
Domain Modelling and the Law of Requisite Variety
Current state of an ongoing journey

Henderik A. Proper1,2[0000−0002−7318−2496] and Giancarlo Guizzardi3

1 Luxembourg Institute of Science and Technology (LIST), Belval, Luxembourg
2 University of Luxembourg, Luxembourg
3 Free University of Bolzano-Bozen, Italy

e.proper@acm.org, giancarlo.guizzardi@unibz.it

Abstract. In the 1950’s, W. Ross Ashby introduced (a.o.) the Law of Requisite
variety in the context of General Systems Theory. The key tenet of this Law
is that only “variety can destroy variety”. Towards purposely created artefacts
(such as domain models, including enterprise models), one of the operational
consequences of this Law is the fact that the variety which a designed artefact
needs to “meet”, needs to be reflected in the variety of the artefact itself. In this
paper we explore some of the consequences of the Law of Requisite Variety for
models, modelling languages, and the act of modelling. To this end, we start with
a review of our current understanding of domain modelling (including enterprise
and conceptual modelling), and the role of modelling languages. We then briefly
discuss the Law of Requisite variety, as introduced by Ashby. This is then applied
to our understanding of models, the act of modelling and the role of modelling
languages. This will a.o. lead to insights into important trade-offs in dealing with
(domain) genericity / specificity of modelling languages.

1 Introduction

In the context of software engineering, information systems engineering, business pro-
cess management, and enterprise engineering & architecting in general, many different
kinds of models are used. This includes a.o.: enterprise (architecture) models, business
process models, ontology models, organisational models, information models, software
models, etc. In this paper, we consider each of these kinds of models as being valued
members of a larger family of domain models.

Domain models have come to play an important role during all stages of the life-
cycle of enterprises and their information and software systems. This includes their
development, improvement, maintenance, operation, as well as regulation. The mod-
els involved, carry (potentially valuable) organisational knowledge; putting even more
stress on the role of domain modelling. In line with this, it is interesting to observe that,
for their own institutional information systems, the European Union also relies heavily
on a model-based approach, even resulting in the creation of a dedicated competence
centre for modelling.4

In our view, the key role of domain models across the life-cycle of enterprises, and
their information and software systems, fuels the need for more fundamental reflection

4https://ec.europa.eu/jrc/sites/jrcsh/files/ccmod_leaflet.pdf



on domain modelling itself. This includes the act of modelling, the essence of what a
model is, and the role of (modelling) languages.

Such fundamental topics have certainly been studied by different scholars (see
e.g. [1, 52, 47, 33, 18, 29, 38, 36, 53, 48]), as well as by ourselves (see e.g. [31, 46,
21, 26, 22, 9, 23, 8, 24, 25, 15, 61, 7, 35, 44, 20]). At the same time many challenges
remain. Some of these challenges have been discussed in e.g. [46, 23, 25, 44].

The amount of research effort that has been put into such fundamental topics, seems
limited in comparison to the quantity of research conducted in specific “applied” fields
of modelling, such as software modelling, information modelling, enterprise (archi-
tecture) modelling, (business) rules modelling, and business process modelling. Even
though we do not argue against the importance of research conducted in these “applied”
fields of domain modelling, we do argue that there is a need to find answers to some of
the more fundamental challenges that will lead to generic insights, and results, that can
be applied across the more specific areas of modelling.

In this paper, we focus on the challenge of how domain modelling needs to deal with
different forms of variety (and complexity). We will, as the title of the paper suggests,
do so from the perspective of the Law of Requisite Variety. This Law has been postulated
by W. Ross Ashby [2], in the context of General Systems Theory and Cybernetics in
particular, and also building on Shannon’s Information Theory [50]. In this context,
variety refers to the number of states of a system (system in the most general sense).

The key tenet of the Law of Requisite Variety is that only “variety can destroy vari-
ety”. Towards purposely created artefacts (such as domain models, including enterprise
models), one of the operational consequences of this Law is the fact that the variety
which a designed artefact needs to “meet” should to be reflected in the variety of this
artefact. In line with this, the aim of this paper is to explore the consequences of the
Law of Requisite Variety for models, modelling languages, and the act of modelling.

We see this paper as part of an ongoing “journey” we undertake, with the aim of
deepening our insights into the foundations of domain modelling, mixing our theoretical
work and practical experiences in developing (foundational and core) ontologies and
domain models, associated modelling languages, frameworks, and methods.

The remainder of this paper is structured as follows. In section 2, we start with a
review of our current understanding of domain modelling, while also positioning enter-
prise models and conceptual models in relation to this. Section 3 then complements this
with our view on the modelling languages. We then continue, in section 4, by review-
ing the Law of Requisite variety as introduced by Ashby [2]. In section 5 we explore
(some of) the consequences of this Law on domain modelling. The latter will a.o. lead
to insights into important trade-offs in dealing with (domain) genericity / specificity of
modelling languages.

2 Domain models

Based on foundational work by e.g. Apostel [1], and Stachowiak [52] on the notion
of model and their semiotic roots [39], more recent work on the same by different au-
thors [47, 29, 53, 48], as well as our own work [31, 46, 20, 22, 7], we consider a domain
model to be:



An artefact that is acknowledged by an observer to represent an abstraction of
some domain for a particular purpose.

