∣ y Subx ∨ y = x
}

Two object types are deemed type related iff their families overlap:

x∼t y , Family(x)∩Family(y) = ∅

If the population of object types overlaps, then they must be type related:
[S46] Popt(x)∩Popt(y) 6= ∅⇒x∼t y

Note that the converse does not necessarily hold.

80 CHAPTER 5. ADVANCED OBJECT-ROLE MODELING

5.3 Abstraction

To introduce abstraction (schema decomposition), we start with an example domain taken from [CP96].

For our example domain, we consider a bank. Figure 5.3 shows the top level abstraction of the
banking domain. This schema displays five types: Bank, Client, Service, enjoy, of. The Bank type is
an abstracted type and forms the top abstraction of the entire banking application. This is also the
reason why the enjoy and of relationship types, together with the remaining object types playing
a role in these relationship types, are drawn inside the Bank type. Both Client and Service types are
abstractions themselves, although their underlying structure is not shown at the moment. When
stepping down to a lower level of abstraction, the void in these types will be filled with more
detail.

enjoys

ServiceClient

Bank (name)

of

Figure 5.3: The top diagram of the Bank domain

The Client and Service type are involved in a relationship type called enjoys. This is a many to
many relationship where each client must at least enjoy one service and each service offering
must be enjoyed by some person. The two black dots indicate that a client of the bank must
indeed enjoy some service, and conversely each service must be used by some client. The ar-
row tipped bar spanning the two roles of the enjoys relationship type indicates that it is a many
to many relationship. Similarly, the of relationship type models the fact that a bank has many
clients, and clients can be client of many banks. The (name) suffix to Bank indicates that a bank
is identified by a name. Basically, the use of the (name) suffix is a graphical abbreviation of the
schema fragment depicted in Figure 5.4. The broken ellipse of BankName type indicate that it is a
value type; i.e. its instances are directly denotable (strings, numbers, audio, video, html).

As a first refinement step we can now take a closer look at what a client is. The details of the
Client type are shown in Figure 5.5. There we can see that each client is identified by a Client Nr,
as indicated by the (nr) suffix to Client. Each client provides the bank with a unique address as
indicated by the arrow tipped bar spanning the role of the lives at relationship type that is attached
to Client. This address is mandatory for each client. This ”mandatoryness” is indicated by the
black dot. Address is a normal object type without any other types clustered to it. Therefore, it is
drawn in the traditional ORM way using a solid ellipse. The (description) suffix to Address within
the solid ellipse indicates that an address is identified by a description. This corresponds to the
same underlying graphical abbreviation.

Clients must all provide at least one name, but they may have aliases. This leads to the arrow
tipped bar spanning both roles of the has fact type, and the black dot on the client side. For autho-
rization of transactions ordered by telephone or fax, the bank and the client agree upon a unique
password. The combination of a password and address must uniquely identify a client (indi-

5.3. ABSTRACTION 81

Figure 5.4: Fully detailed top diagram

cated in the diagram by the encircled U). Finally, clients may have a number of phone numbers
at which they can be reached.

With respect to the abstractions, we can now say that the relationship types has identifying, lives at,
reachable at, has (together with the types playing a role in these relationship types) are clustered
to Client. For each abstracted type, like Client, such a clustering of types (from a lower level of
abstraction) is provided. This could be an emptyset.

Figure 5.5: Refinement of the client type

In this example we refer to relationship types used in the bank example by means of the text
associated with these relationship types, such as has identifying. This text is a so-called mix fix
predicate verbalization. These mix fix predicate verbalizations do not have to be unique. The ver-
balization has typically occurs numerous times in an average conceptual schema. For example:
Client has Client Name and Client has Password. To uniquely identify relationship types (and types
in general), each type receives a unique name. For instance Client Naming and Issued Passwords for
the two earlier given examples.

The next refinement of the bank domain provides us with more details about the service types
available from the bank. This is depicted in Figure 5.6. The Service type is a generalization of three

82 CHAPTER 5. ADVANCED OBJECT-ROLE MODELING

basic types: Credit Card Account, Access Account, and Term Deposit Account. The Access Accounts
and Credit Card Accounts are first combined into a so-called Statement Account. It should be noted
that during a top-down modeling process, a type like Credit Card Account will start out as a ‘nor-
mal’ entity type like Address. However, as soon as other types are clustered to such an entity type,
they become abstracted types.

The double lining around the Access Account type indicates that this type occurs in multiple clus-
terings. A CASE Tool supporting this kind of graphical representation, could have a feature in
which clicking on such a double lining results in a list of (abstracted) types in whose clustering
this type occurs.

Service

Statement Term Deposit
AccountAccount

Account
Access

Account
Credit Card

Figure 5.6: Refinement of the service type

As stated before, a statement account is a generalization of an access account and a credit card
account. The intuition behind a statement account is that for such an account regular statements
are sent to the clients and that a transaction record is kept. These details of the statement account
are shown in Figure 5.7. For each statement account, a number of statements can be issued. A
statement lists a number of transactions This is captured by the lists fact type. This fact type is,
however, derivable from the (to be introduced) issue date of a statement and the dates at which
the transactions took place. This derivability is indicated by the asterisk.

lists

for ... was issued ...

Statement
*

Statement Account: Service

Transaction

Figure 5.7: Refinement of statement account

One of the key features of the fact based modeling is inheritance of properties between types in

5.3. ABSTRACTION 83

specializations. Instances (populations) are inherited in the direction of the arrows. For example,
each credit card account is a statement account. Other properties, like clustered types, are inher-
ited downwards. Typically, properties at the type level are inherited downward, while properties
on the instance level are inherited upwards. The types clustered to Statement Account are there-
fore formally also part of the clusterings of Credit Card Account and Access Account. Nevertheless,
to avoid cluttered diagrams, we have chosen not to show this inheritance explicitly in the dia-
grams. Therefore, the details of the Credit Card type do not show the details of Statement Account.
The details of the Credit Card Type are provided in Figure 5.8. For each credit card the bank stores
its kind, the spending limit, as well as the access account to which the credit card is linked. The
suffix ”: Statement Account” to ”Credit Card Account (nr)” hints at the inheritance of the clustered
types to Statement Account. In a CASE Tool supporting our technique, one could implement the
facility that clicking on the Statement Account suffix leads to the inclusion of the clustered types
introduced by Statement Account. Note that both Access Account and Money Amount have double
lining, indicating that they occur in multiple clusters.

(code)

is of is linked
to

spending

Money
Amount

($)

limit

has

CCKind
Access

Account

Credit Card Account (nr): Statement Account

Figure 5.8: Refinement of the credit card type

For Access Account, the details are shown in Figure 5.9. All extra information actually shown
there is the identification of an access account; an Access Account Nr as indicated by the (nr) suffix.
Similar to the Credit Card Account, all types clustered to Statement Account are also clustered to
Access Account, but we do not display this graphically.

Figure 5.9: Refinement of an access account

Figure 5.10 shows the details of a statement. Each Statement is issued on a unique date. This date,
together with the Statement Account for which the Statement was issued, identifies each Statement.
Note that we decided to draw some contextual information of the Statement type to show how this
type is identified. The for ... was issued ... and Statement Account types are not part of the clustering
of Statement. The balance as listed on a Statement is, for obvious reasons, derivable from the
Transactions that have taken place on this account.

The refined view on a transaction is shown in Figure 5.11. A Transaction is identified by the
combination of the account it is for and a unique (for that account) transaction number. Note that
contrary to a Statement, all components needed for the identification of Transactions are part of the
clustering. Each Transaction involves a certain money amount, occurs on a date, and is either a

84 CHAPTER 5. ADVANCED OBJECT-ROLE MODELING

lists

for ... was issued ...

Statement
*

Statement Account: Service

Transaction

Figure 5.10: Refinement of a statement

debit or credit transaction (depicted by TR Kind). Furthermore, for each Transaction, some (unique)
description may be provided. This example also shows that we must allow for mutually recursive
abstractions, as the Transaction and Statement Account refinements refer to each other.

Amount
Money

($)

Transaction
Description

Date
(mm−dd−yy) (code)

TrKind

{ ’D’, ’C’ }

was for took place
on

is ofhas

Transaction

Statement
Transaction

Number

Account

on with

U

Figure 5.11: Refinement of a transaction

Term deposits form a world on their own. This is elaborated in Figure 5.12. On each Term Deposit Account,
a client can have a series of term deposits. Each time a Term Deposit matures, this term deposit
can be rolled-over leading to a new Term Deposit on the current Term Deposit Account. A spe-
cial kind of Term Deposit is the Long Term Deposit, which is a subtype of Term Deposit. As each
subtype inherits all properties from its supertype, the Long Term Deposit type is an abstracted
type as well. For these Long Term Deposits we store whether the deposit is to be automatically
rolled-over into a new deposit (the short Term Deposits are of this kind by default). In the refine-
ment of a Long Term Deposit, we shall also see what the so-called subtype defining rule for these
Long Term Deposits is. Upon maturation, the invested amount including the interest accrued is
transferred to a pre-nominated Access Account. Finally, the interest rate given on the deposit is
derived from a table listing the Periods for which amounts can be invested. The details of the
Period type are given below.

A Term Deposit itself is a clustering of the start and ending dates of the deposits and the money
amount invested. This is depicted in Figure 5.13. A Long Term Deposit is a term deposit with
a duration of more than 60 days. In Figure 5.14 the details of a long term deposit are shown,
including the subtype defining rule. The Long Term Deposit type inherits all clustered types from

5.3. ABSTRACTION 85

Term Deposit Account (nr)

with

Rate
Interest

(%)+

earns

given for

*

Term Deposit

on maturing
deposited

into

Period

Deposit
Long Term

Account
Access

automatic roll−over

Figure 5.12: Refinement of a term deposit account

U

Amount
Money

($)+
(mm−dd−yy)

Date

for

Term Deposit

ended atstarte
d at

with

Term Deposit Account

Figure 5.13: Refinement of a term deposit

86 CHAPTER 5. ADVANCED OBJECT-ROLE MODELING

Term Deposit, while not adding anything to this. Finally, the complete definition of the interest
periods are given in Figure 5.15.

Long Term Deposit: Term Deposit

Long Term Deposit IS A
Term Deposit wich started at Date + 60 days > Date

at which ended THAT Long Term Deposit

Figure 5.14: Refinement of a long term deposit

���� ���� ����

Date
(mm−dd−yy)

($)+

DurationMoney
Amount

Period

starting
at

with
investment

of
for

(nr days)

U

Figure 5.15: Refinement of periods

This completes the schema of the example domain. When modeling a domain like this, the mod-
eler has the choice of using as many layers of abstraction as the modeler sees fit. We only provide
a mechanism to introduce these abstractions and are (initially) not so much concerned with the
‘sensibility’ of abstraction steps. One may, for example, argue that the example given in this
section has been split up into too many abstraction levels.

Sometimes, an analyst may want to see the entire schema. This is quite easy to do by uniting all
clusterings into one large schema. From the above discussed schema fragments, one can derive
the complete ORM schema as depicted in Figure 5.16 by uniting all clusters. This is, however,
still not the ‘lowest’ level at which an ORM diagram can be displayed, since we have used the
standard abbreviations for simple identifications and the short notation for objectifications. Ob-
jectification is a concept we have not yet discussed in this paper.

Also when looking at a design procedure for ORM schemas as presented in [Hal95] the decision
to model a Transaction, say, as an objectification or a flat entity type is based on considerations
of abstraction. When, for the modeling of the relationship types was for, has, took place on, and
is of it is preferred to regard a transaction as an abstraction from its underlying relationships to a
statement account and transaction number, then the objectified view is preferred to the flat entity
view. This directly corresponds to the decision whether these underlying relationships should
be clustered to the Transaction object type or not. Later we shall see that set types, sequence types
and schema typing can be treated in a similar way. In [HW94, HW97] it is shown that set types,
sequence types and some other composed types are not fundamental when introducing a special
class of constraints which correspond to the set theoretic notion of axiom of extensionality. This
then allows us to regard set typing, sequence typing and schema typing as forms of abstraction.

The schema depicted in Figure 5.16 has the same formal semantics as the combination of all pre-
vious schema fragments. However, the conceptual semantics is different as the abstraction levels

5.3. ABSTRACTION 87

U

U

U

Password

has identifying

Address

(description)

lives at

PhoneNr

reachable at

Client

(nr)
ClientName

has

Service

Account

Statement

has

*

"Transaction"

lists

for ... was issued ...

Statement

Date

(mm−dd−yy)

*
issued on has balance

of
{’D’, ’C’ }

is of

CCKind

(code)

linked to

Access

Account
(nr)

limit

Amount
Money

($)+

Money

($)+

Amount

Term Deposit
Account

(nr)

deposited to

on maturing

Access

(nr)
Account

ending

at

Date

(mm−dd−yy)

for

Deposit
Term

Money

($)+
Amount

starting at

(nr days)

Duration

(%)+

Rate

Interest

*

given for

earns

with

Description

Transaction

Date

(mm−dd−yy)

TRKind

(code)

was for

has

took place on

is of

Amount
Money

($)+

Term

Deposit

Long

automatic prolonging

spending
has

Transaction

Number

period starting at ... for a mimimum deposit of .. for ...

"Period"

(nr)

CardCredit
Account

enjoys

Bank

(name)

of

Figure 5.16: Complete diagram of the Bank domain

88 CHAPTER 5. ADVANCED OBJECT-ROLE MODELING

(the third dimension) are now missing. Schema abstraction is purely a syntactical issue, and thus
carries no formal semantics. From the point of view of a modeler (and a participant of the uni-
verse of discourse), the abstractions do have a conceptual meaning. The abstractions represent
certain choices of importance within the universe of discourse.

An (E)ER view can easily be derived as well by uniting all clusterings except for the lowest ones,
but interpreting these as attributes. The (E)ER view on this domain is given in Figure 5.17. The
version we used there is based on the one discussed in [BCN92]. Differing extended ER versions
use different notations for this concept [EWH85, EN94, EGH+92]. The names for attributes in this
diagram are simply based on the verbalizations given in the ORM schema. For most ER modelers,
the concept of using elaborate verbalizations is new. One could allow for the specification of
specific attribute names to, for example, abbreviate with minimum deposit of MoneyAmount ($)+ to
MinDeposit. In this article we do not discuss naming conventions in detail but rather focus on
the underlying conceptual issues. In [BBMP95] we have provided a more detailed study of the
relationship between different ER versions and ORM. A detailed case study is also presented
there, in which the different concepts underlying these modeling techniques are related, together
with a mapping of the (graphical) concepts between the two classes of data modeling techniques.

