

Enabling Value Co-Creation in Customer Journeys with VIVA

Iván S. Razo-Zapata1, Eng K. Chew2 , Qin Ma3, Loïc Gammaitoni3, and Henderik A. Proper1
1 Luxembourg Institute of Science and Technology, L-4362 Esch-Sur-Alzette, Luxembourg

E-mail: {ivan.razo-zapata,erik.proper}@list.lu
2 University of Technology Sydney, Australia

E-mail: eng.chew@uts.edu.au
3 University of Luxembourg

Abstract
We present a VIsual language to design VAlue (VIVA) co-creation (VCC) for a given business from a customer perspective. VIVA
aims to clearly map the high-level foundations of VCC onto generic and specific requirements to design and monitor VCC. VIVA’s
main concepts and relationships are inspired by ideas in business modelling, marketing, and service science, whereas the overall design
of the language is driven by a domain specific language (DSL) engineering approach. In this paper, we validate VIVA’s abstract syntax
and concrete syntax using Lightning, which leads to the improvement of VIVA as well as to the definition of constraints ruling the use
of VIVA. Likewise, we illustrate the use of VIVA by means of a case study within the citizen science project Watergram. Finally, we
present some discussion and elaborate on future work.

Keywords:
Business design, customer journey, value co-creation, visual language

1 INTRODUCTION
The contemporary transition from goods-dominant to service-
dominant economies requires organizations (public or private) to
reconceptualise the way they create value – a multi-actor
(stakeholder) interactive process of resource integration in which
the customer plays a dominant proactive role. Value co-creation
(VCC) supports such reconceptualization endeavour since it defines
the “processes and activities that underlie resource integration and
incorporate different actor roles in the service ecosystem”, which
ultimately lead the joint creation of benefits (i.e. value) [1].

Despite the fact that the VCC concept has been deeply studied, its
highly conceptual nature, however, makes it difficult for service
developers to fully operationalize the idea. As an attempt to address
this gap, we have already proposed a VIsual language to design
VAlue co-creation (VIVA) [2]. Briefly, VIVA is a VIsual language
to design VCC for a given business from a customer perspective.
VIVA aims to clearly map the high-level foundational requirements
of VCC onto generic and specific requirements to design VCC.
VIVA allows designing VCC by specifying full customer journeys
in which an end customer and service suppliers integrate resources
via three types of encounters, i.e. coordination, cooperation, and
collaboration. VIVA’s main concepts and relationships are inspired
by ideas in business modelling, marketing, and service science,
whereas the overall design of the language is driven by a domain
specific language (DSL) engineering approach.

As VIVA’s development is an on-going work, in this paper, we
present an initial validation of VIVA’s abstract syntax and concrete
syntax by means of the use of the Lightning tool [3]. We also
provide an exploratory work on how to monitor the overall VCC
process with the aim to guarantee the fulfilment of a desired
customer journey (thus VCC).

Likewise, we follow a design science research (DSR) approach as
VIVA is ultimately an artefact that aims to solve “an
organizational” problem [4], i.e. designing VCC from the point of
view of customers. In this way, the rest of the paper is organized as
follows: Section 2 presents literature review on VCC, whereas
Section 3 describes the method used to build our artefact. Section 4
presents the initial design of the artefact, which is then validated
using Lightning in Section 5. This is followed by an example on
how to use the artefact to design a customer journey within the
citizen science project Watergram (in Section 6). Afterwards,
Section 7 provides discussion on main assumptions, lessons

learned, and open challenges. Finally, we present general
conclusions and ideas on future work in Section 8.

2 LITERATURE REVIEW
Since VIVA is a visual language to design VCC, we have analysed
work related not only to (1) the notion of value and (2) VCC but
also to (3) the design of domain specific languages and (4) visual
modelling. The former two elements (1) and (2) represent what
DSR calls descriptive knowledge (i.e. what we know about the
phenomena of VCC), whereas the last two (3) and (4) represent the
prescriptive knowledge (i.e. how we can build up artefacts). A full
description of such analysis can be found at [2]. The next
paragraphs, however, briefly elaborate on some of the relevant
aspects.