Each of the stressed words in this definition requires a further explanation, and as we
will see in section 5 results in further nuances when considering the relevant variety
involved.

A model is seen as an artefact. In other words, it is something that exists outside
of our minds. In “our” fields of application, this artefact typically takes the form of
some “boxes-and-lines” diagram. These diagrams, expressed (again, typically) in some
form of concrete visual syntax, can have its grammar specified by a set of rules (e.g.,
a meta-model, a graph grammar [60]), and its semantics defined by a mapping to a
mathematical structural (formal semantics [30]) or to an ontological theory (ontological
or real-world semantics [15]). More generally, domain models can, depending on the
purpose at hand, take other forms as well, including text, mathematical specifications,
physical objects, etc.

With domain, we refer to “anything” that one can speak / reflect about explicitly. It
could be “something” that already exists in the “real world”, something desired towards
the future, or something imagined. The observer observes the domain by way of their
senses and / or by way of (self) reflection. What results in the mind of the observer is,
what is termed a conceptualisation in [22], and a conception in [16].

When the domain to be modelled pertains to a part / perspective / aspect of an
enterprise, then we can indeed refer to the resulting domain model as an enterprise
model.

As, it is ultimately the observer who needs to acknowledge the fact that the artefact
is indeed a model of the domain, it actually makes sense to treat their conceptualisa-
tion / conception of the domain as the de-facto “proxy” for the domain. As such, we
should also realise that the observer observes the model (as artefact) as well, which
therefore also creates a conceptualisation (in their mind) of the model. The observer,
therefore, needs to validate the alignment between their model-conceptualisation and
their domain-conceptualisation, where the purpose of the model determines the align-
ment criteria.

Models are produced for a purpose, also in relation to an expected Return on Mod-
elling Effort (RoME) [42, chapter 4]. In the context of enterprise modelling, [43] sug-
gest (at least) seven high-level purposes for the creation of enterprise models: under-
stand, assess, diagnose, design, realise, operate and regulate. In specific situations,
these high-level purposes will need to be made more specific in terms of, e.g., the
need for different stakeholders to understand, agree, or commit to the content of the
model [45], or for a computer to be able to intepret the model in order to e.g. automati-
cally analyse the model, use the model as the base of a simulation / animation, or even
execute the model, etc.

A model is the representation of an abstraction of the domain [31, 22, 24, 7]. This
implies that, in line with the purpose of the model, some “details” of the domain are
consciously filtered out. As a corollary to this definition, it implies that an observer
(when acknowledging that that some artefact is indeed a model of the domain), must
also be able to identify details in the domain that are not represented in the model.



In the context of domain modelling, four important flavours of abstraction are [4]:
(1) selection, where we decide to only consider certain elements and / or aspects of the
domain; (2) classification; (3) generalisation; and (4) aggregation. In our field of appli-
cation, selection typically leads to frameworks of aspects / layers by which to model an
enterprise, but also to mechanisms for view extraction (see discussion below), as well
as clustering and model summarisation [17, 27]. Classification, typically leads to some
class-instance and / or type-instance relationships, including type-instance relationships
between types and higher-order types, i.e., multi-level structures [10]; generalisation
leads to the formation of specialisation / generalisation taxonomies, in which sub-types
specialise properties of super-types; aggregation leads to the formation of partonomies
of various kinds in which entities, seen as integral wholes, can be decomposed into
parts. Parts, on the other hand, hang together bound by some unity criterion that forms
the whole [26].

As a consequence of the above, an observer actually needs to harbour (at least) four
conceptualisations: (1) a “full” conceptualisation of the domain (as they “see” it), (2) a
conceptualisation of the purpose for the model, (3) an abstracted conceptualisation of
the domain, (4) a conceptualisation of the artefact that is (to be) the model representing
the latter abstraction.

Purpose

Model

Model Abstraction Domain Domain
observeabstract

representobserve

Purpose

observe

aligned?

modifies

influences
Observer’s 
conceptualisation

Fig. 1. Conceptualisations involved in domain modelling

The latter has been illustrated in figure 1, where we see the four conceptualisations
in the middle, where the conceptualisation of the purpose modifies the abstraction and



the question of alignment between the conceptualisations of the model and the desired
abstraction. The purpose may actually already influence the original observation of the
domain.

When the model-conceptualisation corresponds to the abstraction-conceptualisation,
then the observer would agree that the artefact is a model of the domain for the given
purpose. As a consequence, different models (as artefacts) may indeed result in the
same model-conception, in which case (for the observer) they are equivalent models of
the same domain (for the same purpose).

If the observer is “the modeller”, i.e. the person creating the model, they also
need to “shape” the model in such a way that it best matches their desired model-
conceptualisation.

So-far, we used the observer in the singular sense. In practice, modelling obviously
involves multiple observers. Both during the process of creating a model, but in partic-
ular also during the usage of the model. Each of the observers involved in the life-cycle
of a model will have their own domain-conceptualisation, purpose-conceptualisation,
abstraction-conceptualisation, and model-conceptualisation, which also need mutual
alignment among the observers. This is, indeed, a major challenge in collaborative mod-
elling [44].