Figure 5.17: Complete ER diagram of the Bank domain

5.4. SET TYPES 89

5.4 Set types

In set theory we use ℘(X) to denote the set consisting of all subsets ofX (see for instance [Lev79]).
When modeling complex domains, we sometimes have the need to model set types being types
whose instances can be regarded as being sets of other instances. This notion is the same as the
notion of grouping introduced in the IFO data model [AH87]). An illustrative example, taken
from [HW94], is shown in Figure 5.18. A Convoy is taken to consist of a set of Ships, where this
set of ships really identifies the convoy. In other words, if two convoys contain the same set of
ships, they really are the same convoy. This is actually similar to the existentiality axiom from set
theory:

∀i [i ∈ X⇔ i ∈ Y]⇒X = Y

In Figure 5.18 the existential uniqueness is expressed by the circle with the two horizontal bars.
If there would be only one bar, this would be normal uniqueness of the associated role. The extra
(slightly shorter) bar signifies this to be an existential uniqueness constraint.

Ship
(code)

Convoy
composition

Figure 5.18: Convoy of ships

Formally, we introduce existential uniqueness by first identifying the variety an instance of a fact
type may have with regards to a set of roles. Let f ∈ F̂C be a fact type and R ⊆ RolesOf(f) be
a set of roles involved in this fact type. The variety of instances i ∈ Pop(f) with regard to their
roles R is defined as:

Variety(i, f, R) ,
{
j[R]

∣∣ j ∈ Pop(f) ∧ j[R] = i[R]
}

For a set of roles R of some fact type f , we can now express the existantial uniqueness constraint
as:

ExtUnique(f : R) , ∀i,j∈Pop(f)

[
∀e [e ∈ Variety(i, f, R)⇔ e ∈ Variety(j, f,R)]⇒ j[R] = i[R]

]
where R = RolesOf(f)−R. Note the correspondance to existantiality from set theory. A more
compact form (which we are allowed to use due to the existantiality axiom from set theory)
would be:

ExtUnique(f : R) , ∀i,j∈Pop(f)

[
Variety(i, f, R) = Variety(j, f,R)⇒ j[R] = i[R]

]
Using the abstraction mechanism from the previous section, we are able to more introduce a
number of shorthand notations for set types. These are depicted in Figure 5.19.

5.5 Multi-set types

A variation of sets is a multi-set. In a multiset, elements can occur multiple times. Using the
existantial uniqueness constraints, a multi-set can be modeled as depicted in Figure 5.20. In the
depicted domain, a train composition class is defined as a multi-set of types of carriages.

Using the abstraction mechanism, we are again able to more introduce a number of shorthand
notations for multi-set types. These are depicted in Figure 5.21.

90 CHAPTER 5. ADVANCED OBJECT-ROLE MODELING

Ship
(code)

Convoy composition

(code)

Ship

SET OF

Convoy composition: Convoy composition

(code)

Ship

Figure 5.19: Shorthand notations for convoys of ships

Train
composition

class

Carriage class
(code)

Frequency

Figure 5.20: Train composition classes

Train composition class:
MULTI−SET OF

Frequency

Carriage class
(code)

Train composition class

Carriage class
(code)

Train composition class

Carriage class

(code)

Figure 5.21: Shorthand notations for train composition classes

5.6. SEQUENCE TYPES 91

5.6 Sequence types

A specific train consists of a sequence of carriages. To model this compactly, we introduce the
notion of a sequence type. This leads to the situation as depicted in Figure 5.22.

(code)

Train Position

Carriage

Figure 5.22: Train as a sequence of carriages

Using the abstraction mechanism, we are again able to more introduce a number of shorthand
notations for sequence types. These are depicted in Figure 5.23.

(code)

(code)

Train

Carriage

Position

Train:
SEQUENCE OF

Carriage

Carriage

(code)

Train

Figure 5.23: Shorthand notations for trains as sequences of carriages

5.7 Schema types

In some situations we need types whose instances are really entire populations of other (smaller)
schemas. An example of such a situation is shown in Figure 5.24.

Using the abstraction mechanism, we are again able to more introduce a number of shorthand
notations for schema types. These are depicted in Figure 5.25.

Questions
1. Given the following populations: Pop(Carnivore) = {a, b, c}, Pop(Omnivore) = {d, e} and

Pop(Herbivore) = {f, g}. What are the populations of Animal, Flesh eater and Plant eater?

2. To have electrical power supplied to one’s premises (i.e. building and grounds), an appli-
cation must be lodged with the Electricity Board. The following tables are extracted from

92 CHAPTER 5. ADVANCED OBJECT-ROLE MODELING

Figure 5.24: Activity graphs usign a schema type

X X: POPULATION OF X

Figure 5.25: Shorthand notations for schema types

an information system used to record details about any premises for which power has been
requested.

The following abbreviations are used: premises# = premises number, qty = quantity, nr = num-
ber, commercl = commercial. Each premises is identified by its premises#.

The electricity supply requested is exactly one of three kinds: ”new” (new connection
needed), ”modify” (modifications needed to existing connection), or ”old” (reinstall old
connection). ”Total amps” is the total electric current measured in Amp units. ”Amps/phase”
is obtained by dividing the current by the number of phases.

premises# city kind of kind of dog on breed qty of supply
premises business premises of dog breed needed

101 Brisbane domestic . yes Terrier 2 new
202 Brisbane commercl car sales no . . modify
303 Ipswich domestic . yes Alsatian 1 old

Poodle 1
404 Redcliffe commercl security yes Alsatian 3 new

Bulldog 2
505 Brisbane domestic . no . . modify
606 Redcliffe commercl bakery no . . old
. .

Further details about new connections or modifications:

BIBLIOGRAPHY 93

load applied for (if known) wiring expected date for
premises# total amps nr phases amps/phase completed? wiring completion
101 200 2 100 no 30-06-03
202 600 3 200 yes .
404 . . . no 01-08-03
505 160 2 80 no 30-06-03
.

The population is significant with respect to mandatory roles. Each premises has at most
two breeds of dog.

Produce a fact-based model for this domain. Use specialization when needed. Include
uniqueness, mandatory role, subset, occurrence frequency and equality constraints, as well as value
type constraints that are relevant. Provide meaningful names.

If a fact type is derived it should be asterisked on the diagram and a derivation rule should
be supplied.

Produce both a flat fact-based model, as well as a version that uses abstraction/decomposition
to split this domain into more comprehensible chunks.

Bibliography

[AH87] S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM Transactions
on Database Systems, 12(4):525–565, December 1987.

[BBMP95] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens, and H.A. (Erik) Proper. A Unifying
Object Role Modelling Approach. Information Systems, 20(3):213–235, 1995.

[BCN92] C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design – An Entity–Relationship
Approach. Benjamin Cummings, Redwood City, California, USA, 1992.

[CP96] P.N. Creasy and H.A. (Erik) Proper. A Generic Model for 3–Dimensional Conceptual
Modelling. Data & Knowledge Engineering, 20(2):119–162, 1996.

[EGH+92] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. Löhr-Richter, G. Saake, and
H.-D. Ehrich. Conceptual modelling of database applications using an extended ER
model. Data & Knowledge Engineering, 9(4):157–204, 1992.

[EN94] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Benjamin Cummings,
Redwood City, California, USA, 1994. Second Edition.

[EWH85] R. Elmasri, J. Weeldreyer, and A. Hevner. The category concept: An extension to the
entity–relationship model. Data & Knowledge Engineering, 1:75–116, 1985.

[Hal95] T.A. Halpin. Conceptual Schema and Relational Database Design. Prentice–Hall, Engle-
wood Cliffs, New Jersey, USA, 2nd edition, 1995.

[Hal01] T.A. Halpin. Information Modeling and Relational Databases, From Conceptual Analy-
sis to Logical Design. Morgan Kaufmann, San Mateo, California, USA, 2001. ISBN
1558606726

[HP95] T.A. Halpin and H.A. (Erik) Proper. Subtyping and Polymorphism in Object–Role
Modelling. Data & Knowledge Engineering, 15:251–281, 1995.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data
modelling. Data & Knowledge Engineering, 10(1):65–100, February 1993.

94 CHAPTER 5. ADVANCED OBJECT-ROLE MODELING

[HW94] A.H.M. ter Hofstede and Th.P. van der Weide. Fact Orientation in Complex Object
Role Modelling Techniques. In T.A. Halpin and R. Meersman, editors, Proceedings of
the First International Conference on Object–Role Modelling (ORM–1), pages 45–59, July
1994.

[HW97] A.H.M. ter Hofstede and Th.P. van der Weide. Deriving Identity from Extensionality.
International Journal of Software Engineering and Knowledge Engineering, 8(2):189–221,
June 1997.

[Lev79] A.Y. Levy. Basic Set Theory. Springer, Berlin, Germany, EU, 1979.

Chapter 6

The Act of Modelling

Version:
13-04-05In this chapter, which is based on the work reported in [PBH04, HBP05], we turn to the question

how to model a domain; a question to which there is no simple, one-size-fits-all answer.

6.1 What to model?
• Modeling goal

• Intended audience

• Viewpoint

6.2 The modeling challenge

6.2.1 Goal-bounded and communication-driven

Some modeling approaches, such as NIAM [NH89] and ORM [Hal01], suggest or prescribe a
detailed procedure. Practice shows, however, that experienced modelers frequently deviate from
such procedures [Ver93]:

In most cases, [the information engineers] stated that they preferred to pay attention
to a specific part of the problem domain, usually to fill clear lacunae in their insights in
the problem domain. Their momentary needs strongly influenced the order in which
the several modelling techniques were used. Modelling techniques were used as a
means to increase insights or to communicate insights, be it in the problem domain
itself or in a specific solution domain.

Yet deviating from a modeling procedure should be done with some caution. While a pre-
defined modeling procedure should never become “an excuse to stop thinking”, situational speci-
ficity should not become an excuse for taking an ad-hoc approach to the modeling effort. A
more stable anchor is needed upon which modelers can base themselves when making decisions
during the modeling process. We believe that domain modeling requires a goal-bounded and
communication-driven approach. With goal-bounded we hint at the fact that when modeling a
domain, a modeler is confronted with a plethora of modeling decisions. These decisions range
from the modeling approach used, the intended use of the results, to decisions pertaining to the
model itself. For example:

95

96 CHAPTER 6. THE ACT OF MODELLING

• What parts of the domain should be considered relevant?

• What is the desired level of detail and formality?

• To what level should all stakeholders agree upon the model?

• Should the model be a representation of an actual situation (system analysis) or of a desired
situation (design)?

• Should the model be a representation of what a system should do, or should it be a repre-
sentation of how a system should do this?

• Should a certain phenomenon in the domain be modeled as a relationship, or is it an object
on its own?

Having an explicit, and articulated, understanding of the modeling goals provides modelers with
guidance in making the right decisions with regards to the above mentioned issues. Modeling
goals, therefore, essentially provide the means to bound modeling space.

In most situations where a domain needs to be modeled, the modeler cannot merely passively
observe the domain. Modelers will need to interact with representatives from the domain. These
representatives then become informers (who are likely to also have a stake with regards to the
system being developed). Therefore, modelers will need to communicate intensively with the
informers in order to refine the model. What is more, numerous domain models that are pro-
duced during system development will need to be accepted and agreed upon –validated– by
the informers (being stakeholders of the future system). The claim has often been voiced that in
modeling practice, ‘the process is just as important as the end result’, suggesting that a correct
end-result is not always a guarantee for success. A domain model should ideally be a product of
a shared understanding of a domain’s stakeholders. It requires a ‘buy-in’ by all stakeholders involved.
A domain model that is correct from a theoretical or technical point of view but does not have the
required support from the key stakeholders is arguably worse than a domain model with some
flaws that does have such support.

A modeling process can thus be seen as a communication-driven process [FW04b, VHP03]. The
principles of natural language driven modeling approaches [NH89, EKW92, Kri94, Hal01] can be
used as a basis for shaping the communication process between informer and modeler.

6.2.2 Aspects of a method

When considering a modeling approach or method, several aspects thereof can be discerned
[SWS89, WH90]. An important distinction to be made is that between a product oriented perspec-
tive and a process oriented perspective. In terms of the framework presented in [SWS89, WH90]
these are referred to as the way of modeling and way of working, respectively:

Way of modeling – The way of modelling provides an abstract description of the underlying
modelling concepts together with their interrelationships and properties. It structures the
models which can be used in the information system development, i.e. it provides an ab-
stract language in which to express the models.

Way of working – The way of working structures the way in which an information system is
developed. It defines the possible tasks, including sub-tasks and ordering of tasks, to be
performed as part of the development process. It furthermore provides guidelines and
suggestions (heuristics) on how these tasks should be performed.

In the case of domain modeling, the way of working represents the process followed when mod-
eling a domain. In the following sections, we will mainly elaborate on this aspect. The way of
modeling used for domain modeling is likely to be prescribed by a diagramming technique such
as ORM diagrams [Hal01], ER diagrams [Che76] or UML class diagrams [BRJ99].

6.2. THE MODELING CHALLENGE 97

6.2.3 The process of modeling

In general, the goals underlying (business) domain modeling are [BPH04]-

1. articulate clear and concise meanings of business domain concepts and

2. achieve a shared understanding of the concepts among relevant stakeholders.

Based on the results reported in [Hop03], we consider domain modeling in the context of system
development to chiefly concern three streams of (mutually influencing) activities-

Scoping environments of discourse – The aim of this stream of activities is to scope the envi-
ronments of discourse that are relevant to the system being developed, and determine the
set of actors associated to each of these environments.

Concept specification – For each of the identified environments of discourse, the relevant busi-
ness domain concepts should be specified in terms of their:

• meaning
• relationships to other concepts (and the constraints governing these relationships)
• possible names used to refer to them

Concept integration – The concepts as identified and defined in the different environments of
discourse may well clash. As a part of this, homonyms and synonyms are likely to hold
between different terminologies. The aim of this stream of activities is to determine how to
deal with this, and act upon it.

Since these streams of activities can be expected to influence each other, it is not likely that they
can be executed in a strict linear order.

In general, the processes that aim to arrive at a set of concepts together with their meaning and
names, are referred to as conceptualization processes [Hop03]. When, as in the context of software
development, conceptualization is performed deliberately, as a specific task and with a specific
goal in mind, it is referred to as an explicit conceptualization process. The above mentioned stream
of activities called concept specification is such an explicit conceptualization process. In [Hop03,
BPH04] a reference model for conceptualization processes is provided. This reference model
distinguishes five streams of activities or phases:

Assess domain and acquire raw material – Domain modeling always begins with a brief scan
or assessment of the domain to get a feeling for scope, diversity and complexity of the
domain, as well as to identify the relevant stakeholders for the domain (usually but not
necessarily a subset of the project stakeholders). In addition, the activity aims to bring
together input documents of all sorts that provide a basic understanding of the environment
of discourse that is relevant to the environment of discourse under consideration.

Scope the concept set – In this phase, formal decisions are to be made regarding the concepts
that somehow play a role in the environment of discourse and how these concepts interre-
late.1

Select relevant concepts – The goal of this phase is to focus on those concepts in the environ-
ment of discourse that bear some relevance to the system to be developed. These are the
concepts that should be defined and named formally in the next step.

Name and define concepts – All of the concepts selected in the previous phase should be named
and defined. Defining the concepts may also include the identification of rules/laws/constraints
governing instances of the defined concepts.