2.1 Value co-creation
Service-dominant logic (SDL) suggests the idea that value co-
creation (VCC) encompasses the “processes and activities that
underlie resource integration and incorporate different actor roles in
the service ecosystem” [1]. Moreover, the notion of value in use is
an important driver within the VCC process as it represents the
realized customer value which encapsulates aspects regarding
personalization, relationship, and experience [5,6].

Some work also recognizes the idea that value is a multi-
dimensional and experiential phenomenon [7,8,9]. In fact,
Holbrook defines customer value as an interactive relativistic
preference experience, which manifests along four main types of
value: economic, social, hedonic, and altruistic [7]. Economic value
encompasses experiences that fulfill utilitarian objectives, whereas
social value covers experiences that may trigger the response of
others. Altruistic value deals with experiences having an intrinsic
(self-justifying) nature and may impact on others too. Finally,
Hedonic value refers to experiences that are appreciated for the
simple pleasure they provide to you.

To actually involve the end customer in the co-creation of such
experiences requires mastering the interactions between end
customers and service suppliers. In this context, Ballantyne and
Varey, have suggested the existence of three forms of interaction
between customer and service suppliers during value creation, i.e.
coordination, cooperation and collaboration [10]. Coordination is

considered an informative and persuasive interaction in which an
actor tries to coerce the other, whereas cooperation is a
communicational interaction that is perceived as a more equitable
exchange between actors. Collaboration, in contrast, is seen as an
emergent dialogical interaction in which actors learn from each
other and jointly create value.

These interactions, nonetheless, actually occur within the context of
a given customer journey [11]. It is within customer journeys that
the overall cumulative experience ultimately influences the value
being co-created by both customers and service suppliers [12].
Furthermore, successfully managing customer journeys benefits
also suppliers since they can increase their revenue, improve
employee satisfaction, and distinguish much better in the market
[12].

2.2 Design of Domain Specific Languages
As explained in [2], VIVA has been designed as a domain specific
modelling language (DSML). There are a few methods to design
DSMLs. Karagiannis has proposed an agile modelling method
engineering that covers the creation, design, formalisation,
development, and deployment/validation of a DSL [13]. In a similar
way, Frank has designed a method that encompasses seven steps:
clarification of scope and purpose, analysis of generic
requirements, analysis of specific requirements, language
specification, design of graphical notation, development of
modelling tool, and evaluation and refinement [14].

To tackle the design of graphical notation, Frank suggests following
Moody’s principles, which deal with: semiotic clarity, perceptual
discriminability, semantic transparency, complexity management,
cognitive integration, visual expressiveness, dual coding, graphic
economy, and cognitive fit [15]. There are also tools to help
language designers with the agile validation of DSMLs. One of
them is the Lightning workbench that allows formal specification
and agile validation of DSMLs [3]. It has been applied to validate
DSMLs in various domains, from robotics [16] to business
processes [17].

2.3 Visual Modelling
There are already different visual tools for modelling business
ideas, services, and customer journeys. The well-known business
model canvas (BMC) uses nine building blocks to design a business
idea from the perspective of a company [18]. The e3value
modelling tool provides a value-based abstraction to design
business networks that are composed of several companies working
together in a service delivery process [19]. Both, BMC and e3value,
however do not focus on the customer perspective since they take
the point of view of a single company (BMC) or a network of
companies (e3value). BMC, however, has been recently extended
with the so-called Value Proposition Canvas (VPC) with the aim to
look closer at the interaction between a customer and a company
[20]. There have been also recent efforts on providing support for
modelling customer journeys [21, 22]. They all, however, do not
differentiate the various forms of interaction taking place between
customers and providers. For example, as highlighted by Ballantyne
and Varey [10], coordination, cooperation and collaboration
interactions are actually key elements within VCC.

3 METHOD
3.1 Design Science Research Approach
We follow a design science research (DSR) approach to build up
VIVA [2,4]. Section 3.2 presents the main method applied during
the design of VIVA, whereas Section 4 and Section 5 respectively
present the main artefact and its validation with lightning.

3.2 VIVA as a Domain Specific Modelling Language

To design VIVA’s main elements, we have followed Frank’s
method [14]. The first three steps are covered in Section 3.2.1,
3.2.2, and 3.2.3. The last steps are covered in the remaining
sections of the paper. Section 4 introduces the language
specification and the graphical notation. To improve the language
specification and the design of the graphical notation, we have
applied Lightning in Section 5. The evaluation and refinement is
performed in Section 6 via a case study. Note that we still do not
cover the development of the modelling tool, as it requires actual
software implementation, which is outside the scope of this paper.