A notion related to model is the notion of a view, which is heavily used in the con-
text of enterprise architecture [32], but actually dates back from well before enterprise
architecture became popular [57]. We would argue that a view, by the nature of its
name, provides a view on a larger / more detailed model, analogous to the way in which
a database view provides a selection and / or aggregation on an underlying database.
As such a view involves a further abstraction (in terms of e.g. selection, classification,
generalisation, or aggregation) of the domain [17, 27].

In line with the above discussion, a domain model should be (the representation
of) the abstraction of (the conceptualisation of) a domain. At the same time, for differ-
ent purposes, such as the ability to use the model as a base for simulation, computer-
based reasoning, animation, execution, or database design, it may be necessary to make
“compromises” to the model. These compromises result in a model that does not corre-
spond to (an abstraction of) the original domain. They are essentially models of a “close
enough” approximation of (the conceptualisation of) the original domain.

For instance, OWL-based [37] domain models are likely to involve compromises to
enable computational properties. Even more, conceptual database design [28] often in-
troduces compromises such as the closed world assumption or unique name assumption.
These assumptions are made for computational reasons, but are of course not assump-
tions that are generally made in real life. Other examples are the limitations found in
many mainstream (but not all!) Object-Oriented programming languages in which an
object instantiates a single static direct class and in which classes cannot not specialise
multiple supertypes.5

This is where we can make a distinction between conceptual domain models and
non-conceptual domain models in the sense that a conceptual domain model is:

5Technically speaking, because generalisation is transitive, if x instantiates A then x instanti-
ates all supertypes of A. What this rule is meant to represent is that if x instantiates type A and B
then these two types must be related by a generalisation path.



A model of a domain, where the purpose of the model is dominated by the
ambition to remain as-true-as-possible to the original domain.

Note the use of the word ambition. We are not suggesting there to be a crisp border
between conceptual and non-conceptual domain models. However, the word ambition
also suggest that a modeller / observer, as their insight in a domain increases should be
driven to reflect on the conceptual purity of their conceptualisation and of the resulting
model.

Non-conceptual domain models certainly have an important role to play. However,
it is important to be aware of the compromises one has made to the original domain con-
ceptualisation. As such, it is also possible that one conceptual model has different asso-
ciated non-conceptual models, each having compromises to meet different purposes.

Since we consider models to be artefacts, it is relevant to briefly consider the notion
of identity of such artefacts. In other words, when are two models the same, or not?

From an ontological point of view, artefacts are historically dependent on their cre-
ators [54]. If two people write content-wise identical novels (by total chance), these are
still two different books (artifacts). In other words, “authorship” is part of the identity
of an artefact. We argue that the same holds for models. In other words, if two models
look the same, but have different creators, they are not the same.

We would also argue that the purpose with which an artefact, in particular a model,
is created is part of the artefact’s identity. So, even when a model or a book “looks” the
same, if they are created for a different purpose, then they are different.

Finally, when one author writes both a Dutch and a Portuguese version of the same
book, then even if they are the same content-wise, they are two different books. There-
fore, the language used is also part of the identity of the artefact. Of course, anyone
who is multilingual knows quite well that across languages it is not easy to say if a
text is “content-wise” the same, due to different socio-cultural understandings of words
and situations. The same applies in the context of domain models. An ER model [11],
an ORM model [28], and a UML class diagram [40] might have the same real-world
semantics. At the same time, their formal semantics is likely to differ, although with
some assumed mappings between the modelling concepts (the underlying ontologies of
these languages), one may be able to prove semantic equivalence.

3 The role of modelling languages

In its most general form a language identifies the conventions to expressions in the
language should conform to.

In a domain modelling context, these conventions are often equated to a definition
in terms of a concrete visual syntax, and a grammar in terms of a set of rules, while the
semantics are defined in terms of some mathematical structure (formal semantics [30])
or an ontological theory (ontological or real-world semantics [15]). However, style
guides, reference models, patterns, etc, can also be seen as part of the set of conventions
that define a (modelling) language.

Sometimes, a modelling language comes in the form of a number of connected sub-
languages. Typical examples are ARIS [49], UML [40] and ArchiMate [3, 34], each



featuring more specific languages focused on one aspect or layer, as well as (some
more, some less) the integration / coherence between these aspects or layers.

By way of its grammar / meta-model / ontological underpinning, a modelling lan-
guage does provide a normative frame [44] which the “user” of the language needs to
commit to.

When modelling, a normative frame can be beneficial as it provides guidance for the
conceptualisation of a domain, and the abstraction needed to arrive at a model that meets
the purpose. However, a normative frame can also start to act as a straitjacket or even
lead to tunnel vision [5]. It can also lead practitioners to use UML [40], BPMN [41] or
ArchiMate [3, 34] “in name only”, in the sense of creating diagrams in a free-format
drawing tool, while using the symbols from one of these languages freely beyond the
rules / definitions of the language.

The role of modelling languages as a normative frame, has certainly sparked a lot
of debate in literature as well. For example, Wyssusek’s [58] critique on the Bunge-
Wand-Weber ontology [55] providing a normative frame on the linguistic structure of a
modelling language, resulted in a lively debate (summarised in [59]).