Quality checks – Final quality checks on the validity, consistency and completeness of the set of
defined concepts.

These streams should essentially be regarded as sub-streams of the concept specification stream.

1In an earlier version of this framework, this was referred to as scoping the universe of discourse.

98 CHAPTER 6. THE ACT OF MODELLING

6.3 Ambition levels for modeling

We have made a distinction between four levels of ambition at which a modeler may approach
the task of modeling a domain. These levels can also be regarded as the order in which a novice
modeler may learn the art of domain modeling:

Singular – This level of ambition corresponds to the modeling approaches as described in e.g.
NIAM [NH89] and ORM [Hal01]. It involves the modeling of a single environment of dis-
course based on complete input; usually in terms of a complete verbalization of (only) the
relevant parts of the domain.

Elusive – At this level of ambition, modelers need to cope with the unavoidable iterative nature
of the modeling process. As a modeling and/or system development process proceeds, the
insight into the domain may increase along the way. This replaces the idealized notion of
completeness of input with one of incremental input. The increments in the model are not
related to a changing domain, but rather to improved ways of conceptualizing it.

Pluriform – At this next level of ambition, we recognize the fact that when developing a realistic
system, we do not simply deal with one single unified environment of discourse (and re-
lated terminologies and concepts), but rather with a number of interrelated environments
of discourse [PH04].

Evolving – The final ambition level recognizes the fact that domains themselves are not stable;
they evolve over time [PH04]. As a result, what may have started out as a correct model
of a domain, may become obsolete due to changes in the domain. New concepts may be
introduced, or existing ones may cease to be used. However, subtle changes may occur
as well, such as minor changes in the meaning of concepts, or the forms used to represent
them.

In the next section, we will discuss domain modeling at the singular, elusive and pluriform levels
of ambition. The evolving level is omitted for now.

6.4 Meeting the challenge

This section aims to discuss the domain modeling process with respect to three of the identified
levels of ambition- singular, elusive and pluriform. We will structure our discussion by using the
framework of activity streams for domain modeling as introduced in the previous section.

6.4.1 Modeling a singular domain

At this level of ambition we are only interested in the modeling of a single environment of dis-
course based on complete input. In terms of the above framework for domain modeling, this
ambition level assumes that-

• No (further) scoping of the environment of discourse is needed

• The domain has been assessed and raw material is available

• Concept integration only needs to take place within the given environment of discourse

Natural language driven modeling approaches like NIAM [NH89] and ORM [Hal01] concern
elaborately described ways of executing a domain modeling process at this ambition level. For
example, the modeling procedure as described in ORM [Hal01] identifies the following steps:

Step 1 – Transform familiar examples into elementary facts This step involves the verbalization
in natural language of samples take from the domain.

6.4. MEETING THE CHALLENGE 99

Step 2 – Draw the fact types and apply a population check In this step, a first version of the schema
is drawn. The plausibility of the schema is validated by adding a sample population to the
schema.

Step 3 – Trim schema and note basic derivations In this step, the schema is checked to see if
any of the identified concepts are basically the same, and should essentially be combined.
Furthermore, derivable concepts (e.g. sales-price = retail-price + mark-up) are identified.

Step 4 – Add uniqueness constraints and check the arity of fact types At this point, it is deter-
mined how many times an instance of an identified concept can play specific roles. For
example, is a person allowed to own more than one car?

Step 5 – Add mandatory role constraints and check for logical derivations This step completes
the basic set of arity constraints on the relationships in the schema, by stating wether or not
instances of a concept should play a role. For example, for each car, the year of construction
should be specified.

Step 6 – Add value, set-comparison, and subtyping constraints The ORM diagramming tech-
nique provides a rich set of graphical constraints. This step is aimed at specifying these
constraints.

Step 7 – Add other constraints, and perform final checks Finally, there may be some constraints
in the domain that cannot be expressed graphically. In this last step, these constraints can
be specified and

In terms of our framework for domain modeling processes, this procedure constitutes a rather
specific way of executing the concept specification stream of activities. It is really geared towards
the (conceptual) analysis of a domain in order to design a database, rather than a general analysis
of concepts playing a role in a domain. The procedure presented above is not applicable to all
situations and all modelers.

Even though the above order is very explicit, and therefore well suited for educational purposes,
a goal-bounded approach to domain modeling requires a more refined view. The key question
concerns the goal for which a domain is modeled. During the definition phase of the software
development life-cycle, when the main goal is to support requirements engineering activities,
the seven steps as described above are likely to be overkill. In such a context, modelers are likely
to skip steps 6 and 7. The modeling procedure as discussed in [Hal01], also requires modelers to
identify how concepts (such as car, co-workers, patient, etc.) are identified in a domain (e.g. by
means of a registration number, employee number, patient number, etc.). During the definition
phase, these identification mechanisms are not likely to be relevant (yet).

During the design phase of a software system most of the seven identified steps are indeed
needed. However, experienced modelers are also likely to merge steps 1-3, steps 4-5, as well as
steps 6-7, into three big steps. The resulting three steps will generally be executed consecutively
on a ‘per fact’ base. In other words:

1. For each fact type, execute 1-3

2. For each fact type, execute 4-5

3. For each fact type, execute 6-7

Some more empirical background to this, experience based observation, can be found in e.g. [Ver93,
page 161].

The order in which the various modeling tasks are performed differs to a large ex-
tent. A clear distinction exists between prescribed modeling knowledge and applied
modeling knowledge, in this respect. Whereas an almost strictly linear order of per-
forming modeling tasks is prescribed, a very opportunistic order is actually used. This
order seems to be determined by at least two essentially different factors- the problem
domain and the information engineer.

100 CHAPTER 6. THE ACT OF MODELLING

Note that when an initial domain model already exists, e.g. as produced in the definition phase in
support of requirements engineering, this will have to be used as a starting point for completion.
In other words, in practice, a domain model is likely to develop incrementally along with the
software development life cycle.

ORM is not the only modeling approach that is based on analysis of natural language. How-
ever, providing a full survey of such approaches is beyond the scope of this article. Never-
theless, two approaches are worth mentioning here. In [EKW92] the Object-Oriented Systems
Analysis method is presented. It uses a natural-language based approach to produce an Object-
Relationship Model (accidently also abbreviated as ORM) that serves as a basis for further anal-
ysis. The way of working used is not unlike that of ORM. Its way of modeling, however, has a more
sketchy nature and has been worked out to a lesser degree. The KISS approach, as reported
in [Kri94], also uses natural language analysis as its basis. It provides some support in terms of a
way of working, but does this in a rather prescriptive fashion that presumes some very particular
(and limited) intermediary goals. A wide spectrum of modeling concepts are introduced (way of
modeling) covering a wide range of diagraming techniques (not unlike the UML [BRJ99]).

Independent of the approach used, a modeling process always needs to be flanked by a contin-
uous communication process with the stakeholders [VHP03]. Communication brings along the
aspect of documentation. Modeling itself can hardly do without face-to-face discussions; how-
ever, the (intermediate) results need to be recorded in such a way that they can be communicated
effectively to the stakeholder community [FW02, Fre97]. In this respect we could argue that any
modeling approach also needs a way of communication/documenting. Since documentation serves
the purpose of communication, the documentation language should align with the accepted lan-
guage concepts in the domain. In practice it turns out that graphical notations such as ORM or
UML diagrams are not the most obvious way to communicate a model to stakeholders, since
most domain stakeholders do not comprehend this kind of “IT language”. Often, it is better to
use more intuitively readable diagrams and natural language to communicate concepts and their
relationships and constraints, while occasionally, a more mathematical or algorithmic style may
be useful in certain expert domains.

Chapter 7

Natural-Language Foundations of
Information-Systems Modeling

Version:
12-05-05In this chapter, we will essentially use the ORM philosophy to model key aspects of information-

systems. This requires the immediate introduction of some new concepts into our ontology, such
as: agentive, experiencing , circumstantial and predicative role, action, predication, agent, subject
and context elements. These concepts allow us to reason about such things as: when does some-
thing happens (triggering), what happens (action), who/what makes it happen (agentr), who/what
does it happen to (subject) in which/what circumstances (context).

With these new concepts, we can typically take ORM domain models and “annotate” them in
terms of the refined concepts. We will base this process of annotation on linguistic foundations,
much in the same vein as the modeling approach from the Domain Modeling course. Based on
these annotated ORM models, we will be able to mechanically derive process models in a model-
ing notation (ArchiMate [Lo05]) that is particularly suited for the modeling of business processes.
This will be the focus of the next chapter.

7.1 Classes of roles

We consider organizational systems, i.e. open active systemor work-systems:

• So there is activity going on.

• In other words, there are active elements.

• A specific class of concepts should therefore be: actions.

• Even more, these actions are performed by agents, and are performed on subjects. We want
to be able to ‘talk’ about these these agents and subjects.

• In other words, we actually need three additional classes of concepts: actions, agents and
subjects.

Let us now analyze this closer from a natural language perspective. Consider, once again, the
following domain:

A person with name Erik is writing a letter to his loved one, at the desk in a romantically lit room, on a mid-summer’s day,
using a pencil, while the cat is watching.

with elementary facts:

101

102CHAPTER 7. NATURAL-LANGUAGE FOUNDATIONS OF INFORMATION-SYSTEMS MODELING

A person is writing a letter
This person has the name Erik
This letter has a romantic nature
This letter has intended recipient Erik’s loved one
The writing of this letter by Erik, occurs on a mid-summer’s day
The writing of this letter by Erik, is done using a pencil
The writing of this letter by Erik, is done while the cat is watching
The writing of this letter by Erik, is taking place at a desk
This desk is located in a room
This room is romantically lit

As mentioned before, within these elementary facts, several players can be discerned. In the above
example, we can isolate the players and facts as follows:

[A person] is writing [a letter]
[This person] has [the name Erik]
[This letter] has a [romantic nature]
[This letter] has intended recipient [Erik’s loved one]
[The writing of this letter by Erik], occurs on a [mid-summer’s day]
[The writing of this letter by Erik], is done using [a pencil]
[The writing of this letter by Erik], is done while [the cat] is watching
[The writing of this letter by Erik], is taking place at [a desk]
[This desk] is located in [a room]
[This room] is lit in [a romantic] way

The writing of the letter is the central fact in the above domain. All players in the facts describing
the above domain are players in this domain. What are the actions, agents and subjects? Several
degrees of activeness exist with regards to the role player plays in a fact/domain:

• Some roles will be more active than others.

• This is where we find inspiration in theories regarding verbs and the ‘things’ that may play
a (functional) role in these verbs.

• We limit ourselves to those classes that are indeed relevant when considering activity in
systems.

In decreasing scale of activity:

Agentive role – A role where the player is regarded as carrying out an activity.

In the example domain: The person.

Two sub-classes may be identified:

Initiating role – An agentive role, where the player is regarded as being the initiator of the
activity.

Reactive role – A non-initiating agentive role.

Experiencing role – A role where the player is regarded as experiencing/undergoing an activity.

In the example domain: a letter, a loved one and the cat.

Three sub-classes may be identified:

Patientive role – An experiencing role, where the player is regarded as purposely under-
going changes (including its very creation)

Receptive role – An experiencing role, where the player is regarded as the beneficiary/recipient
of the results of the activity

Observative role – An experiencing role, where the player is regarded as observing/witnessing
the activity

Contextual role – A role where the player is regarded as being a part of the context in which the
activity takes place.

Four sub-classes may be identified:

Instrumental role – A role where the player is regarded as being an instrument in an ac-
tivity.
In the example domain: a desk and a pencil.

7.1. CLASSES OF ROLES 103

Locative role – A role, where the player is regarded as being the location of an activity, in
terms of a spatial or temporal orientation.
In the example domain: the desk, the room and mid-summer’s day

Catalysing role – A role, where the presence of the player is regarded as being beneficial
(either in a positive or a negative way) to an activity.
In the example domain: the room lit in a romantic way.

Predicative role – A role where the player is regarded as being a predicate on some other player.

In the example domain: the name Erik.

The choice between these different levels of role is subjective. It depends on the viewer. The
players of the four main classes of roles are regarded as agents, subjects, context elements, and
predicators respectively.

In the example domain, the writing of the letter by the person can be regarded as a key activity in
the domain. In other words, writing is an action, while the person is the agent and the letter is the
subject. We may regard the cat and the loved one as a subject as well. What about the pen, the
name Erik, the desk, etc? They are really players in predications over the other players. The fact
that a pen is used by the person to write the letter is a predication of the writing action.

If we were to zoom in on a sub-domain of the above sketched domain, we could actually find that
what was a subject in the super-domain is an agent in the sub-domain. Consider, for example,
the sub-domain:

[The writing of this letter by Erik], is done while [the cat] is watching

When considered in isolation, one may quite easily argue that the primary action here is the
watching, which is something that is being done by the cat. This really makes the cat into an
agent rather than the subject, while the thing that is being watched (the writing) becomes the
subject. This really means that our notions of agent, subject, action and predication are really to
be taken relative to the domain under consideration, which is in line with the subjective approach
to modeling as taken in this textbook.

Formally, we presume the existance of sets AR, ER, CR,PR ⊆ RO with agent and subject roles
respectively. These classes of roles form a partition of the roles:

[S47] AR, ER, CR and PR are a partition of RO.

With this we can also define the sets of actions and predications, respectively, as:

AN ,
{
Fact(r)

∣∣ r ∈ AR}
PN , FC −AN

In other words, all facts that have an agentive role are regarded as actions. The other facts are
(pure) predications.

Typing should adhere our refined ontology. In other words:

[S48] For all X ∈ {FC,RO,PL} we have:

xHasType y⇒(x ∈ X⇔ y ∈ X)

All experiencing roles must be involved in some action:

[S49] ∀d∈ER [Fact(d) ∈ AN]

For the example given above, we would have:

104CHAPTER 7. NATURAL-LANGUAGE FOUNDATIONS OF INFORMATION-SYSTEMS MODELING

Action: [Agent: A person] is writing [Subject: a letter]
Predication: [This person] has [the name Erik]
Predication: [This letter] has a [romantic nature]
Predication: [This letter] has intended recipient [Erik’s loved one]
Predication: [The writing of this letter by Erik], occurs on a [mid-summer’s day]
Predication: [The writing of this letter by Erik], is done using [a pencil]
Predication: [The writing of this letter by Erik], is done while [the cat] is watching
Predication: [The writing of this letter by Erik], is taking place at [a desk]
Predication: [This desk] is located in [a room]
Predication: [This room] is lit in [a romantic] way

Finally, a word of warning:

• Natural language also harbors ‘conceptual prejudice’

• Most, if not all, Indo-European languages are rather state oriented: ‘Charles the bold’ stands
on ‘the floor’

• Some North-American native languages are activity oriented: ‘Dances with wolves’ stands
on ‘what supports us when walking’

• Imagine the impact on the way we view & design systems/organizations: Is nature state
oriented or a continuous flow of activities?