3.2.1 Clarification of scope and purpose.
VIVA’s main purpose is to enable business users to design and
model their desired value co-creation processes for a given business
or service context [2]. Unlike BMC and e3value, VIVA focuses on
customers and how they interact with service providers by
supporting the design of customer journeys.

3.2.2 Analysis of generic requirements.
As explained in [2], the development of VIVA must satisfy four
generic requirements: VCC design (GR1): VIVA must enable
business users to design VCC for a given business or service
context (e.g. a travel journey), Communication (GR2): VIVA
should support communicating ideas among stakeholders in a
simple and intuitive way. Analysis (GR3): VIVA should support the
basic analysis of resulting designs. Computer support (GR4): VIVA
must be implemented as a software tool to allow designing and
analysing VCC.

3.2.3 Analysis of specific requirements.
Based on the generic requirements, we have defined seven specific
requirements [2]. Resources (SR1): VIVA should be able to
represent relevant resources that are integrated as part of VCC.
Forms of co-creation (SR2): VIVA should support describing co-
ordination, co-operation and collaboration. Beneficiary centric
(SR3): VIVA should focus on the relationships
(encounters/touchpoints) established between an end customer and
suppliers of a service ecosystem. Background agnostic (SR4):
Intuitive use for different audiences (e.g. business or technical).
Visual support (SR5): VIVA’s constructs should help users to
design VCC. Semantic support (SR6): Basic reasoning tasks should
be supported. Standardised representation (SR7): VIVA should be
represented in a “formal” modelling tool.

4 VIVA LANGUAGE (ARTEFACT)
4.1 Language
The VIVA meta-model is presented in Figure 1. The main concepts
are: Journey, Encounter, Value, Actor, Role, and Resource. Briefly,
a Journey contains encounters in which two actors participate, one
playing the role of customer and the second one playing the role of
provider. Actors playing their respective roles bring resources to the
encounter, which allows the co-creation of value [2]. Finally, we
also acknowledge that abstract concepts such as encounter, value,
resource, and actor can be specialized into more detailed concepts.
For instance, an encounter can be either coordination, cooperation
or collaboration [2].

4.2 Visual constructs
Table 1 presents the visual constructs that are part of VIVA and are
required to design customer journeys. As one can see, we
distinguish different types of encounters (cooperation, coordination,
and collaboration) as well as different types of value and resource.

Table 1 VIVA Constructs
Encounter Value Resource Actor
Coordination

Economic

Knowledge

Human

Cooperation

Social

Skill

Collaboration

Hedonic

Technology

Machine

 Altruistic

Asset

5 VALIDATION WITH LIGHTNING
In Lightning, a DSML definition is composed of: (1) an abstract
syntax model (ASM) defining the concepts and well-formed
constraints of the language; (2) a concrete syntax model (CSM)
defining how models expressed in the defined language are to be
visually depicted; and (3) a semantics model (SM) defining the
meaning of the language, in terms of operational semantics [17].

The specification of ASMs, CSMs, and SMs in Lightning is done in
the Alloy language [23], and the transformations among them are
specified in the F-Alloy language [24]. Both Alloy and F-Alloy are
formal specification languages (for models and model
transformations respectively) based on first-order relational logic.

Figure 2 DSML Validation Process in Lightning

As depicted in Figure 2, after a language engineer defines a DSML
in Lightning, the design of the DSML can be validated by domain
experts directly in an intuitive, visual and interactive way without
requiring any technical skills [25]. More specifically, instances
conforming to the DSML specification or counter-example
disproving some properties of the DSML are automatically
generated by a so-called SATISFIABILITY (SAT) solver (the
Alloy Analyzer), and rendered in a domain-specific visual notation

to be reviewed by domain experts. The language engineer then
collects feedback from domain experts and refines the design of the
DSML. Instances of the new version of the DSML will again be
generated and rendered graphically to be validated by domain
experts. Such a process can be iterated as many times as needed
until the designed DSML meets the expectation of the domain
experts.

In the following, we will validate the VIVA language with
Lightning. We start by validating the abstract syntax of VIVA (the
metamodel depicted in Figure 1). After several iterations, when
instances generated from the abstract syntax all satisfy the
expectation of the domain expert, we move on to investigating
alternatives of concrete syntax of VIVA.