As discussed in the previous section, we argue that the language used in creating
a model is part of the identity of the model. Actually, we would prefer to take this
argument a step further. If a model is represented in some (pre-)defined language, then
the (relevant part of the) definition of that language should actually be seen as being a
part of the model. This also allows us to illustrate the role of the modelling language in
the sense of providing a trade off. If, given some purpose, there is a need to represent
an abstraction A, and one has a choice between using a language L1 with an elaborate
set of conventions (the light grey part), or using a language L2 with only a more limited
set of conventions (the dark grey part), then this will lead to a difference in the size of
the (situation specific parts of the) model one would still need have to specify. This has
been illustrated in figure 2, where we show that the “size” of the two models as a whole
remains the same. Of course, the notion of “size” is to be clarified. We will return to
this in section 5 when discussing the consequences of the Law of Requisite Variety, as
the “size” indeed connects directly to the variety of the model.

M1: A in L1 M2: A in L2

Fig. 2. Trade off between languages with different sizes of their definition

A final consideration is the fact that the conventions which define a modelling lan-
guage need to reflect the intended set of valid models. Which also means that these



conventions need to accommodate all the possible purposes of these intended models.
For standardised general purpose languages, such as UML [40], BPMN [41] or Archi-
Mate [3, 34], this does lead to tensions, as the set of purposes keeps growing, resulting
in a continuous growth of the set of allowable models, thus also triggering a growth in
the “size” of the body of conventions defining these languages [8, 5].

As such, the we should also realise that the grey parts in figure 2 amount only to that
part of the respective languages that are relevant for the interpretation of the white parts.
However, the other parts of the language will also need to be learned by the “users” of
the language, or at least be visible as part of the standard.

4 The Law of Requisite Variety

The Law of Requisite Variety, as defined by W. Ross Ashby [2, page 2020], while also
building on Shannon’s Information Theory [50], states that only “variety can destroy
variety”. Ashby’s work is one of the defining contributions to the field of General Sys-
tems Theory and Cybernetics in particular.

In this context, variety essentially refers to the number of states of a system, where
we should consider systems in the most general sense. The idea of only “variety can
destroy variety” is that for a system C to control / manage a system R, system C must
(at least) match the variety of R. Here it is important to clearly understand the scope of
the system that would need to be controlled. For example, controlling a car in the sense
of getting it into motion and steering it in a certain direction on an empty car park, is
quite different from driving a car through busy traffic. The latter system clearly needs
to deal with a larger variety.

In the context of purposely created artefacts, such as cars, books, software, and
domain models, different kinds of variety can be discerned, such as:

1. variety of the functional requirements on the artefact,
2. variety of the functional non-requirements on the artefact,
3. variety of the design of the artefact,
4. variety of the production of the artefact,
5. variety of the artefact itself,
6. variety of the (mis)usage scenarios of the artefact,
7. variety of a specific (mis)usage scenario of the artefact,
8. variety of pragmatic conventions (e.g., layout choices that signal expertise),
9. variety of complexity management mechanisms (e.g., patterns, modules),

10. variety required from a user of the artefact to use it for its intended purposes,
11. ...

The variety of the requirements are in principle linked to the varieties of (mis)usage.
However, the former is more by design oriented, whereas the latter ones does not really
emerge until the artefact is actually in use, which may indeed go beyond its intended
use.

When considering the artefact in use, it is of course important to also identify the
perspective of the user. Hence the need to distinguish between the variety of scenarios
of use, and the variety of a specific scenario. For instance, a photo book might have
multiple (types) of usage scenarios; each with their own variety:



1. From the perspective of someone who cannot read the language in which the book
is written in, it is nice to look at the photos.

2. From the perspective of someone interested in art, it is interesting to look at the
photos, and read the text explaining the story behind the photo.

3. From the perspective of an aspiring photographer, it is interesting to study the pho-
tos, the text, as well as the used lenses, exposure times, and focal length.

Needless to say, that for domain models there are clear analogies to be identified.
Before discussing the consequences of the Law of Requisite variety for domain

modelling (in the next section), it is important to link variety to complexity and uncer-
tainty. There seems to be no unified view of what complexity is. Nevertheless, whenever
something is regarded as “complex” it implies that

1. there is some observer(s) who look(s) at a domain (the “something” that is regarded
as complex),

2. this observer then harbours (in their mind) a conceptualisation of the domain,
3. mentally “navigating” (and understanding) this conceptualisation involves a large

state space, i.e., a large space of possible distinctions,
4. in other words, understanding the domain requires a a high level of variety (requi-

site variety) on the side of the observer.

As such, we argue that to observe something that is (to be called) complex implies a
requisite variety on the side of the observer. At a more abstract level, the system “the
observer who observes and tries to understand a domain” needs a variety that matches
the variety of the observed domain. Which of course needs to “fit” within the cognitive
abilities of the observer. If the variety needed to understand the structures of the domain
is experienced as “high” then the observer would call that domain “complex”.

We can take this a step further in the sense that the understanding of something may
also lead to the insight that there are several uncertainties / unknowns. Which, in terms
of the observer’s conceptualisation of the something, leads to a more nuanced / refined
conceptualisation involving the known unknowns, and potential unknown unknowns.
In other words, the observer harbours a conceptualisation with a number of identified
question marks, i.e. more variety. This, then lead to a further increase in the requisite
variety that is asked from the observer.

Here it is interesting to mention the Cynefin [51] framework, which makes a distinc-
tion between simple, complicated, complex, chaotic, and disorderly problems. Under-
lying these “levels”, there is an increase in the complexity and uncertainties about the
problem domain (about which one is to take decisions). We would argue that in terms
of variety, the requisite variety expected from the decision maker(s) increases from the
simple to the disorderly problems.