7.2 Activity types

Based on the above discussions regarding actions and predications, we can identify which roles
are of which class, and mark this in the ORM model. For the example from Figure 4.8, we have
the situation as depictedin Figure 7.1.

Person

Form

Diagnose Doctor

examines

produces

fills out

Prescription

writes

State sequence:

Doctor Visit

Figure 7.1: Compact model of a visit to a Doctor with alternative semantics

Those state-sequence types which comprise a number of action types (or other activity types) are
considered to be (complex) activity types. Action types on their own are (atomic) activity types.

QUESTIONS 105

Questions
1. Given the situation:

A person with name Erik is writing a letter to his loved one, at the desk in a
romantically lit room, on a mid-summer’s day, using a pencil, while the cat is
watching.

Produce a graph consisting of entities and relationships depicting this domain.

2. Consider the following domain:

Docent Proper voert de vakgegevens van Architectuur en Alignment in in het
management informatiesysteem.

Wat zijn hier de entiteiten en de relaties? Wat zijn de acties, actoren, actanden en predica-
tions.?

3. Stel je maakt een ontwerp voor een geldautomaat. Wat zijn voor dat domein de belangrijk-
ste systeem entiteiten en hun onderlinge relaties? Hoe werken ze samen? Wat zijn hier de
entiteiten en de relaties? Wat zijn de acties, actoren, actanden en predications.?

4. Proof Corollary 3.4.1 (page 53).

5. Proof Corollary 3.5.1 (page 55).

6. Consider the case from Question 3.9.

Answer the following questions:

(a) (Re)produce elementary facts for this domain.
(b) What are the actions, actors and actands?

Bibliography

[Lo05] M.M. Lankhorst and others. Enterprise Architecture at Work: Modelling, Communication and
Analysis. Springer, Berlin, Germany, EU, 2005. ISBN 3540243712

106CHAPTER 7. NATURAL-LANGUAGE FOUNDATIONS OF INFORMATION-SYSTEMS MODELING

Part I

Apendixes

107

Appendix A

Mathematical Notations

The mathematical notations used in the DAVINCI series are explained briefly in this appendix.

A.1 Sets

In addition to the set operations: ∪,∩, \,⊆ with their usual meaning, we also define:

A ⊂ B , A ⊆ B ∧A 6= B

A 6⊂ B , ¬A ⊂ B

The power set of a set A, i.e. the set of all subsets of A, is denoted as ℘(A), where:

℘(A) ,
{
B

∣∣B ⊆ A
}

A.2 Functions

A partial function f from A to B is defined by f : A�B. Formally, it is a relation f ⊆ A × B
such that 〈a, b〉 ∈ f ∧ 〈a, c〉 ∈ f⇒ b = c. This property makes it possible to write f(a) = b instead
of 〈a, b〉 ∈ f .

A function f is a set of binary tuples. The first and second values of these binary tuples are
identified as:

π1(f) ,
{
a

∣∣ 〈a, b〉 ∈ f }
π2(f) ,

{
b

∣∣ 〈a, b〉 ∈ f }
The following abbreviations are used for (partial) functions:

dom(f) , π1(f)
ran(f) , π2(f)
f(a)↓ , a ∈ dom(f)
f(a)↑ , a 6∈ dom(f)

For unary functions, we will write f↓a, and f↑a, instead of f(a)↓, and f(a)↑ respectively. Further,
f1, . . . , fn↓a1, . . . , am is employed as an abbreviation for: ∀1≤i≤n ∀1≤j≤m [fi↓aj].

A total function f fromA toB is defined by f : A→B. Formally, f : A�B for which dom(f) = A.

109

110 APPENDIX A. MATHEMATICAL NOTATIONS

A.3 Relations

If R ⊆ X ×X is a relation, then we will use: xR y R z as an abbreviation of: xR y ∧ y R z.

Appendix B

Answers to questions

B.1 Questions from Chapter 1
Version:
17-01-061. What is an organization? Give some examples of groupings of people that are not an orga-

nization.

Answer:
An organization exists of actors which functionally interact with each other and thereby
play certain roles. Examples of groups of people who do not form an organization are, for
example:

(a) All passengers in one train.
(b) A group of cyclists who are waiting for a traffic light.
(c) Shopping people in a store.

2. Produce a model of the hierarchical structure of a university (faculties, departments, schools,
etc). Why is the model organized this way?

Answer:
A graphical representation of the hierarchical structure of a university, in this specific case
the Radboud University Nijmegen, may look like this:

111

112 APPENDIX B. ANSWERS TO QUESTIONS

This model looks this way, because:

(a) This way, the university can be considered as a whole in a clear way (holistic).
(b) Organizational parts are clearly separated from the consulting bodies.
(c) The power hierarchy is clearly displayed: the higher the position in the schema, the

greater the power is.

3. Produce a model of the educational process of attending a course at a university. What are
the contributions of the different elements in this process.

Answer:
A sketch of attending a course at a university, written in natural language.

A lecturer offers a course. Students and other interested people enroll in the course. The
lecturer presents his lectures. Practical work, which may be part of the course, could be
taken care of by either the lecturer, a teachers’ assistant or a PhD-student.

During a course a student or other interested person may resign from the course (for several
reasons). Those people who stay until the end of the course should have gained some new
knowledge and skills. These are tested by the lecturer, probably by a test or an assignment.
To transfer the knowledge and skills from a lecturer to the students, a book or reader may
be used.

Roles:

Lecturer: the person who offers the course, the material used during the course, assign-
ments and tests.

Student/interested person: enrolls in the course, learns from the materials supplied by the
lecturer and participates in available practical assignments

Teachers’ Assistant/PhD student: delivers assistance to the practical work which comes
with the course.

Book/reader/college materials: provide a wide base of knowledge, which supports the lec-
tures of the lecturer.

4. Describe why it is important to realize that organizations can be part of yet other organiza-
tions. Use the term ‘level of abstraction’ in your answer.

Answer:
Organizations consist of actors who try to get something done together. An organization
can itself be an actor. According to that line of reasoning, an organization can contain other
organizations. At a very low level, actors are humans. At some more abstract level, actors
are organizations, or organizational parts, which can be actors themselves. This way an
organizational hierarchy can be distinguished.

5. If two people were to produce a model of the same organization. Would you expect them
to produce the same model? If not, why do you think these models would differ?

Answer:
It is to be expected that, when two people are asked to produce a model of an organization,
some part of it will be equal. However, another part will be different. This is a consequence
of the interpretation of the domain by the modelers and the modeling choices the modeler
makes. Concrete examples of such chooses are the used level of abstraction when describ-
ing the organization, the used modeling technique or method and the specified border of
the organizations’ domain.

B.2 Questions from Chapter 2
Version:
16-03-05 1. How are the terms ‘organization’, ‘domain’ and ‘universe’ be related to each other, given

the definitions provided in this textbook?

113

• Describe this relation in natural language.
• Describe this relation in the formal language given in this chapter.

Answer:
In natural language: The universe is the world under investigation by a viewer. A domain
is a part or aspect of the universe in which the viewer is interested. A domain always has
a direct environment. An organization is positioned in a universe, therefore being also part
of a universe, combining at least one domain. So, here, a universe can be seen as the whole,
containing organizations. Organizations contain domains.

In formal language: Let U be a universe observed by some viewer v. Let furthermore D be
a domain with direct environment ED (as part of a conception C) as it is observed by v in
U . Then we formally have: U |=d v 〈C : ED : D〉.
The viewer v may see (in the domain D) an organizational system S with environment ES .
In other words: U |=s v 〈C : ES : S〉, where ES ⊆ ED ∪D and O ⊆ D.

2. Proof Axiom S8 (page 31).

3. Proof Lemma 2.2.1 (page 31).

Answer:
Let U |=d v 〈C : E : D〉. Suppose P be a maximum connected subset of E, while:

¬∃e∈COP ,r∈LIC ,d∈COD
[{e, d} = Involved(r)]

In other words, suppose P is not connected to D.

As P is a maximum connected subset of E (and also non-empty), there is no other element
in E to which an element from P is connected to. If P is not connected to D it would mean
that some subset of E is not connected to D, which would contradict Axiom S10. We can
therefore not assume:

¬∃e∈COE ,r∈LIC ,d∈COD
[{e, d} = Involved(r)]

We should therefore conclude:

∃e∈COE ,r∈LIC ,d∈COD
[{e, d} = Involved(r)]

4. Not all conceptions of a domain produce models. Why not?

Answer:
Conceptions need to be described in terms of a description. Conceptions are made by view-
ers, but are not made on purpose. If a conception is made on purpose, so if a domain is
purposely abstracted, it is called a model. Therefore, not all conceptions produce models.

5. Beschouw een Autoproducent, zoals bijvoorbeeld Seat, BMW en Toyota.

(a) Wat zijn de belangrijkste systemische eigenschappen?
(b) Beschrijf het primaire gedrag van deze organisatie in termen van interne en externe

functies.

6. Give an example of a reactive system, of a responsive system and of an autonomous system
(other examples than the ones already given, of course).

Answer:

• Active System: an example of an active system is the traffic jam information supply
system. These are the LED-signs along highways supplying information about which
of the highways are jammed, where they are jammed and the length of the jam. Drivers
can, based on the supplied information, choose to take a different route than their
initial route. This way, the system actively changes the universe.

114 APPENDIX B. ANSWERS TO QUESTIONS

• Dynamic System: an example of a dynamic system is the Dutch political system. The
system keeps on existing, but it changes due to new laws, the abolishing of old laws,
etcetera.

• Open System: an example of an open system is a ‘smart’ chess computer. Consider a
chess computer with a set of standard possible sets of movements. Each time you make
a move which is unknown to the system, the system remembers the move. After a few
games, the chess computer has ‘learned’ from your input and, as an effect, becomes
harder to beat.

7. From a modeling point of view, organizations can be considered as systems containing a.o.
concepts and links.

• Why is it important to be aware of the aspect of subjectivity when creating models?
• What view does an information system developer have when modeling organizations?
• Why would an information system developer want to start by creating a model of an

organization, instead of directly focusing on modeling an information system?

Answer:

• A possible logical choice is the ‘Machine’-metaphor, since an aspect of that metaphor is
‘design’. Another aspect is standardization (by generalization): if a system is described
as a collection of concepts and links, these elements can be considered as generaliza-
tions of several parts of the system.

• Models are based on conceptions, which are viewer-bound. Therefore, models are
described from the modelers‘ point of view. These models also include the worldview
of the modeler, and are thus a subjective representation of a domain.

• An information system developer describes a domain from a certain point of view,
namely his own point of view, and with a certain purpose, namely to create a model of
the domain which on which an information system shall/could be based. So, he only
look from one point of view within his own point of view to the domain.

• By creating a model of an organization before creating a model of a possible infor-
mation system which should be deployed in the organization, the developer is forced
to gain knowledge about the organization in which he operates. This should lead to
better insight in several aspects of the organization, like structure, evolution, culture,
etcetera. The use of this knowledge when creating an information system should lead
to a better ‘fitting’ system.

8. Waarom zullen verschillende mensen wanneer ze verschillende domeinen modelleren toch
verschillende modellen opleveren? Hoe kun je deze situatie verbeteren? Waarom zou je dit
willen verbeteren?

9. Stel U |=s v S
′ ⊂ S, bewijs/beargumenteer dan dat:

|LIS′ |+1 ≥ |COS′ |

10. Beschouw Axiom S3 en Axiom S4. Daarin worden de voorwaarden voor een gesloten,
connected graph gegeven. Stel dat we te maken hebben met een niet-connected graph.

• Is het waarschijnlijk dat we het hier over hetzelfde Universe hebben? Beargumenteer
je antwoord.

• In een connected graph is de relatie tussen het aantal concepten en links |LIC |+1 ≥
|COc|.
Kun je ook een soortgelijke relatie onderkennen als een graph niet connected is? Zo ja,
welke? Zo nee, waarom niet?

115

11. Proof Corollary 2.2.1 (page 34).

Answer:
Because of Axiom S12, we already know:

∃u∈COC
∀x∈COC

[u→C x]

But is there only one such u?

Suppose we have u1, u2 ∈ COC such that u1 6= u2 while:

∀x∈COC
[u1→C x ∧ u2→C x]

In other words, both u1 and u2 are tops of the decomposition hierarchy.

This allows us to derive:

u1 6= u2 ∧ ∀x∈COC
[u1→C x ∧ u2→C x] V {Since u1, u2 ∈ COC}

u1→C u2 ∧ u2→C u1 V {u1 6= u2}

u1→C u2 ∧ u2→C u1 V {Transitivity of → }

u1→C u1 �

As stipulated by Axiom S11 (page 32), decompositions are acyclic. Therefore, we are noy
allowed to have u1→C u1. We therefore cannot have u1, u2 ∈ COC such that u1 6= u2 while:

∀x∈COC
[u1→C x ∧ u2→C x]

Therefore there can only be one such u.

12. Suppose you are requested by a large organization (a holding company holding some
daughter companies) to create more insight into their own activities by creating some mod-
els of their organization. The focus of this models must, according to the board of directors,
be on their internal information flows, since the organization has the impression that a lot
of business efficiency is lost due to an incompetent set of information systems. Keeping in
mind what is explained in the two previous chapters, give an impression of:

(a) Where would you start modeling?
(b) What would you model?
(c) Why model that?

Answer:

(a) When a model of a very large organization is required, one should start by focusing
on the problem, instead of focusing on a to-be-created model. The first logical step is
gaining some knowledge of the whole of the organization. This can indeed be done
by creating a (holistic) sketch of the complete organization.

(b) When that sketch is made, and if the board agrees on that sketch, the modeler can
start focusing on several aspects concerning information flows. Perhaps an iterative
approach might be useful: expanding a model step by step, keeping the whole of the
organization in mind.

(c) Before an analysis can be made of a problem, or before a problem can be identified or
localized, some research has to be done. A board of directors can have some ideas of
where the problem may lie, but they may be wrong as well. Simply following orders of
some board may then result in the wrong conception of the organization, and thus to
a correct solution for some problem, but not to a solution for their problem. In fact, the
solution then does not ’fit’, or it changes, making it perhaps even more difficult to find.
Therefore, a model of the whole should be made: to gain insight in the organization
and their problem.

116 APPENDIX B. ANSWERS TO QUESTIONS

13. Proof Corollary 2.3.1 (page 38).

Answer:
Suppose U |=s v S

′ ⊂ S, then:

U |=s v S
′ ⊂ S V {definition of sub-system}

U |=s v S
′ V {definition of abbreviation}

∃C,E [U |=s v 〈C : E : S′〉] V {Axiom S19}

∃C,E [U |=m v 〈C : E : S′〉] V {Axiom S18}

∃C,E

[
U |=d v 〈C : E : S′〉

]
V {Axiom S13}

∃d∈S′∀x∈COS′ [d→S′ x] �

14. Consider a home cinema set.

(a) Describe the systems elements.
(b) Distinguish proper sub-systems.
(c) Can you derive typical aspect systems and component systems?

Explain your answers.