5.1 Validating VIVA abstract syntax
5.1.1 Define VIVA ASM
The Alloy model defining the ASM of VIVA is as follows:

module VIVA/AbstractSyntax/ASM

sig Journey {

description: one disj String,
// one means the multiplicity of description is [1..1]
// disj means journeys have distinct descriptions
contains: seq Encounter
// seq means encounters are ordered

}{
 some contains.elems

// some means the multiplicity of contains is [1..*]
}

abstract sig Encounter {
 description: disj String,
 hasCustomer: one Customer,
 hasProvider: one Provider,
 coCreatesValue: some Value
}{
 one this.~contains

// ~.contains refers to the inverse of contains
// which is the isContainedIn reference (cf. Figure 1)
// one means the multiplicity of isContainedIn is [1..1]

 #coCreatesValue>1 and #coCreatesValue<9
// this fact restrains the multiplicity of contains to [2..8]

}

sig Coordination, Cooperation, Collaboration extends Encounter{}
// Three subclasses of Encounter

abstract sig Actor{
 playsRole: some Role,
 name: one disj String
}

sig Human, Machine extends Actor{}
// Two subclasses of Actor

abstract sig Role{
 brings: some Resource,
 benefitsFrom: some Value
}{

 #brings<=4
// this fact restrains the multiplicity of brings to [1 ..4]

 #benefitsFrom<=4
 // this fact restrains the multiplicity of benefitsFrom to [1..4]
 one this.~playsRole

// the multiplicity of playedByActor,
// which is the inverse of playsRole
// is restrained to [1..1]

}

sig Customer extends Role{}{
 one this.~hasCustomer

// the multiplicity of participatesInEncounter,
// which is the inverse of hasCustomer
// is restrained to [1..1]

}

sig Provider extends Role{}{
 one this.~hasProvider

// the multiplicity of participatesInEncounter,
// which is the inverse of hasProvider
// is restrained to [1..1]

}
abstract sig Resource {
 description: one disj String,
}{
 some this.~brings
 // the multiplicity of broughtBy,
 // which is the inverse of brings
 // is restrained to [1..*]
}

abstract sig Operant extends Resource{}
sig Knowledge, Skill extends Operant{}
abstract sig Operand extends Resource{}
sig Technology, Asset extends Operand{}
abstract sig Value{
 description: one disj String
}{
 one this.~benefitsFrom

// the multiplicity of providesBenefitTo,
// which is the inverse of benefitsFrom
// is restrained to [1..1]

 one this.~coCreatesValue
// the multiplicity of coCreatedBy,
// which is the inverse of coCreatesValue
// is restrained to [1..1]

}

sig EconomicValue, SocialValue, HedonicValue, AltruisticValue extends
Value{}

This ASM is a straightforward translation to Alloy of the class
diagram given in Figure 1. More specifically, (abstract) classes are
defined as Alloy (abstract) signatures, and structural features (i.e.,
references and attributes) are defined as Alloy fields. A field “f:
S2” defined in signature S1 represents a relation between the two
signatures S1 and S2. For example, in the Encounter signature
above, a field “hasCustomer: Customer” is defined to represent the
“hasCustomer” reference from class Encounter to class Customer as
specified by the metamodel in Figure 1.

It is worth noticing how opposite references are handled in
Lightning. According to the metamodel specification in Figure 1,
the opposite of “hasCustomer” is defined by another reference
called “participatesInEncounter”. In Lightning, thanks to the
inverse operator “~” of relations provided by Alloy, we only need
to define one relation for the reference “hasCustomer”, and we can
refer to the opposite reference “participatesInEncounter” simply by
“~hasCustomer”.