5 Consequences for domain modelling

In this section we discuss (some of) the consequences of the Law of Requisite variety
on domain modelling. In doing so, we will visit the varieties of (1) the domain to be
captured in the model, (2) the purpose for the model, (3) the desired abstraction, (4) the
model itself, (5) the modelling language landscape, (6) the actors involved in modelling.



Variety of the domain – The domain that is to be modelled has an inherent variety. This
variety may be due to the complexity of the domain, or unknown elements in / about
the domain.

The first challenge with this variety is to ensure that this variety is acknowledged,
and is then translated to a purpose for modelling, resulting in models capturing the va-
riety. In this regards, it is important to refer back to our earlier discussion in section
4, regarding the Cynefin [51] framework, making a distinction between simple, com-
plicated, complex, chaotic, and disorderly problems. This framework does underline
the need to acknowledge the variety (in terms of complexities and uncertainties) of the
domain being modelled.

Variety of the model purpose – The purpose of the model leads to three kinds of more
specific kinds of variety.

The first kind of variety concerns the information that the model needs to be able to
provide about the domain. In other words, the informational payload (as also mentioned
by e.g. [38]) that the model is expected to have. This variety drives the requisite variety
expected from the model in relation to the domain.

The second kind of variety pertains to the social complexity of the context in which
the model is created. This is where, based on experiences from the IBIS project [12],
Conklin coins the term social-complexity [13, 14]. This social-complexity involves both
the people involved in the creation of a specific model (i.e. collaborative modelling),
as well as the stakeholders involved in a software / information systems / enterprise
engineering effort.

The third kind of purpose related variety is concerned with the potential of multiple
uses of a model. In other words, a model, once created, might be used for multiple more
specific purposes. On the one hand, this variety should lead to some measures to ensure
that a model can indeed be used for these more specific purposes. At the same time,
it also illustrates the need to clearly include the purpose of the model with the model
itself, as a kind of disclaimer / instructions for use and interpretation.

Variety of the abstraction – Driven by the model purpose, there is a need to capture a
relevant (but not trivialised) part of the variety of the domain to be modelled. This means
that the purpose of the model, and the inherent variety of the domain, result in a requisite
variety that needs to be covered by the abstraction (and indeed, the representation in
terms of the model as artefact).

From a modelling-task point of view, this is actually the most challenging form
of variety. In other words, the actual “art” of modelling lies here; finding the right
abstraction needed for the purpose at hand. This also requires a balance between the
simplification / abstraction needed for the model’s purpose and target audience, and the
inherent complexity / variety of the domain.

Variety of the model – In the context of models, we need to consider three kinds of more
specific variety.

Firstly, the variety of the model links directly to the “informational payload” of the
model as required by its purpose. This information payload has a direct impact on the
variety required from the model, thus also resulting in a minimal “complexity” of the
domain itself.



Here it it interesting to refer back to older discussions (in the field of information
systenms engineering) regarding the complexity of modelling notations. As also men-
tioned by Moody [38], models need to provide some informational payload. A simpler
notation might be easier to learn, and easier to look at when used in models, but when
it cannot “carry” the needed informational payload, then the more “simpler” notation
may actually turn out to be a liability.

Furthermore, the variety of the model takes us back to the earlier discussion about
the fact that two different models may actually correspond to the same model-concep-
tualisation for an observer. As such, there is a variety of variations of the actual repre-
sentation as an artefact (of the same model-conceptualisation / abstraction-conceptual-
isation).
Variety of the modelling language landscape – This variety involves the variety of the
modelling language itself, as well as the entire landscape of interlinked modelling lan-
guages involved in a software / information systems / enterprise engineering context.

The discussion related to figure 2 already pointed at the need to essentially in-
clude the (relevant parts of the) definition of the modelling language in a model. The
whole of the specified model (the white parts in figure 2) and the parts provided by
the language (the gray parts in figure 2), needs to match the variety of the abstraction-
conceptualisation. The border between these, however, can be determined.

Of course, when using a “thin” language with a small set of conventions, it may
be easy to learn the language, and also easy to create modelling tools that support the
language. At the same time, specifying the actual models (the white parts in figure
2) will require more effort than it would cost when using a language with more pre-
defined concepts and conventions. Provided of course, that these (pre-defined concepts
and conventions) indeed meet the modelling purpose, and domain, at hand.

Beyond a single language, a software / information systems / enterprise engineering
effort will involve a mix of modelling languages, and supporting tools. This resulting
landscape is a “domain modelling system” with its own variety. A variety that also
needs to be acknowledged and managed [6].
Variety to be met by those involved in modelling – This refers to the requisite variety
needed from the actors (human and / or IT-based) involved modelling.

We already pointed at the fact that the system: “the observer who observes and tries
to understand a domain” needs to meet the variety of the domain, effectively requiting
the observer having the appropriate cognitive abilities.

So, far, not much work has been done on the required cognitive abilities of the actors
involved in modelling. Some work which we are aware of includes [19, 56].

6 Conclusion

In this paper we explored some of the consequences of the Law of Requisite Variety for
domain models, tha associated modelling languages, and the act of modelling.