Answer:

(a) A home cinema set usually contains of some elements of input (a receiver, a DVD-
player, a VCR, a game-console, a remote control, etcetera), and some elements of out-
put (a television screen, and some speakers). The links between these elements are the
cables and the radio- or infra-red signals broadcasted by the RC.

(b) possible sub-systems are: the receiver, the dvd-player, the VCR, a game-sonsole, a
remote-control, a television, a set of speakers, the video-stream, the audio-stream, the
input-streams, the output-streams, and the power-supply.

(c) A list of proper component sub-systems is already given in the first item. Each of
these elements can properly function in other settings, and can thus be considered
as component sub-system. When looking at aspect systems, input-systems, output-
systems, video-stream system, audio-stream system and the power-supply. Please
recognize the difference between a speaker and a set of speakers. A speaker can be
identified as a sub-system itself, but since a set of speakers (for example in a Dolby
5.1 setting) has certain properties which individual speakers do not have (surround
sound), a set of speakers can be considered as a sub-system just as well as a single
speaker.

15. Consider a travel agency.

(a) Describe the most important system characteristics and exposition characteristics.
(b) Describe its behavior in terms of internal and external functions.

Answer:

(a) Consider a travel agency as an open active system: it anticipates to a lot of factors
in its environment, like customers, travels offered by airline companies, etcetera. On
the other hand, large travel agencies can promote certain destinations by promotion,
or enforce a quantity rebate at some airline company or hotel. This way they have
influence on the world in which they function.

• system characteristics: The agency is thus considered as an open active system.

117

• exposition characteristics: The travel agency mainly plays three roles: the cus-
tomer role (buying tickets at hotels and airline agencies), the vendor-role (selling
travels to customers) and the mediator-role (searching the best fitting travel for
each customer)

(b) • Internal functions: examples of internal functions are: the management of the
agency, the administration of the agency, etcetera.

• External functions: examples of external functions are: the number of customers
interested in traveling, the supply of possible travels by hotels and airline compa-
nies, etcetera.

16. Describe why information systems contain databases. Use the descriptions of the terms data,
information and knowledge as described in Chapter 2 in your description.

Answer:
Databases contain loads of data. Data, which is only useful when placed in some context
and when the data is related to each other in some way. This is usually done by queries
built in an information system. The system gains some data from a database and displays it
in context to the user of the system. By placing it in context, the data becomes information.
Due to the information supplied by the system, the view on the world of the systems‘ user
may be changed (or in other words: it may change the knowledge of the user).

17. Give some examples of:

(a) Work systems that are not organizational systems.
(b) Organizational systems.
(c) Information systems.

18. Describe, in your own words, the differences between knowledge, information and data.

Answer:
Data are loose building blocks, for example one term or one fact. They are quite mean-
ingless without any context. They are the smallest units of which information can be con-
structed. Information is data placed in some context, thereby giving it some meaning. This
meaning may have influence on someone‘s knowledge. Knowledge represents someones
view on the world.

19. Proof Corollary 2.4.1 (page 43).

Answer:

118 APPENDIX B. ANSWERS TO QUESTIONS

Suppose t1 � t2 ∧ t1 � t3 ∧ t2 6= t3, then this would lead to the following contradiction:

t1 � t2 ∧ t1 � t3 ∧ t2 6= t3

V {since < is a complete total order}

t1 � t2 ∧ t1 � t3 ∧ (t2<t3 ∨ t3<t2)

V {definition of �}

t1<t3 ∧ ¬∃s [t1<s< t2]∧t1<t3 ∧ ¬∃s [t1<s< t3]∧(t2<t3 ∨ t3<t2)

V {rewrite}

¬∃s [t1<s< t2]∧¬∃s [t1<s< t3]∧(t1<t2<t3 ∨ t1<t3<t2)

V {rewrite}

¬∃s [t1<s< t2 ∨ t1<s< t3]∧(t1<t2<t3 ∨ t1<t3<t2)

V {contradiction}

FALSUM

�

Therefore, if t1 � t2∧ t1 � t3 it cannot be that t2 6= t3. In other words, we must have t2 = t3.

20. Proof Corollary 2.4.2 (page 44).

Answer:
We provide the prove of HE(t)(t) ⊆ HC(t). The prove for HE(t)(t) ⊆ HC(t) goes analo-
gously.

Suppose U |=d v 〈HC : HE : HD〉, then:

U |=d v 〈HC : HE : HD〉 V
˘
HE is a function to ℘(HC)

¯
HE(t) ∈ ℘(HC) V {definition of powerset}

HE(t) ⊆ HC V {rewrite}

h ∈ HE(t)⇒h ∈ HC(t) V {h is a function h : TI� EL}{
h(t)

∣∣ h ∈ HE(t)
}
⊆

{
h(t)

∣∣ h ∈ HC

}
V {definition of shorthand H(t)}

HE(t)(t) ⊆ HC(t) �

21. Proof Corollary 2.4.3 (page 44).

Answer:
Let U |=d v 〈HC : HE : HD〉, then:

U |=d v 〈HC : HE : HD〉 V {Axiom S21 (page 44)}

∀t∈TI
[
U |=d v 〈HC(t) : HE(t)(t) : HD(t)(t)〉

]
V {Axiom S6 (page 31)}

∀t∈TI [HE(t)(t)∩HD(t)(t) = ∅] �

22. Proof Lemma 2.4.1 (page 44).

119

Answer:
Let U |=d v 〈HC : HE : HD〉, while ¬∀t∈TI [HE(t)∩HD(t) = ∅], then:

¬∀t∈TI [HE(t)∩HD(t) = ∅] V {rewrite}

∃t∈TI [HE(t)∩HD(t) 6= ∅] V {rewrite}

∃t∈TI ∃h [h ∈ HE(t)∩HD(t)] V {rewrite}

∃t∈TI ∃h [h ∈ HE(t) ∧ h ∈ HD(t)] V {rewrite}

∃t∈TI ∃h [h(t) ∈ HE(t)(t) ∧ h(t) ∈ HD(t)(t)] V {rewrite}

∃t∈TI ∃e [e ∈ HE(t)(t) ∧ e ∈ HD(t)(t)] V {rewrite}

∃t∈TI [HE(t)(t)∩HD(t) 6= ∅] �

This result would contradict Corollary 2.4.3. In other words, we must have ∀t∈TI [HE(t)∩HD(t) = ∅].

B.3 Questions from Chapter 3
1. Given the situation:

A person with name Erik is writing a letter to his loved one, at the desk in a
romantically lit room, on a mid-summer’s day, using a pencil, while the cat is
watching.

Produce a graph consisting of concepts and links depicting this domain.
2. Stel je maakt een ontwerp voor een geldautomaat. Wat zijn voor dat domein de belangrijk-

ste concepten en hun onderlinge links? Hoe werken ze samen?
3. Proof Corollary 3.4.1 (page 53).

Answer:
We will prove FCt = Fact(ROt). The prove of PLt = Player(ROt) goes analogously.

f ∈ Fact(ROt) ≡ {Definition of Fact}

∃r∈ROt [f = Fact(r)] ≡ {Axiom S29}

∃r∈ROt [f = Fact(r) ∧ Fact(r) ∈ FCt] ≡ {Rewrite}

∃r∈ROt [f = Fact(r) ∧ f ∈ FCt] ≡ {Rewrite}

∃r∈ROt [f = Fact(r)]∧f ∈ FCt ≡ {Definition of FC}

f ∈ FC ∧f ∈ FCt ≡ {Definition of FCt}

f ∈ FCt �

4. Proof Corollary 3.5.1 (page 55).
Answer:

x ∈ IN V {Definition of IN}

x ∈
{
x

∣∣ ∃y [xHasType y]
}

V {Rewrite}

∃y [xHasType y] V {Definition of TP}

∃y∈TP [xHasType y] �

120 APPENDIX B. ANSWERS TO QUESTIONS

Therefore: ∀x∈IN∃y∈TP [xHasType y]

5. Proof Corollary 3.5.2 (page 55).

Answer:
We will prove: P̂L,Player(R̂O), the other proofs are analogously.

p ∈ P̂L ≡
n

Definition of P̂L
o

p ∈ PL∧p ∈ TP ≡ {Definition of PL}

p ∈ Player(RO) ∧ p ∈ TP ≡ {Definition of Player}

∃r∈RO [p = Player(r) ∧ p ∈ TP] ≡ {Rewrite}

∃r∈RO [p = Player(r) ∧ Player(r) ∈ TP] ≡ {Axiom S34}

∃r∈RO [p = Player(r) ∧ r ∈ TP] ≡ {Rewrite}

∃r∈RO∩TP [p = Player(r)] ≡
n

Definition of R̂O
o

∃r∈R̂O [p = Player(r)] ≡ {Definition of Player}

Player(R̂O) �

Note: for the Fact versions Axiom S33 should be used rather than Axiom S34.

6. Proof Corollary 3.5.3 (page 56).

Answer:
Let f ∈ F̂C, then:

i ∈ Pop(f) ∧ f ∈ F̂C ≡ {Definition of FC}

∃r [Fact(r) = f ∧ i ∈ Pop(f)] ≡ {Definition of RolesOf}

∃r∈RolesOf(f) [i ∈ Pop(Fact(r))] ≡ {Axioms S37 and S38}

∃r∈RolesOf(f) [i ∈ Fact(Pop(r))] ≡ {Definition of Pop}

i ∈ Fact(Pop(RolesOf(f))) �

7. Proof Corollary 3.5.4 (page 56).

Answer:

121

Let f ∈ F̌C, then:

x ∈ Types(RolesOf(f)) ≡ {Definition of Types}

x ∈ T̂P ∧ ∃r∈RolesOf(f) [x ∈ Types(r)] ≡ {Rewrite}

x ∈ T̂P ∧ ∃rŘO [x ∈ Types(r) ∧ r ∈ RolesOf(f)] ≡ {Definition of RolesOf}

x ∈ T̂P ∧ ∃r [x ∈ Types(r) ∧ Fact(r) = f] ≡
˘

Since r ∈ ŘO and Axiom S33
¯

x ∈ R̂O ∧ ∃r [x ∈ Types(r) ∧ Fact(r) = f] ≡ {Definitions of Types and Pop}

x ∈ R̂O ∧ ∃r [r ∈ Pop(x) ∧ Fact(r) = f] ≡ {Definitions of Fact}

x ∈ R̂O ∧ f ∈ Fact(Pop(x)) ≡ {Axioms S37 and S38}

x ∈ R̂O ∧ f ∈ Pop(Fact(x)) ≡ {Definition of Types and Pop}

x ∈ R̂O ∧ Fact(x) ∈ Types(f) ≡ {Definition of RolesOf}

x ∈ RolesOf(Types(f)) �

8. Proof Corollary 3.6.1 (page 58).

9. Consider the following case:

Een onderneming produceert en verkoopt een tiental soorten gevulde chocolade-
artikelen. De verkoop geschiedt aan grossiers tegen prijzen die voor lange tijd
vast zijn. In verband met achteruitgang in kwaliteit wordt op de verpakking een
uiterste verkoopdatum vermeld. Alle afleveringen geschieden met eigen auto’s.
Voor de produktie van chocolade importeert de inkoopafdeling van de onderne-
ming verschillende soorten cacaobonen uit tropische landen. Daartoe worden
inkoopcontracten afgesloten die de behoefte voor ca. een half jaar dekken. De ca-
caobonenprijs is aan sterke schommelingen onderhevig. De ingekochte partijen
hebben belangrijk uiteenlopende vetgehaltes, hetgeen mede in de inkoopprijs tot
uitdrukking komt.
De cacaobonen ondergaan afzonderlijk per partij in de voorbewerkingsafdeling
enkele machinale bewerkingen, zoals zuiveren, schillen, breken, branden, malen
en walsen.
Aan het onstane halffabrikaat worden door de afwerkingsafdeling suiker, smaak-
stoffen en – in verhouding tot het vetgehalte – cacaoboter toegevoegd. Het al-
dus verkregen halffabrikaat is cacaomassa van een bepaalde standaardkwaliteit,
dat in speciaal daartoe geconditioneerde opslagtanks wordt bewaard. De ver-
schillende benodigde vulsels worden ingekocht bij derden. Naar rato van de
ontwikkeling van de verkoop en de gewenste voorraadvorming worden de eind-
produkten gemaakt. Dit geschiedt in één arbeidsgang met behulp van automa-
tische vorm-, vul- en droogmachines.
In de pakafdeling worden de goedkopere soorten gevulde chocolade automatisch
en de duurdere soorten met de hand in sierdozen verpakt, waarna opslag in een
magazijn volgt. Bij alle bewerkingen ontstaan gewichtsverliezen.
In verband met de kwaliteitsachteruitgang kunnen de grossiers de niet tijdig
door hen verkochte artikelen retourneren, mits dit gebeurt binnen 10 dagen na
de uiterste verkoopdatum; meestal geschiedt deze teruglevering via de chauf-
feurs. De teruggenomen artikelen worden vernietigd. Creditering vindt plaats
voor 20 van de door hen betaalde prijs. Verrekening hiervan geschiedt slechts bij
gelijktijdige nieuwe afname.

122 APPENDIX B. ANSWERS TO QUESTIONS

Elk van de artikelen is voorzien van een of twee cadeaubonnen, afgedrukt op
de verpakking. De waarde van deze bonnen is e 0,10 per stuk. Op de artikelen
met een prijs tot e 5,- komt één, op de overige artikelen (tussen e 5,- en e 11,-)
komen twee bonnen voor. Op deze bonnen kunnen cadeau-artikelen (hand- en
theedoeken e.d.) zonder bijbetaling worden verkregen.
Voorts kunnen op deze bonnen meer duurzame gebruiksgoederen tegen ver-
laagde prijs worden verkregen. Hiervoor wordt elk halfjaar een folder uitgegeven,
waarin per artikel is aangegeven hoeveel bonnen moeten worden ingeleverd en
hoeveel daarnaast moet worden bijbetaald. In het algemeen is het door de afne-
mers bij te betalen bedrag iets lager dan de inkoopprijs voor de fabriek. Veelal
dient de halfjaarlijkse behoefte door de fabrikant in één keer te worden besteld;
latere aanvulling is in het algemeen niet mogelijk.
Op de duurzame gebruiksgoederen wordt veelal garantie of service verleend. Hi-
ervoor is met een gespecialiseerd bedrijf een contract afgesloten waarbij tegen een
eenmalig vast bedrag per apparaat de garantie- en serviceverplichtingen worden
overgedragen

Answer the following questions:

(a) Produce elementary facts for this domain.
(b) Produce an ORM model for this domain.

B.4 Questions from Chapter 5
1. Given the following populations: Pop(Carnivore) = {a, b, c}, Pop(Omnivore) = {d, e} and

Pop(Herbivore) = {f, g}. What are the populations of Animal, Flesh eater and Plant eater?

2. To have electrical power supplied to one’s premises (i.e. building and grounds), an appli-
cation must be lodged with the Electricity Board. The following tables are extracted from
an information system used to record details about any premises for which power has been
requested.