5.1.2 Generate instances of VIVA ASM
After specifying the ASM of VIVA, Lightning executes this
specification in the Alloy Analyzer to exhaustively generate all
instances conforming to the ASM within a pre-defined (relatively
small) scope. The effectiveness of this approach relies on the so-
called “small scope hypothesis”, which states that “errors in
specifications can usually be demonstrated with small
counterexamples” [26].
Generated instances are supposed to be presented to domain experts
for validation one after another in order for them to detect potential
anomalies. As in most cases, domain experts do not necessarily
possess the skills to interpret instances that are generated directly
by the Alloy Analyzer. To cope with this, Lightning allows us to
give an intuitive domain specific visualization to the generated
ASM instances. This is done by specifying a model transformation
in Lightning from the VIVA ASM to a visual modelling language
(VLM). VLM is a standard Alloy module defined in Lightning that
offers a set of common graphical concepts such as shapes (e.g.,
rectangles and ellipses), colours, layouts, and connectors (e.g.,
arrows or lines) that allow to connect shapes. With the help of the
VIVA-ASM-to-VLM transformation, a VLM instance (following
the visual constructs defined in Section 4.2) will be automatically
generated for each generated VIVA ASM instance, and Lightning
can parse and graphically render these VLM instances. It is
interesting to note that the ASM to VLM model transformation is
expressed in the F-Alloy language, a language only supported by
Lightning allowing the concise specification in Alloy of efficiently
computable model transformations.

Figure 3 An instance conforming to VIVA ASM and rendered

visually using the notations defined in Section 4.2

We show in Figure 3 one of the instances generated by Lightning
for VIVA ASM. This instance does not correspond to any real-life
VCC scenario because it is automatically generated with random
descriptions. However, it is an interesting instance because it
reveals several inaccuracies in the VIVA ASM specification.
1) There are two journeys “A Day spent at a Water Park” and

“A Day spent at the War Museum” in this instance. However,
according to domain knowledge, only one journey can exist in
the context of a VCC scenario (C1).

2) The second journey starts directly with a collaboration
encounter “Coffee time”. However, according to domain
knowledge, each journey should start with a coordination
encounter (C2), and a collaboration encounter can only take
place after a cooperation encounter (C3).

3) The first journey ends with a cooperation encounter “lunch”.
However, according to domain knowledge, to reach the goal of
VCC, each journey should go through at least one
collaboration encounter (C4).

4) In the first journey, the actor “audio guide” plays the role of
provider in the first encounter and the role of customer in the
second encounter. However, according to domain knowledge,
in the context of a journey, an actor cannot be both the
customer and the provider (C5).

5) In the second journey, the actor “audio guide” plays the role
of customer in the first encounter and the actor “Erik” plays
the role of customer in the second encounter. However,
according to domain knowledge, in the context of a journey,
the role of customer must be played by the same actor across
all the encounters (C6).

6) There are three encounters (the two encounters of the first
journey and the first encounter of the second journey) in which
the role of customer is played by a machine actor. However,
according to domain knowledge, the role of customer can only
be played by human actors (C7).

7) In the second encounter “visit” of the second journey “A Day
spent at the War Museum”, the customer “Erik” benefits from
three times economic values (“50 euro”, “10 dollar”, and “10
euro” respectively). However, according to domain
knowledge, values benefiting a role should all be of different
value types (C8).

8) In the first encounter “Coffee time” of the second journey, the
provider “server” brings twice asset resources (“Sherman
Tank” and “Costume Collection”). However, according to
domain knowledge, resources brought by a role should all be
of different resource types (C9).

If the language engineer specifies such domain knowledge in the
form of explicit constrains, those mistakes can easily be avoided.
However, they were somehow overlooked because of the
knowledge gap between domain experts and the language engineer.
More specifically, just like the domain experts have no idea about
the Alloy syntax, the language engineer has no pre-existing
knowledge of the value co-creation domain either. Lightning
overcomes the first kind of knowledge gap by enriching the
automatically generated ASM instance with a domain-specific
visualization. And the iterative “specification, generation and
validation” process of Lightning helps to reduce exactly the second
kind of knowledge gap. There is no other effective means for the
domain experts to realize the imprecisions in the language
specification except for letting them witness faulty example
instances.