We first provided a review of our current understanding of domain modelling (in-
cluding enterprise and conceptual modelling), and the role of modelling languages. In
doing so, we already pointed at some of the considerations that have a Law of Requisite
Variety related underpinning.



Using this as a base, we then explored some of the possible consequences / chal-
lenges of the Law of Requisite Variety in a domain modelling context.

As mentioned in the introduction, we see paper as part of an ongoing “journey”,
with the aim of deepening our insights into the foundations of domain modelling. In line
with this, we certainly do not claim this paper to be a fully finished work. It provides
a snapshot of our current understanding, and we hope that debates with our colleagues
will aid us in continuing our journey.

References

1. Apostel, L.: Towards the Formal Study of Models in the Non-Formal Sciences. Synthese 12,
125–161 (1960)

2. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London, United Kingdom
(1956)

3. Band, I., Ellefsen, T., Estrem, B., Iacob, M.E., Jonkers, H., Lankhorst, M.M., Nilsen, D.,
Proper, H.A., Quartel, D.A.C., Thorn, S.: ArchiMate 3.0 Specification. The Open Group
(2016)

4. Batini, C., Mylopoulos, J.: Abstraction in conceptual models, maps and graphs. In: Tutorial
presented at the 37th Intl. Conf. on Conceptual Modeling, ER 2018, Xi’an, China (2018)

5. Bjeković, M.: Pragmatics of Enterprise Modelling Languages: A Framework for Understand-
ing and Explaining. Ph.D. thesis, Radboud University, Nijmegen, the Netherlands (2018)

6. Bjeković, M., Proper, H.A., Sottet, J.S.: Towards a coherent enterprise modelling landscape.
In: Sandkuhl, K., Seigerroth, U., Stirna, J. (eds.) Short Paper Proceedings of the 5th IFIP
WG 8.1 Working Conference on the Practice of Enterprise Modeling, Rostock, Germany,
November 7-8, 2012. CEUR Workshop Proceedings, vol. 933. CEUR-WS.org (2012)

7. Bjeković, M., Proper, H.A., Sottet, J.S.: Embracing pragmatics. In: Yu, E.S.K., Dobbie, G.,
Jarke, M., Purao, S. (eds.) Conceptual Modeling - 33rd International Conference, ER 2014,
Atlanta, GA, USA, October 27-29, 2014. Proceedings. Lecture Notes in Computer Science,
vol. 8824, pp. 431–444. Springer, Heidelberg, Germany (2014)

8. Bjeković, M., Proper, H.A., Sottet, J.S.: Enterprise modelling languages - just enough stan-
dardisation? In: Shishkov, B. (ed.) Business Modeling and Software Design - Third Interna-
tional Symposium, BMSD 2013, Noordwijkerhout, The Netherlands, July 8-10, 2013, Re-
vised Selected Papers. Lecture Notes in Business Information Processing, vol. 173, pp. 1–23.
Springer, Heidelberg, Germany (2014)

9. Bommel, P.v., Hoppenbrouwers, S.J.B.A., Proper, H.A., Roelofs, J.: Concepts and Strategies
for Quality of Modeling. In: Halpin, T.A., Krogstie, J., Proper, H.A. (eds.) Innovations in
Information Systems Modeling, chap. 9. IGI Publishing, Hershey, Pennsylvania (2008)

10. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Multi-level ontology-based
conceptual modeling. Data & Knowledge Engineering 109, 3–24 (2017)

11. Chen, P.P.: The Entity–Relationship Model: Towards a Unified View of Data. ACM Trans-
actions on Database Systems 1(1), 9–36 (March 1976)

12. Conklin, J.: The IBIS Manual: a short course in IBIS methodology. Touchstone (2003)
13. Conklin, J.: Dialogue Mapping: Building Shared Understanding of Wicked Problems. John

Wiley & Sons, New York, New York (2005)
14. Conklin, J.: Wicked Problems and Social Complexity. Tech. rep., CogNexus Institute, Edge-

water, Maryland (2006)
15. De Carvalho, V., Almeida, J., Guizzardi, G.: Using reference domain ontologies to define

the real-world semantics of domain-specific languages. In: International Conference on Ad-
vanced Information Systems Engineering. pp. 488–502. Springer (2014)



16. Falkenberg, E.D., Verrijn–Stuart, A.A., Voss, K., Hesse, W., Lindgreen, P., Nilsson, B.E.,
Oei, J.L.H., Rolland, C., Stamper, R.K. (eds.): A Framework of Information Systems Con-
cepts. IFIP WG 8.1 Task Group FRISCO, IFIP, Laxenburg, Austria (1998)

17. Figueiredo, G., Duchardt, A., Hedblom, M.M., Guizzardi, G.: Breaking into pieces: An on-
tological approach to conceptual model complexity management. In: 2018 12th International
Conference on Research Challenges in Information Science (RCIS). pp. 1–10. IEEE (2018)

18. Frank, U.: Multi-perspective Enterprise Modeling (MEMO) - Conceptual Framework and
Modeling Languages. In: HICSS ’02: Proceedings of the 35th Annual Hawaii International
Conference on System Sciences (HICSS’02)-Volume 3. p. 72. IEEE Computer Society Press,
Los Alamitos, California, Washington, DC (2002)