The following abbreviations are used: premises# = premises number, qty = quantity, nr = num-
ber, commercl = commercial. Each premises is identified by its premises#.

The electricity supply requested is exactly one of three kinds: ”new” (new connection
needed), ”modify” (modifications needed to existing connection), or ”old” (reinstall old
connection). ”Total amps” is the total electric current measured in Amp units. ”Amps/phase”
is obtained by dividing the current by the number of phases.

premises# city kind of kind of dog on breed qty of supply
premises business premises of dog breed needed

101 Brisbane domestic . yes Terrier 2 new
202 Brisbane commercl car sales no . . modify
303 Ipswich domestic . yes Alsatian 1 old

Poodle 1
404 Redcliffe commercl security yes Alsatian 3 new

Bulldog 2
505 Brisbane domestic . no . . modify
606 Redcliffe commercl bakery no . . old
. .

Further details about new connections or modifications:

123

load applied for (if known) wiring expected date for
premises# total amps nr phases amps/phase completed? wiring completion
101 200 2 100 no 30-06-03
202 600 3 200 yes .
404 . . . no 01-08-03
505 160 2 80 no 30-06-03
.

The population is significant with respect to mandatory roles. Each premises has at most
two breeds of dog.

Produce a fact-based model for this domain. Use specialization when needed. Include
uniqueness, mandatory role, subset, occurrence frequency and equality constraints, as well as value
type constraints that are relevant. Provide meaningful names.

If a fact type is derived it should be asterisked on the diagram and a derivation rule should
be supplied.

Produce both a flat fact-based model, as well as a version that uses abstraction/decomposition
to split this domain into more comprehensible chunks.

B.5 Questions from Chapter 7
1. Given the situation:

A person with name Erik is writing a letter to his loved one, at the desk in a
romantically lit room, on a mid-summer’s day, using a pencil, while the cat is
watching.

Produce a graph consisting of entities and relationships depicting this domain.

2. Consider the following domain:

Docent Proper voert de vakgegevens van Architectuur en Alignment in in het
management informatiesysteem.

Wat zijn hier de entiteiten en de relaties? Wat zijn de acties, actoren, actanden en predica-
tions.?

3. Stel je maakt een ontwerp voor een geldautomaat. Wat zijn voor dat domein de belangrijk-
ste systeem entiteiten en hun onderlinge relaties? Hoe werken ze samen? Wat zijn hier de
entiteiten en de relaties? Wat zijn de acties, actoren, actanden en predications.?

4. Proof Corollary 3.4.1 (page 53).

5. Proof Corollary 3.5.1 (page 55).

6. Consider the case from Question 3.9.

Answer the following questions:

(a) (Re)produce elementary facts for this domain.
(b) What are the actions, actors and actands?

124 APPENDIX B. ANSWERS TO QUESTIONS

Bibliography

[Ack71] R.L. Ackoff. Towards a System of System Concepts. Management Science, 17, July 1971.

[AH87] S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM Transactions
on Database Systems, 12(4):525–565, December 1987.

[Alt99] S. Alter. A general, yet useful theory of information systems. Communications of the
Association for Information Systems, 1(13), 1999.
http://cais.isworld.org/articles/1-13/default.asp

[Alt02] S. Alter. The work system method for understanding information systems and informa-
tion system research. Communications of the Association for Information Systems, 9(9):90–
104, 2002.
http://cais.isworld.org/articles/default.asp?vol=9&art=6

[Avi95] D.E. Avison. Information Systems Development: Methodologies, Techniques and Tools.
McGraw–Hill, New York, New York, USA, 2nd edition, 1995. ISBN 0077092333

[BB97] F.C. Berger and P. van Bommel. Augmenting a Characterization Network with Seman-
tical Information. Information Processing & Management, 33(4):453–479, 1997.

[BBMP95] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens, and H.A. (Erik) Proper. A Unifying
Object Role Modelling Approach. Information Systems, 20(3):213–235, 1995.

[BCN92] C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design – An Entity–Relationship
Approach. Benjamin Cummings, Redwood City, California, USA, 1992.

[Bem98] T.M.A. Bemelmans. Bestuurlijke Informatiesystemen en Automatisering. Kluwer, Deventer,
The Netherlands, EU, 7th edition, 1998. In Dutch. ISBN 9026727984

[Ber01] L. von Bertalanffy. General Systems Theory – Foundations, Development, Applications.
George Braziller, New York, New York, USA, revised edition, 2001. ISBN 0807604534

[BFW96] P. van Bommel, P.J.M. Frederiks, and Th.P. van der Weide. Object–Oriented Modeling
based on Logbooks. The Computer Journal, 39(9):793–799, 1996.

[BH96] A.C. Bloesch and T.A. Halpin. ConQuer: A Conceptual Query Language. In B. Thal-
heim, editor, Proceedings of the 15th International Conference on Conceptual Modeling
(ER‘96), Cottbus, Germany, EU, volume 1157 of Lecture Notes in Computer Science, pages
121–133, Berlin, Germany, EU, October 1996. Springer.

[BHW91] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verifi-
cation of object–role models. Information Systems, 16(5):471–495, October 1991.

[BPH04] A.I. Bleeker, H.A. (Erik) Proper, and S.J.B.A. Hoppenbrouwers. The Role of Concept
Management in System Development – A practical and a theoretical perspective. In
J. Grabis, A. Persson, and J. Stirna, editors, Forum proceedings of the 16th Conference on

125

http://cais.isworld.org/articles/1-13/default.asp
http://cais.isworld.org/articles/default.asp?vol=9&art=6

126 BIBLIOGRAPHY

Advanced Information Systems 2004 (CAiSE 2004), Riga, Latvia, EU, pages 73–82, Riga,
Latvia, EU, June 2004. Faculty of Computer Science and Information Technology. ISBN
998497670X

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modelling Language User Guide.
Addison Wesley, Reading, Massachusetts, USA, 1999. ISBN 0201571684

[Bub86] J.A. Bubenko. Information System Methodologies – A Research View. In T.W. Olle, H.G.
Sol, and A.A. Verrijn–Stuart, editors, Information Systems Design Methodologies: Improv-
ing the Practice, Amsterdam, The Netherlands, EU, pages 289–318. North–Holland/IFIP
WG8.1, Amsterdam, The Netherlands, EU, 1986.

[BW90] P.D. Bruza and Th.P. van der Weide. Assessing the Quality of Hypertext Views. ACM
SIGIR FORUM (Refereed Section), 24(3):6–25, 1990.

[BW91] P.D. Bruza and Th.P. van der Weide. The Modelling and Retrieval of Documents using
Index Expressions. ACM SIGIR FORUM (Refereed Section), 25(2), 1991.

[BW92a] P. van Bommel and Th.P. van der Weide. Reducing the search space for conceptual
schema transformation. Data & Knowledge Engineering, 8:269–292, 1992.

[BW92b] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for Information
Disclosure. The Computer Journal, 35(3):208–220, 1992.

[Che76] P.P. Chen. The Entity–Relationship Model: Towards a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–36, March 1976.

[Che81] P. Checkland. Systems thinking, systems practice. John Wiley & Sons, New York, New
York, USA, 1981. ISBN 0471279110

[CHP96] L.J. Campbell, T.A. Halpin, and H.A. (Erik) Proper. Conceptual Schemas with Ab-
stractions – Making flat conceptual schemas more comprehensible. Data & Knowledge
Engineering, 20(1):39–85, 1996.

[Coh89] B. Cohen. Justification of Formal Methods for System Specification. Software Engineering
Journal, 4(1):26–35, January 1989.

[CP96] P.N. Creasy and H.A. (Erik) Proper. A Generic Model for 3–Dimensional Conceptual
Modelling. Data & Knowledge Engineering, 20(2):119–162, 1996.

[EGH+92] G. Engels, M. Gogolla, U. Hohenstein, K. Hülsmann, P. Löhr-Richter, G. Saake, and
H.-D. Ehrich. Conceptual modelling of database applications using an extended ER
model. Data & Knowledge Engineering, 9(4):157–204, 1992.

[EKW92] D.W. Embley, B.D. Kurtz, and S.N. Woodfield. Object–Oriented Systems Analysis –
A model–driven approach. Yourdon Press, New York, New York, USA, 1992. ASIN
0136299733

[EN94] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Benjamin Cummings,
Redwood City, California, USA, 1994. Second Edition.

[EWH85] R. Elmasri, J. Weeldreyer, and A. Hevner. The category concept: An extension to the
entity–relationship model. Data & Knowledge Engineering, 1:75–116, 1985.

[Fre97] P.J.M. Frederiks. Object–Oriented Modeling based on Information Grammars. PhD thesis,
University of Nijmegen, Nijmegen, The Netherlands, EU, 1997. ISBN 9090103384

[FVV+98] E.D. Falkenberg, A.A. Verrijn–Stuart, K. Voss, W. Hesse, P. Lindgreen, B.E. Nilsson,
J.L.H. Oei, C. Rolland, and R.K. and Stamper, editors. A Framework of Information Sys-
tems Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria, EU, 1998.
ISBN 3901882014

BIBLIOGRAPHY 127

[FW02] P.J.M. Frederiks and Th.P. van der Weide. Deriving and paraphrasing information
grammars using object–oriented analysis models. Acta Informatica, 38(7):437–88, June
2002.

[FW04a] P.J.M. Frederiks and Th.P. van der Weide. Information Modeling: the process and the
required competencies of its participants. Data & Knowledge Engineering, 2004. To ap-
pear in a special issue on the NLDB 2004 conference.

[FW04b] P.J.M. Frederiks and Th.P. van der Weide. Information Modeling: the process and the
required competencies of its participants. In F. Meziane and E. Métais, editors, 9th
International Conference on Applications of Natural Language to Information Systems (NLDB
2004), Manchester, United Kingdom, EU, volume 3136 of Lecture Notes in Computer Science,
pages 123–134, Berlin, Germany, EU, 2004. Springer.

[Hal95] T.A. Halpin. Conceptual Schema and Relational Database Design. Prentice–Hall, Engle-
wood Cliffs, New Jersey, USA, 2nd edition, 1995.

[Hal01] T.A. Halpin. Information Modeling and Relational Databases, From Conceptual Analysis to
Logical Design. Morgan Kaufmann, San Mateo, California, USA, 2001. ISBN 1558606726

[HBP05] S.J.B.A. Hoppenbrouwers, A.I. Bleeker, and H.A. (Erik) Proper. Facing the Conceptual
Complexities in Business Domain Modeling. Computing Letters, 1(2):59–68, 2005.

[HL89] I. van Horenbeek and J. Lewi. Algebraic specifications in software engineering: an introduc-
tion. Springer, Berlin, Germany, EU, 1989.

[Hof93] A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. PhD thesis, Uni-
versity of Nijmegen, Nijmegen, The Netherlands, EU, 1993.

[Hop03] S.J.B.A. Hoppenbrouwers. Freezing Language; Conceptualisation processes in ICT supported
organisations. PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU,
2003. ISBN 9090173188

[HP95] T.A. Halpin and H.A. (Erik) Proper. Subtyping and Polymorphism in Object–Role Mod-
elling. Data & Knowledge Engineering, 15:251–281, 1995.

[HP98] A.H.M. ter Hofstede and H.A. (Erik) Proper. How to Formalize It? Formalization Prin-
ciples for Information Systems Development Methods. Information and Software Technol-
ogy, 40(10):519–540, October 1998.

[HPW93] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. Formal definition
of a conceptual language for the description and manipulation of information models.
Information Systems, 18(7):489–523, October 1993.

[HPW97] A.H.M. ter Hofstede, H.A. (Erik) Proper, and Th.P. van der Weide. Exploiting Fact
Verbalisation in Conceptual Information Modelling. Information Systems, 22(6/7):349–
385, September 1997.

[HVH97] J.J.A.C. Hoppenbrouwers, B. van der Vos, and S.J.B.A. Hoppenbrouwers. NL Struc-
tures and Conceptual Modelling: Grammalizing for KISS. Data & Knowledge Engineer-
ing, 23(1):79–92, 1997.

[HW92] A.H.M. ter Hofstede and Th.P. van der Weide. Formalisation of techniques: chopping
down the methodology jungle. Information and Software Technology, 34(1):57–65, January
1992.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data mod-
elling. Data & Knowledge Engineering, 10(1):65–100, February 1993.

128 BIBLIOGRAPHY

[HW94] A.H.M. ter Hofstede and Th.P. van der Weide. Fact Orientation in Complex Object Role
Modelling Techniques. In T.A. Halpin and R. Meersman, editors, Proceedings of the First
International Conference on Object–Role Modelling (ORM–1), pages 45–59, July 1994.

[HW97] A.H.M. ter Hofstede and Th.P. van der Weide. Deriving Identity from Extensionality.
International Journal of Software Engineering and Knowledge Engineering, 8(2):189–221, June
1997.

[IEE00] Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471–2000, The Architecture Working Group of the Software
Engineering Committee, Standards Department, IEEE, Piscataway, New Jersey, USA,
September 2000. ISBN 0738125180
http://www.ieee.org

[Iiv83] J. Iivari. Contributions to the theoretical foundations of systemeering research and the
PIOCO model. Technical Report 150, University of Oulu, Oulu, Finland, EU, 1983. ISBN
9514215435

[JLB+04] H. Jonkers, M.M Lankhorst, R. van Buuren, S.J.B.A. Hoppenbrouwers, M. Bonsangue,
and L. van der Torre. Concepts for Modeling Enterprise Architectures. International
Journal of Cooperative Information Systems, 13(3):257–288, 2004.

[Jon86] C.B. Jones. Systematic Software Development using VDM. Prentice–Hall, Englewood
Cliffs, New Jersey, USA, 1986.

[Kri94] G. Kristen. Object Orientation – The KISS Method, From Information Architecture to Infor-
mation System. Addison Wesley, Reading, Massachusetts, USA, 1994. ISBN 0201422999

[Lan71] B. Langefors. Editorial notes to: Computer Aided Information Systems Analysis and Design.
Studentlitteratur, Lund, Sweden, EU, 1971.

[Lev79] A.Y. Levy. Basic Set Theory. Springer, Berlin, Germany, EU, 1979.

[Lin92] P. Lindgreen. A General Framework for Understanding Semantic Structures. In E.D.
Falkenberg, C. Rolland, and E.N. El Sayed, editors, Information System Concepts: Improv-
ing the understanding – Proceedings of the second IFIP WG8.1 working conference (ISCO–2),
Alexandria, Egypt, Amsterdam, The Netherlands, EU, April 1992. North–Holland/IFIP
WG8.1. ISBN 0444895078

[Lo05] M.M. Lankhorst and others. Enterprise Architecture at Work: Modelling, Communication
and Analysis. Springer, Berlin, Germany, EU, 2005. ISBN 3540243712

[Mee82] R. Meersman. The RIDL Conceptual Language. Technical report, International Centre
for Information Analysis Services, Control Data Belgium, Inc., Brussels, Belgium, EU,
1982.