5.1.3 Refine VIVA ASM with missing constraints
Following is the refined VIVA ASM. It imports the previous VIVA
ASM and specifies additional constraints (defined as Alloy “facts”)

to capture the missing domain knowledge that is assumed by
domain experts.
module VIVA/AbstractSyntax/constrainedASM
open VIVA/AbstractSyntax/ASM

fact C1{ // For each VIVA model, there is EXACTLY ONE journey
 one Journey
}
fact C2{ // A journey should start with a Coordination encounter
 Journey.contains[0] in Coordination
}
fact C3{ // A Collaboration cannot take place without a cooperation
encounter having taken place already.

all c: Collaboration|
 some x:Cooperation|
 Journey.contains.idxOf[x]< Journey.contains.idxOf[c]

}
fact C4 { // A Journey should have at least one Collaboration encounter
 Journey.contains.elems & Collaboration != none
}
fact C5{ // An actor CANNOT play the role of providers and consumer in
the same journey
 no Encounter.hasConsumer.~playsRole

 & Encounter.hasProvider.~playsRole
}
fact C6{ //The consumer MUST BE played by the same actor in all
encounters
 one Encounter.hasConsumer.~playsRole
}

fact C7{ // The role of consumer CAN ONLY BE played by a human actor
 Encounter.hasConsumer.~playsRole in Human
}
fact C8{ // The values providing benefits to a role MUST BE from different
value types
 all r:Role{
 lone r.benefitsFrom & EconomicValue
 lone r.benefitsFrom & SocialValue
 lone r.benefitsFrom & HedonicValue
 lone r.benefitsFrom & AltruisticValue
 }
}
fact C9{ // The resources brought by a role MUST BE from different
resource types
 all r:Role{
 lone r.brings & Skill
 lone r.brings & Knowledge
 lone r.brings & Technology
 lone r.brings & Asset
 }
}

Instances of the refined VIVA ASM are again exhaustively
generated and reviewed by the domain experts within a given
scope. This time, no errors are observed any more, and the domain
experts accept the validity of the abstract syntax.

5.2 Investigating alternative concrete syntaxes
The modularity of the language specification in Lightning allows to
seamlessly try out different concrete syntax for the same language.
Indeed, to do so, it suffices to simply define alternative VIVA-

ASM-to-VLM transformations. In this paper, we demonstrate two
ways of presenting VIVA customer journeys: the first alternative
follows the de facto standard way of presenting customer journeys
in the form of tables [22], while the second alternative adopts a
graph-like appearance. For illustration purpose, we present the
same watergram project example discussed in Section 6 in both
formats in Figure 4 and Figure 5 respectively.

6 EXAMPLE

To illustrate the use of VIVA to enable VCC, we have applied it to
the design of a customer journey within an on-going project. The
watergram project aims to raise awareness on water quality in
Luxembourg by exploring an approach based on so-called citizen
science [27]. Watergram relies on citizens (mostly young students
enrolled in high-school) working together with scientist and science
communicators/facilitators to increase the amount and quality of
data on water quality in Luxembourg (see also http://water-
hackers.lu/). Moreover, one of the main elements of the watergram
project is a digital platform that should allows students to upload
water samples with information about the quality of water
measured in such samples (i.e. pH, oxygen, and turbidity). VIVA is
used in this context to model the journey travelled by students that
allows co-creating value at different stages.

As depicted in Figure 4 and Figure 5 (an alternative concrete syntax
generated with Lightning), the journey starts with the students
getting trained on basic concepts regarding the water cycle (first
encounter) and the different analyses that can be done to a water
sample (second encounter). Both encounters are modelled as
coordination since the laboratory scientist (in the first encounter)
and the laboratory technician (in the second encounter) are actually
leading the value creation process. Likewise, both encounters
indicate the resources each actor brings (e.g. the students “bring”
their basic understanding of water properties) as well as the value
they expect to create (e.g. the students expect to learn about the
water cycle). Note that acquiring knowledge is modelled as an
economic value because it actually fulfils a utilitarian purpose, i.e.
learning about something.

Later on, the journey evolves into a more cooperative interaction
since the students and the workshop facilitator work together
building so-called Do It Yourself (DIY) tools. The students bring to
these encounters the knowledge that was acquired in the first two
encounters.

The last two encounters are actually real collaborations between the
students, the web developer, and the water scientist. Within the co-
design of the watergram platform, the group of students not only
learn about co-designing platforms and have fun with it but also
provide important user requirements to the web developers, i.e.
both sides really learn from each other. Likewise, during the
collection, analysis and upload of water samples, the group of
students and the water scientist both learn from each other. On the
one hand, students learn about collecting, analysing and uploading
samples in a natural setting. On the other hand, the water scientist
learns more about water quality in Luxembourg as well as from
students’ feedback.