19. Frederiks, P.J.M., Weide, T.P.v.d.: Information Modeling: the process and the required com-
petencies of its participants. Data & Knowledge Engineering 58(1), 4–20 (July 2006), best
paper award in NLDB 2004 conference

20. Guarino, B., Guizzardi, G., Mylopoulos, J.: On the philosophical foundations of conceptual
models. Information Modelling and Knowledge Bases XXXI 321, 1 (2020)

21. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. Ph.D. thesis, Uni-
versity of Twente, Enschede, the Netherlands (2005)

22. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta)
models. Frontiers in artificial intelligence and applications 155, 18 (2007)

23. Guizzardi, G.: Theoretical foundations and engineering tools for building ontologies as ref-
erence conceptual models. Semantic Web 1(1, 2), 3–10 (2010)

24. Guizzardi, G.: Ontology-based evaluation and design of visual conceptual modeling lan-
guages. In: Domain engineering, pp. 317–347. Springer (2013)

25. Guizzardi, G.: Ontological patterns, anti-patterns and pattern languages for next-generation
conceptual modeling. In: International Conference on Conceptual Modeling. pp. 13–27.
Springer (2014)

26. Guizzardi, G., Pires, L.F., Van Sinderen, M.: An ontology-based approach for evaluating the
domain appropriateness and comprehensibility appropriateness of modeling languages. In:
International Conference on Model Driven Engineering Languages and Systems. pp. 691–
705. Springer (2005)

27. Guizzardi, G., Figueiredo, G., Hedblom, M.M., Poels, G.: Ontology-based model abstrac-
tion. In: 2019 13th International Conference on Research Challenges in Information Science
(RCIS). pp. 1–13. IEEE (2019)

28. Halpin, T.A., Morgan, T.: Information Modeling and Relational Databases. Data Manage-
ment Systems, Morgan Kaufman, 2nd edn. (2008)

29. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics”? IEEE
Computer 37(10), 64–72 (2004). https://doi.org/10.1109/MC.2004.172

30. Hofstede, A.H.M.t., Proper, H.A.: How to formalize it?: Formalization principles for infor-
mation system development methods. Information and Software Technology 40(10), 519–
540 (October 1998)

31. Hoppenbrouwers, S.J.B.A., Proper, H.A., Weide, T.P.v.d.: A fundamental view on the process
of conceptual modeling. In: Delcambre, L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, O.
(eds.) Conceptual Modeling - ER 2005, 24th International Conference on Conceptual Mod-
eling, Klagenfurt, Austria, October 24-28, 2005, Proceedings. Lecture Notes in Computer
Science, vol. 3716, pp. 128–143. Springer, Heidelberg, Germany (June 2005)

32. ISO/IEC/IEEE: Systems and software engineering – Architecture description is an interna-
tional standard for architecture descriptions of systems and software. Tech. Rep. ISO/IEC
42010, ISO (July 2011)

33. Krogstie, J.: A Semiotic Approach to Quality in Requirements Specifications. In: Kecheng,
L., Clarke, R.J., Andersen, P.B., Stamper, R.K., Abou–Zeid, E.S. (eds.) Proceedings of the



IFIP TC8 / WG8.1 Working Conference on Organizational Semiotics: Evolving a Science of
Information Systems. pp. 231–250. Kluwer, Deventer, the Netherlands (2002)

34. Lankhorst, M.M., Hoppenbrouwers, S.J.B.A., Jonkers, H., Proper, H.A., Torre, L.v.d., Arbab,
F., Boer, F.S.d., Bonsangue, M., Iacob, M.E., Stam, A.W., Groenewegen, L., Buuren, R.v.,
Slagter, R.J., Campschroer, J., Steen, M.W.A., Bekius, S.F., Bosma, H., Cuvelier, M.J.,
ter Doest, H.W.L., van Eck, P.A.T., Fennema, P., Jacob, J., Janssen, W.P.M., Jonkers, H.,
Krukkert, D., van Leeuwen, D., Penders, P.G.M., Veldhuijzen van Zanten, G.E., Wieringa,
R.J.: Enterprise Architecture at Work – Modelling, Communication and Analysis. The En-
terprise Engineering Series, Springer, Heidelberg, Germany, 4th edn. (2017)

35. van der Linden, D.J.T., Proper, H.A., Hoppenbrouwers, S.J.B.A.: Conceptual understanding
of conceptual modeling concepts: A longitudinal study among students learning to model.
In: Iliadis, L.S., Papazoglou, M.P., Pohl, K. (eds.) Advanced Information Systems Engineer-
ing Workshops - CAiSE 2014 International Workshops, Thessaloniki, Greece, June 16-20,
2014. Proceedings. Lecture Notes in Business Information Processing, vol. 178, pp. 213–
218. Springer, Heidelberg, Germany (2014)

36. Mahr, B.: On the epistemology of models. In: Abel, G., Conant, J. (eds.) Rethinking Episte-
mology, pp. 1–301. De Gruyter (2011)

37. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language: Overview. Tech. rep.,
W3C (February 2004)

38. Moody, D.L.: The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual
Notations in Software Engineering. IEEE Transactions on Software Engineering 35(6), 756–
779 (2009)

39. Ogden, C.K., Richards, I.A.: The Meaning of Meaning – A Study of the Influence of Lan-
guage upon Thought and of the Science of Symbolism. Magdalene College, University of
Cambridge, Oxford, United Kingdom (1923)