[Mer03] Meriam–Webster Online, Collegiate Dictionary, 2003.
http://www.webster.com

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a
fact oriented approach. Prentice–Hall, Englewood Cliffs, New Jersey, USA, 1989. ASIN
0131672630

[PB99] H.A. (Erik) Proper and P.D. Bruza. What is Information Discovery About? Journal of the
American Society for Information Science, 50(9):737–750, July 1999.

http://www.ieee.org
http://www.webster.com

BIBLIOGRAPHY 129

[PBH04] H.A. (Erik) Proper, A.I. Bleeker, and S.J.B.A. Hoppenbrouwers. Object–Role Modelling
as a Domain Modelling Approach. In J. Grundspenkis and M. Kirikova, editors, Pro-
ceedings of the Workshop on Evaluating Modeling Methods for Systems Analysis and Design
(EMMSAD‘04), held in conjunctiun with the 16th Conference on Advanced Information Sys-
tems 2004 (CAiSE 2004),, volume 3, pages 317–328, Riga, Latvia, EU, June 2004. Faculty
of Computer Science and Information Technology. ISBN 9984976718

[Pei69a] C.S. Peirce. Volumes I and II – Principles of Philosophy and Elements of Logic. Collected Pa-
pers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969. ISBN
0674138007

[Pei69b] C.S. Peirce. Volumes III and IV – Exact Logic and The Simplest Mathematics. Collected Pa-
pers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA, 1969. ISBN
0674138005

[Pei69c] C.S. Peirce. Volumes V and VI – Pragmatism and Pragmaticism and Scientific Metaphysics.
Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts, USA,
1969. ISBN 0674138023

[Pei69d] C.S. Peirce. Volumes VII and VIII – Science and Philosophy and Reviews, Correspondence
and Bibliography. Collected Papers of C.S. Peirce. Harvard University Press, Boston,
Massachusetts, USA, 1969. ISBN 0674138031

[PH04] H.A. (Erik) Proper and S.J.B.A. Hoppenbrouwers. Concept Evolution in Information
System Evolution. In J. Gravis, A. Persson, and J. Stirna, editors, Forum proceedings of
the 16th Conference on Advanced Information Systems 2004 (CAiSE 2004), Riga, Latvia, EU,
Riga, Latvia, EU, pages 63–72, Riga, Latvia, EU, June 2004. Faculty of Computer Science
and Information Technology. ISBN 998497670X

[PPY01] M.P. Papazoglou, H.A. (Erik) Proper, and J. Yang. Landscaping the information space
of large multi–database networks. Data & Knowledge Engineering, 36(3):251–281, 2001.

[Pro94a] H.A. (Erik) Proper. A Theory for Conceptual Modelling of Evolving Application Domains.
PhD thesis, University of Nijmegen, Nijmegen, The Netherlands, EU, 1994. ISBN
909006849X

[Pro94b] H.A. (Erik) Proper. ConQuer–92 – The revised report on the conceptual query language
LISA–D. Technical report, Asymetrix Research Laboratory, University of Queensland,
Brisbane, Queensland, Australia, 1994.

[Pro97] H.A. (Erik) Proper. Data Schema Design as a Schema Evolution Process. Data & Knowl-
edge Engineering, 22(2):159–189, 1997.

[Pro98] H.A. (Erik) Proper. Da Vinci – Architecture–Driven Business Solutions. Technical re-
port, Origin, Utrecht, The Netherlands, EU, Summer 1998.

[Pro01] H.A. (Erik) Proper, editor. ISP for Large–scale Migrations. Information Services Pro-
curement Library. ten Hagen & Stam, Den Haag, The Netherlands, EU, 2001. ISBN
9076304882

[Pro04] H.A. (Erik) Proper. Architecture–driven Information Systems Engineering. DaVinci Series.
Nijmegen Institute for Information and Computing Sciences, University of Nijmegen,
Nijmegen, The Netherlands, EU, 2004.

[PW94] H.A. (Erik) Proper and Th.P. van der Weide. EVORM – A Conceptual Modelling Tech-
nique for Evolving Application Domains. Data & Knowledge Engineering, 12:313–359,
1994.

130 BIBLIOGRAPHY

[PW95] H.A. (Erik) Proper and Th.P. van der Weide. A General Theory for the Evolution of
Application Models. IEEE Transactions on Knowledge and Data Engineering, 7(6):984–996,
December 1995.

[RMD99] V.E. van Reijswoud, J.B.F Mulder, and J.L.G. Dietz. Commucation Action Based Busi-
ness Process and Information Modelling with DEMO. The Information Systems Journal,
9(2):117–138, 1999.

[Rop99] G. Ropohl. Philosophy of Socio–Technical Systems. In Society for Philosophy and Technol-
ogy, 4(3), 1999.

[SFG+00] J.J. Sarbo, J.I. Farkas, F.A. Grootjen, P. van Bommel, and Th.P. van der Weide. Meaning
Extraction from a Peircean Perspective. International Journal of Computing Anticipatory
Systems, 6:209–227, 2000.

[Sim62] H.A. Simon. The architecture of complexity. In Proceedings of the American Philosophical
Society, volume 106, pages 467–482, 1962.

[Spi88] J.M. Spivey. Understanding Z: A Specification Language and its Formal Semantics. Cam-
bridge University Press, Cambridge, United Kingdom, EU, 1988.

[Sto77] J.E. Stoy. Denotational Semantics: The Scott–Strachey Approach to Programming Language
Semantics. MIT Press, Cambridge, Massachusetts, USA, 1977.

[SWS89] P.S. Seligmann, G.M. Wijers, and H.G. Sol. Analyzing the Structure of I.S. Methodolo-
gies, an alternative approach. In R. Maes, editor, Proceedings of the First Dutch Conference
on Information Systems, 1989.

[TP91] T.H. Tse and L. Pong. An Examination of Requirements Specification Languages. The
Computer Journal, 34(2):143–152, April 1991.

[Vel92] J. in ‘t Veld. Analyse van organisatieproblemen – Een toepassing van denken in systemen
en processen. Stenfert Kroese, Leiden, The Netherlands, EU, 1992. In Dutch. ISBN
9020722816

[Ver93] T.F. Verhoef. Effective Information Modelling Support. PhD thesis, Delft University of
Technology, Delft, The Netherlands, EU, 1993. ISBN 9090061762

[VHP03] G.E. Veldhuijzen van Zanten, S.J.B.A. Hoppenbrouwers, and H.A. (Erik) Proper. Sys-
tem Development as a Rational Communicative Process. In N. Callaos, D. Farsi,
M. Eshagian–Wilner, T. Hanratty, and N. Rish, editors, Proceedings of the 7th World Mul-
ticonference on Systemics, Cybernetics and Informatics, volume XVI, pages 126–130, July
2003. ISBN 9806560019

[VHP04] G.E. Veldhuijzen van Zanten, S.J.B.A. Hoppenbrouwers, and H.A. (Erik) Proper. Sys-
tem Development as a Rational Communicative Process. Journal of Systemics, Cybernetics
and Informatics, 2(4), 2004.
http://www.iiisci.org/Journal/sci/pdfs/P492036.pdf

[WBW00] B.C.M. Wondergem, P. van Bommel, and Th.P. van der Weide. Matching Index Ex-
pressions for Information Retrieval. Information Retrieval Journal, 2(4), 2000. To appear.

[WBW01] B.C.M. Wondergem, P. van Bommel, and Th.P. van der Weide. Combining Boolean
Logic and Linguistic Structure. Information & Software Technology, (43):53–59, 2001.

[WH90] G.M. Wijers and H. Heijes. Automated Support of the Modelling Process: A view based
on experiments with expert information engineers. In B. Steinholz, A. Sølvberg, and
L. Bergman, editors, Proceedings of the Second Nordic Conference CAiSE‘90 on Advanced
Information Systems Engineering, Stockholm, Sweden, EU, volume 436 of Lecture Notes in
Computer Science, pages 88–108, Berlin, Germany, EU, 1990. Springer. ISBN 3540526250

http://www.iiisci.org/Journal/sci/pdfs/P492036.pdf

BIBLIOGRAPHY 131

[WHB92] Th.P. van der Weide, A.H.M. ter Hofstede, and P. van Bommel. Uniquest: Determining
the Semantics of Complex Uniqueness Constraints. The Computer Journal, 35(2):148–156,
April 1992.

[Win90] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Practice. Kluwer,
Deventer, The Netherlands, EU, 1990.

[WK03] J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your Models Ready
for MDA. Addison Wesley, Reading, Massachusetts, USA, 2nd edition, 2003. ISBN
0321179366

132 BIBLIOGRAPHY

List of Symbols

U |=s v S
′ ⊂a S , U |=s v S

′ ⊂ S and (S′ ∩LI) ⊂ S – For viewer v viewing universe U , system
S′ is a aspect system of S

U |=s v S
′ ⊂c S , U |=s v S

′ ⊂ S and (S′ ∩CO) ⊂ S – For viewer v viewing universe U , system
S′ is a component system of S

CE , ℘(EE) – The set of conception evolutions.

|=c ⊆ UN ×VW ×℘(EL) – A relationship expressing which conception is held by which viewer.
The fact that a viewer v harbours a conception C for universe U is expressed as U |=c v C.

COX , X ∩CO – A subset of the set of concepts.

CO ⊆ EL – The set of elements of a conception that are concepts.

x→C y , x = y ∨ x→C y – A derived relationship providing the decomposition of a com-
posed concept in some viewer’s conception. If x→C y, the concept x in conception C
is decomposed into (possibly amongst others) concept y, or x and y are equal.

→ ⊆ CO×℘(EL)× CO – A derived relationship providing the decomposition of a composed
concept in some viewer’s conception. If x→C y, the concept x in conception C is decom-
posed into (possibly amongst others) concept y.

DC ⊆ LI – Decomposer links.

|=d 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL) – A relationship expressing which concep-
tion of a domain and environment is held by which viewer with a particular interest. The
fact that a viewer v harbours a conception C of domain D with environment E an for
universe U is expressed as U |=d v 〈C : D : E〉.

EE , TI� EL – The set of element evolutions.

EL – The set of elements that may be part of a conception.

From : LI→CO – The source concept of a link.

Involved(r) , {From(r),To(r)} – The set comprising the source and destination elements of a
link in a conception.

< ⊆ TI ×TI – A complete and total order over points in time.

e LinkedToC f , ∃l∈LIC [From(l) = e ∧ To(l) = f] – A (derived) relationship denoting the fact
that there exists a link from one concept to another.

LIX , X ∩LI – A subset of the set of links.

LI ⊆ EL – The set of elements of a conception that are links between concepts.

133

134 LIST OF SYMBOLS

U |=m v M , ∃C,E [U |=m v 〈C : E : M〉] – A relationship expressing which model is held by which
viewer. The fact that a viewer v harbours a model M of part of universe U is expressed as
U |=m v M .

|=m 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL) – A relationship expressing which model
and environment or some part of the universe are held by which viewer. The fact that
a viewer v with a conception C harbours a model M with environment E for a part of
universe U is expressed as U |=m v 〈C : M : E〉.

t1 � t2 , t1<t2 ∧ ¬∃s [t1<s< t2] – The next point in time. As< is a complete and total order,
there is always a unique next point in time. This allows us to write � t.

U |=s v S
′ ⊂ S , U |=s v S, U |=s v S

′ and S′ ⊂ S – For viewer v viewing universe U , system S′

is a sub-system of S

U |=s v S , ∃C,E [U |=s v 〈C : E : S〉] – A relationship expressing which system is viewed by which
viewer. The fact that a viewer v views system S in universe U is expressed as U |=s v S.

|=s 〈 : : 〉 ⊆ UN ×VW ×℘(EL)×℘(EL)×℘(EL) – A relationship expressing which system
and environment are viewed in the universe by a viewer. The fact that a viewer v with
conception C views system M with environment E for a part of universe U is expressed
as U |=s v 〈C : S : E〉.

TI – Points of time.

To : LI→CO – The destination concept of a link.

UN – The set of universes.

VW – The set of viewers.

Dictionary

Active system – A special kind of system that is conceived of as begin able to change parts of
the universe.

Activity participation – A system link between a system activity and one of its actor.

Actor – A system element that is conceived of as having some involvement in a system activity.
This involvement is a special kind of system link, referred to as an activity participation.

Aspect system – an aspect-system S′ of a system S, is a sub-system, where the set of model
links in S′ is a proper subset of the set of the links in S.

Autonomous system – an open active system (possibly also a responsive system, but not a re-
active system) where at least one expression is an action. A human being and most (if not
all) organizations can be regarded as autonomous systems.

Component – Is an abbreviation for: component system.

Component system – A component-system S′ of a system S, is a sub-system, where the set of
model concepts in S′ is a proper subset of the set of entities in S.

Concept – Any element from a conception that is not a link.

Conception – That what results, in the mind of a viewer, when they interpret a perception of a
domain.

Conception evolution – The evolution of a conception.

Construction process – A process aiming to realize and test a system that is regarded as a (pos-
sibly artificial) artifact that is not yet in operation.

Data – Any representation in some language. Data is therefore simply a collection of symbols
that may, or may not, have some meaning to some actor.

Decomposer – The link between a composed concept and one of its underlying concepts.

Definition – The requirements that should be met by a desired work system as well its system
description including the descriptions of the system’s definition, design as well as docu-
mentation for the operational system.

These requirements will typically identify: what it should do, how well it should do this, and
why it should do so.

Definition description – The description of a definition.

Deployment – Is an abbreviation for: deployment.

Deployment process – A process aiming to make a system operational, i.e. to implement the use
of the system by its prospective users.

Description – The result of a viewer denoting a conception, using some language to express
themselves.

Design – The identification and motivation of how a work system will meet the requirements
set out in its definition. The resulting design may (depending on the design goals) range
from high-level designs to the detailed level of programming statements or specific worker
tasks.

135

136 DICTIONARY

Design description – The description of a design.

Domain – Any ‘part’ or ‘aspect’ of the universe a viewer may have an interest in.

Domain evolution – The evolution of a domain over time.

Dynamic system – A special kind of system that is conceived of as undergoing change in the
cause of time.

Element – The elementary parts of a viewer’s conception.

Element evolution – The evolution over time of an element in the conception of a viewer.

Element version – The version of an element evolution as it holds at some point in time. This
version is an element from a viewer’s conception of a universe.

Environment – The environment of a domain is that part of a viewer’s conception of a universe,
which has a direct link to the domain.

Environment evolution – The evolution of an environment over time.

Human actors – An actor which is a single human being, or essentially a set of human-beings,
such as a team.

Information – The knowledge increment brought about when a human actor receives a mes-
sage. In other words, it is the difference between the conceptions held by a human actor
after interpreting a received message and the conceptions held beforehand.

Information system – A sub-system of an organizational system, comprising the conception
of how the communication and information-oriented aspects of an organization are com-
posed and how these operate, thus leading to a description of the (explicit and/or im-
plicit) communication-oriented and information-providing actions and arrangements ex-
isting within the organizational system.

Interest – The specific reason(s) why a viewer observes a domain.

In the case of a system, this this is usually a confluence of the systemic properties of interest
to the system viewer and the aspects of the system that are considered relevant (by the
system viewer to these systemic properties).

Knowledge – A relatively stable, and usually mostly consistent, set of conceptions posessed by
a single (possibly composed) actor.

In more popular terms: “an actor’s picture of the world”.

Link – Any element from a conception that relates two concepts.

Message – Data that is transmitted from one actor (the sender) to another actor (the receiver).

A message may actually be ‘routed’ via several actors before reaching its actual receiver.
For example, when human actor exchange messages, they usually need to make use of
some other actor playing the role of a medium (for example, vibrations in the air, or an
e-mail system).

Model – A purposely abstracted domain (possibly in conjunction with its environment) of some
‘part’ or ‘aspect’ of the universe a viewer may have an interest in.

For practical reasons, a model will typically be consistent and unambiguous with regards
to some underlying semantical domain, such as logic.

Model concept – A concept from a conception which is a model.

Modeling – The act of purposely abstracting a model from (what is conceived to be) a part of
the universe.

Model link – A link from a conception which is a model.

Open active system – A system that is an open system as well as an active system.

DICTIONARY 137

Open system – A special kind of dynamic system that is conceived as reacting to external trig-
gers, i.e. there may be changes inside the system due to external causes originating from
the system’s environment.

Organization – A group of actors with a purpose, who:

• interact with each other,
• form a network of roles,
• make use of (the services of) other actors.

An organization in itself is an actor as well, and may as such participate in yet another
organizations.

Organizational system – A special kind of work system, being normally active and open, and
comprising the conception of how an organization is composed and how it operates (i.e.
performing specific actions in pursuit of organizational goals, guided by organizational
rules and informed by internal and external communication), where its systemic property
are that it responds to (certain kinds of) changes caused by the system environment and,
itself, causes (certain kinds of) changes in the system environment.

Perception – That what results, in the mind of a viewer, when they observe a domain with their
senses, and forms a specific pattern of visual, auditory or other sensations in their minds.

Quality – Is the totality of systemic properties of a system that relate to its ability to satisfy
stated and/or implied needs.

Quality property – A systemic property, used to describe and asses the quality of a system.

Reactive system – An open active system where each expression of the system is a reaction, and
where each impression immediately causes a reaction.

Requirement – an essential quality property that a system or its system description has to sat-
isfy.

Responsive system – An open active system (possibly also a reactive system) where it holds for
at least one expression that a certain impression or a temporal pattern of impressions is a
necessary, but not a sufficient dynamic condition for its occurrence. The receipt of an order
is a necessary impression to a “sales system”, for the expression “delivery of the ordered
goods”, but it is not a sufficient condition.

Sub-system – A sub-system S′ of a system S, is a system where the set of elements in S′ is a
subset of the elements in S.

System – A special model of a system domain, whereby all the things contained in that model
are transitively coherent, i.e. all of them are directly or indirectly related to each other and
form a coherent whole.

A system is conceived as having assigned to it, as a whole, a specific characterisation (a
non-empty set of systemic properties) which, in general, cannot be attributed exclusively
to any of its components.

System activity – A system concept that is conceived of as changing parts of the universe.

System concept – Any element from a system that is a concept.

System description – The description of a system.

System domain – A domain that is conceived to be a system, by some viewer, by the distinction
from its environment, by its coherence, and because of its systemic property.

System element – Any element from a system.

System exposition – a description of all the elements of the system domain where each element
is specified by all its relevant aspects and all the roles it plays, being of importance for the
interest of the viewer. (The system viewer may conceive one and the same thing in the
system domain to play more than one role in the system.)

138 DICTIONARY

Systemic property – A meaningful relationship that exists between the domain of elements con-
sidered as a whole, the system domain and its environment.

System link – Any element from a system that is a link.

System type – A type that determines the potential kinds of systemic properties, elements of
the system domain and roles of the elements in achieving the systemic properties.

System viewer – A viewer of a system domain.

Universe – The ‘world’ under consideration.

Viewer – An actor perceiving and conceiving (part of) a domain.

Work system – An open active system in which actors perform processes using information,
technologies, and other resources to produce products and/or services for internal or ex-
ternal actors.

Author Index

A

Abiteboul, S., 89

Ackoff, R.L., 41

Alter, S., 19, 41

Avison, D.E., 20

B

Batini, C., 88

Bemelmans, T.M.A., 38

Berger, F.C., 11

Bertalanffy, L. von, 23, 28

Bleeker, A.I., 95, 97

Bloesch, A.C., 63

Bommel, P. van, 11, 69

Bonsangue, M., 11

Booch, G., 49, 96, 100

Bronts, G.H.W.M., 11, 77, 88

Brouwer, S.J., 11, 77, 88

Bruza, P.D., 11

Bubenko, J.A., 20

Buuren, R. van, 11

C

Campbell, L.J., 11

Ceri, S., 88

Checkland, P., 25

Chen, P.P., 96

Cohen, B., 20

Creasy, P.N., 11, 77, 80

D

Dietz, J.L.G., 49

E

Ehrich, H.-D., 88

Elmasri, R., 88

Embley, D.W., 49, 96, 100

Engels, G., 88

F

Falkenberg, E.D., 9, 18, 23, 24, 26, 31, 35, 36, 38,
39, 41

Farkas, J.I., 11

Frederiks, P.J.M., 11, 96, 100

G

Gogolla, M., 88

Grootjen, F.A., 11

H

Hülsmann, K., 88

Halpin, T.A., 11, 30, 49, 57, 63, 77, 79, 86, 95, 96,
98, 99

Heijes, H., 96

Hesse, W., 9, 18, 23, 24, 26, 31, 35, 36, 38, 39, 41

Hevner, A., 88

Hofstede, A.H.M. ter, 11, 20, 57, 63, 69, 77, 79,
86, 89

Hohenstein, U., 88

Hoppenbrouwers, J.J.A.C., 11

Hoppenbrouwers, S.J.B.A., 11, 95–98, 100

Horenbeek, I. van, 20

Hull, R., 89

I

Iivari, J., 23

139

140 AUTHOR INDEX

J

Jacobson, I., 49, 96, 100

Jones, C.B., 20

Jonkers, H., 11

K

Kleppe, A., 63

Kristen, G., 49, 96, 100

Kurtz, B.D., 49, 96, 100

L

Löhr-Richter, P., 88

Langefors, B., 23

Lankhorst, M.M, 11

Lankhorst, M.M., 101

Levy, A.Y., 89

Lewi, J., 20

Lindgreen, P., 9, 18, 23, 24, 26, 31, 35, 36, 38, 39,
41

M

Martens, C.L.J., 11, 77, 88

Meersman, R., 63

Mulder, J.B.F, 49

N

Navathe, S.B., 88

Nijssen, G.M., 49, 95, 96, 98

Nilsson, B.E., 9, 18, 23, 24, 26, 31, 35, 36, 38, 39,
41

O

Oei, J.L.H., 9, 18, 23, 24, 26, 31, 35, 36, 38, 39, 41

P

Papazoglou, M.P., 11

Peirce, C.S., 26

Pong, L., 20

Proper, H.A. (Erik), 10, 11, 20, 30, 42, 57, 63, 77,
80, 88, 95–98, 100

R

Reijswoud, V.E. van, 49

Rolland, C., 9, 18, 23, 24, 26, 31, 35, 36, 38, 39, 41

Ropohl, G., 24, 36

Rumbaugh, J., 49, 96, 100

S

Saake, G., 88

Sarbo, J.J., 11

Seligmann, P.S., 96

Simon, H.A., 37

Sol, H.G., 96

Spivey, J.M., 20, 63

Stamper, R.K. and, 9, 18, 23, 24, 26, 31, 35, 36,
38, 39, 41

Stoy, J.E., 66

T

Torre, L. van der, 11

Tse, T.H., 20

V

Veld, J. in ‘t, 38

Veldhuijzen van Zanten, G.E., 11, 96, 100

Verhoef, T.F., 95, 99

Verrijn–Stuart, A.A., 9, 18, 23, 24, 26, 31, 35, 36,
38, 39, 41

Vos, B. van der, 11

Voss, K., 9, 18, 23, 24, 26, 31, 35, 36, 38, 39, 41

W

Warmer, J., 63

Weeldreyer, J., 88

Weide, Th.P. van der, 11, 20, 57, 63, 69, 77, 79,
86, 89, 96, 100

Wijers, G.M., 96

Wintraecken, J.J.V.R., 49

Wondergem, B.C.M., 11

Woodfield, S.N., 49, 96, 100

Y

Yang, J., 11

Subject Index

The following conventions are used in this in-
dex:

• A page where a concept is defined: 141.

• A page where a concept is discussed or
mentioned: 141.

• The page in the dictionary where a con-
cept is defined: 141.

A

active system, 40, 40, 42, 101, 135, 136

activity participation, 135, 135

actor, 9, 18, 19, 26, 37, 38, 41, 135, 135–138

architecting, 10

aspect system, 38, 38, 39, 133, 135

autonomous system, 41, 41, 135, 135

C

communication, 9

component, 23, 25, 37, 38, 135

component system, 38, 38, 39, 133, 135, 135

computerized information system, 41

concept, 29, 29–32, 35, 36, 39, 101, 133, 134, 135,
135–137

conception, 9, 26, 26, 28–32, 35, 36, 40, 42–44,
49, 50, 133, 134, 135, 135, 136

conception evolution, 44, 133, 135

construction process, 10, 135

D

data, 9, 135, 136

decomposer, 32, 34, 135

definition, 9, 10, 135, 135

definition description, 9, 135

definition process, 9

deployment, 10, 135, 135

deployment process, 10, 135

description, 26, 26, 35, 36, 39, 49, 135, 135–137

design, 10, 135, 136

design description, 10, 136

design process, 10

domain, 20, 24, 26, 28, 28–32, 34–36, 38, 39, 44,
133, 135, 136, 136–138

domain evolution, 44, 136

domain modeling, 10

dynamic system, 40, 40, 136, 137

E

element, 24–26, 28, 29, 29, 31, 34–36, 38, 39, 42,
43, 133, 135, 136, 136–138

element evolution, 43, 44, 50, 133, 136, 136

element version, 43, 136

environment, 25, 28–30, 31, 31, 32, 34–36, 40, 41,
44, 133, 134, 136, 136–138

environment evolution, 44, 136

H

human actor, 9, 136, 136

I

information, 9, 19, 41, 136, 138

information system, 18, 23, 24, 37, 40, 41, 42, 136

interest, 26, 28, 31, 35, 39, 133, 136, 136, 137

K

knowledge, 9, 9, 136, 136

L

link, 23–25, 28, 29, 29–32, 35, 36, 38, 39, 133–135,
136, 136, 138

141

142 SUBJECT INDEX

M

message, 9, 136, 136

model, 35, 35, 36, 134, 136, 136, 137

model concept, 35, 38, 135, 136

model element, 35

model link, 35, 38, 135, 136

modeling, 17, 35, 35, 39, 136

O

open active system, 19, 40, 41, 135, 136, 137, 138

open system, 40, 42, 101, 136, 137

organization, 17, 18, 18, 20, 23–26, 35, 37–42,
135, 136, 137, 137

organizational system, 24, 37, 41, 42, 101, 136,
137

P

perception, 26, 26, 135, 137

Q

quality, 137, 137

quality property, 137, 137

R

reactive system, 41, 41, 135, 137, 137

realization process, 10

requirement, 10, 135, 137

responsive system, 41, 41, 135, 137

S

sub-system, 25, 37, 38, 38–42, 134–136, 137

system, 10, 17, 23–26, 28, 29, 35, 36, 36–42, 50,
133–136, 137, 137, 138

system activity, 135, 137

system concept, 36, 137, 137

system description, 10, 36, 135, 137, 137

system domain, 35, 35–37, 39, 137, 137, 138

system element, 36, 135, 137

system exposition, 39, 39, 137

system link, 36, 135, 138

system type, 39, 39, 138

system viewer, 35, 39, 136, 137, 138

systemic property, 25, 26, 35, 35–39, 41, 136, 137,
138, 138

U

universe, 26, 26, 28, 31, 32, 35, 36, 40, 42–44,
133–137, 138

V

viewer, 25, 26, 26, 28–32, 35–37, 39, 42–44, 49,
133–137, 138, 138

W

work system, 10, 17, 19, 19, 20, 23, 24, 40, 41, 41,
135, 137, 138

The DAVINCI Lecture Notes Series:

The DAVINCI series of lecture notes is concerned with The Art & Craft of Information
Systems Engineering. On the one hand, this series of lecture notes takes a fundamental
view (craft) on the field information systems engineering. At the same time, it does
so with an open eye to practical experiences (the art) gained from information system
engineering in industry.

Main contributors:

P. (Patrick) van Bommel S.J.B.A. (Stijn) Hoppenbrouwers

G.F.M. (Ger) Paulussen

H.A. (Erik) Proper Th.P. (Theo) van der Weide

	The DaVinci Series
	Course Description
	Preface
	Introduction
	Organizations
	Information systems
	Work-systems
	A fundamental view on work-systems modeling
	Formal approach
	Questions
	Bibliography

	Work Systems
	Exploring systems
	Observing systems
	Subjectivity
	Observing the universe
	Conceptions
	Model
	System

	Studying systems
	Sub-systems
	Describing systems
	Classes of systems

	Dealing with evolution of conceptions
	Conclusion
	Questions
	Bibliography

	Basic Object-Role Modeling
	Natural language grounding of modeling
	The logbook heuristic
	Verbalizing conceptions
	Elementary facts
	From instances to types
	Subtyping
	Overlap of populations
	Questions
	Bibliography

	Object-Role Calculus
	Introduction
	Computational domain
	Logic layer
	Path expression layer
	Atomic path expressions
	Composing paths
	Evolution and path expressions
	Path expressions as logic

	Graphical constraints
	Mandatory roles
	Uniqueness
	Subsets
	Temporal ordering

	Information-descriptor layer
	Naming of types
	Basic information descriptors
	Complex information descriptors
	Domain rules

	Bibliography

	Advanced Object-Role Modeling
	Subtyping
	Overlap of populations
	Abstraction
	Set types
	Multi-set types
	Sequence types
	Schema types
	Questions
	Bibliography

	The Act of Modelling
	What to model?
	The modeling challenge
	Goal-bounded and communication-driven
	Aspects of a method
	The process of modeling

	Ambition levels for modeling
	Meeting the challenge
	Modeling a singular domain

	Natural-Language Foundations of Information-Systems Modeling
	Classes of roles
	Activity types
	Questions
	Bibliography

	I Apendixes
	Mathematical Notations
	Sets
	Functions
	Relations

	Answers to questions
	Questions from Chapter 1
	Questions from Chapter 2
	Questions from Chapter 3
	Questions from Chapter 5
	Questions from Chapter 7

	Bibliography
	List of Symbols
	Dictionary
	Author Index
	Subject Index