40. OMG: OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2. Tech. rep.,
The Object Management Group, Needham, Massachusetts (November 2007)

41. OMG: Business Process Modeling Notation, V2.0. Tech. Rep. OMG Document Number:
formal/2011-01-03, Object Management Group, Needham, Massachusetts (January 2011)

42. Op ’t Land, M., Proper, H.A., Waage, M., Cloo, J., Steghuis, C.: Enterprise Architecture -
Creating Value by Informed Governance. The Enterprise Engineering Series, Springer, Hei-
delberg, Germany (2008)

43. Proper, H.A.: Digital Enterprise Modelling - Opportunities and Challenges. In: Roelens, B.,
Laurier, W., Poels, G., Weigand, H. (eds.) Proceedings of 14th International Workshop on
Value Modelling and Business Ontologies, Brussels, Belgium, January 16-17, 2020. CEUR
Workshop Proceedings, vol. 2574, pp. 33–40. CEUR-WS.org (2020), http://ceur-ws.
org/Vol-2574/short3.pdf

44. Proper, H.A., Bjeković, M.: Fundamental challenges in systems modelling. In: Mayr, H.C.,
Rinderle-Ma, S., Strecker, S. (eds.) 40 Years EMISA 2019. pp. 13–28. Gesellschaft für In-
formatik e.V., Bonn (2020)

45. Proper, H.A., Hoppenbrouwers, S.J.B.A., Veldhuijzen van Zanten, G.E.: Communication of
enterprise architectures. In: Enterprise Architecture at Work – Modelling, Communication
and Analysis [34], pp. 59–72

46. Proper, H.A., Verrijn–Stuart, A.A., Hoppenbrouwers, S.J.B.A.: On utility-based selection of
architecture-modelling concepts. In: Hartmann, S., Stumptner, M. (eds.) Conceptual Mod-
elling 2005, Second Asia-Pacific Conference on Conceptual Modelling (APCCM2005),
Newcastle, NSW, Australia, January/February 2005. Conferences in Research and Practice
in Information Technology Series, vol. 43, pp. 25–34. Australian Computer Society, Sydney,
New South Wales, Australia (2005)

47. Rothenberg, J.: The Nature of Modeling. In: Artificial intelligence, simulation & modeling,
pp. 75–92. John Wiley & Sons, New York, New York, United States of America (1989)



48. Sandkuhl, K., Fill, H.G., Hoppenbrouwers, S.J.B.A., Krogstie, J., Matthes, F., Opdahl, A.L.,
Schwabe, G., Uludag, Ö., Winter, R.: From Expert Discipline to Common Practice: A Vi-
sion and Research Agenda for Extending the Reach of Enterprise Modeling. Business &
Information Systems Engineering 60(1), 69—80 (2018)

49. Scheer, A.W.: Architecture of Integrated Information Systems: Foundations of Enterprise
Modelling. Springer, Heidelberg, Germany, Secaucus, New Jersey (1992)

50. Shannon, C.E.: A Mathematical Theory of Communication. In: The Bell System Technical
Journal. vol. 22, pp. 379–423,623–656 (1948)

51. Snowden, D.J., Boone, M.E.: A leader’s framework for decision making. Harvard Business
Review 85(11), 68–76 (November 2007)

52. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Heidelberg, Germany (1973)
53. Thalheim, B.: The Theory of Conceptual Models, the Theory of Conceptual Modelling and

Foundations of Conceptual Modelling. In: Handbook of Conceptual Modeling, pp. 543–577.
Springer, Heidelberg, Germany (2011)

54. Thomasson, A.L., et al.: Fiction and metaphysics. Cambridge University Press (1999)
55. Wand, Y., Weber, R.: An Ontological Model of an Information System. IEEE Transactions

on Software Engineering 16(11), 1282–1292 (November 1990)
56. Wilmont, I., Barendsen, E., Hoppenbrouwers, S.J.B.A., Hengeveld, S.: Abstract Reasoning

in Collaborative Modeling. In: Hoppenbrouwers, S.J.B.A., Rouwette, E.A.J.A., Rittgen, P.
(eds.) proceedings of the 45th Hawaiian International Conference on the System Sciences,
HICSS-45; Collaborative Systems track, Collaborative Modeling minitrack. IEEE Explore,
Los Alamitos, California (2012)

57. Wood–Harper, A.T., Antill, L., Avison, D.E.: Information Systems Definition: The Multi-
view Approach. Blackwell, Oxford, United Kingdom (1985)

58. Wyssusek, B.: On Ontological Foundations of Conceptual Modelling. Scandinavian Journal
of Information Systems 18(1) (2006)

59. Wyssusek, B.: Ontological Foundations of Conceptual Modelling Reconsidered: A Re-
sponse. Scandinavian Journal of Information Systems 18(1), Article 8 (2006)

60. Zambon, E., Guizzardi, G.: Formal definition of a general ontology pattern language using
a graph grammar. In: 2017 Federated Conference on Computer Science and Information
Systems (FedCSIS). pp. 1–10. IEEE (2017)

61. Zarwin, Z., Bjeković, M., Favre, J.M., Sottet, J.S., Proper, H.A.: Natural modelling. Journal
Of Object Technology 13(3), 4: 1–36 (July 2014)