7 DISCUSSION
Although VIVA has been previously evaluated in [2], the validation
performed with Lightning has provided relevant insights, which
will be used to improve VIVA’s design as well as the final
development in a software tool. In this sense, the discovery of
unseen constraints is one the most relevant insights. This also
confirms the added value of using Lightning.

By using VIVA in the Watergram project, we also discovered two
relevant findings. First, we observe that VCC actually involves a
knowledge creation process in which providers and customers have
the opportunity to actually learn from each other. Second, while
still giving some room to creativity, VIVA forces designers to
precisely define encounters and to think about the value(s) being
co-created as well as the resources that are needed. This property
seems important to better structure customer journeys that can
ultimately achieve VCC.

Figure 4. Watergram student’s journey

Figure 5. Watergram student’s journey (alternative concrete syntax)

8 CONCLUSIONS AND FUTURE WORK
VIVA is a promising tool that has been also previously evaluated
by a group of potential users (see [2]). The overall tool, however,
still requires some improvement. In this way, the next steps will
focus on validating VIVA within other real-world case studies as
well as on the development in a software tool. To achieve the first
step, we plan to contact business designers working on projects that
require innovation via the design of new services. Regarding the
second step, we will continue iterating with Lightning to later on
achieve a mature description to be implemented in modelling
frameworks such as ADOxx (https://www.adoxx.org/live/home).

9 REFERENCES
[1] R. F. Lusch and S. Nambisan, “Service innovation: A service-
dominant logic perspective.” Mis Quarterly, vol. 39, no. 1, pp. 155–
175, 2015.
[2] I. S. Razo-Zapata, E. K. Chew, and E. Proper, “VIVA: A VIsual
Language to Design VAlue Co-creation” in 20th IEEE International
Conference on Business Informatics, 2018.
[3]: Gammaitoni, L., Kelsen, P., & Glodt, C. (2015, October).
Designing languages using lightning. In Proceedings of the 2015
ACM SIGPLAN International Conference on Software Language
Engineering (pp. 77-82). ACM.
[4] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee,
“A design science research methodology for information systems
research,” Journal of Management Information Systems, vol. 24,
no. 3, pp. 45–77, 2007. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.2753/ MIS0742-
1222240302
[5] A. F. Payne, K. Storbacka, and P. Frow, “Managing the co-
creation of value,” Journal of the Academy of Marketing Science,
vol. 36, no. 1, pp. 83–96, 2008. [Online]. Available:
http://dx.doi.org/10.1007/ s11747- 007- 0070- 0
[6] K. R. Ranjan and S. Read, “Value co-creation: concept and
measurement,” Journal of the Academy of Marketing Science, pp.
1–26, 2014. [Online]. Available: http://dx.doi.org/10.1007/s11747-
014- 0397- 2
[7] M. B. Holbrook, “Consumption experience, customer value, and
subjective personal introspection: An illustrative photographic
essay,” Journal of Business Research, vol. 59, no. 6, pp. 714 – 725,
2006.
[8] Martina G. Gallarza, Francisco Arteaga, Giacomo Del Chiappa,
Irene Gil-Saura, Morris B. Holbrook, (2017) "A multidimensional
service-value scale based on Holbrook’s typology of customer
value: Bridging the gap between the concept and its
measurement", Journal of Service Management, Vol. 28 Issue:
4, pp.724-762,https://doi.org/10.1108/JOSM-06-2016-0166
[9] K. R. Ranjan and S. Read, “Value co-creation: concept and
measurement,” Journal of the Academy of Marketing Science, pp.
1–26, 2014. [Online]. Available: http://dx.doi.org/10.1007/s11747-
014- 0397- 2
[10] D. Ballantyne and R.J. Varey, “Creating value-in-use through
marketing interaction: the exchange logic of relating,
communicating and knowing,” Marketing theory, vol. 6, no. 3, pp.
335–348, 2006.
[11] A. F. Payne, K. Storbacka, and P. Frow, “Managing the co-
creation of value,” Journal of the Academy of Marketing Science,
vol. 36, no. 1, pp. 83–96, 2008. [Online]. Available:
http://dx.doi.org/10.1007/ s11747- 007- 0070-0
[12] A. Rawson, E. Duncan, and C. Jones, “The truth about
customer experience,” Harvard Business Review, vol. 91, no. 9, pp.
90–98, 2013.
[13] D. Karagiannis, “Agile modeling method engineering,” in
Proceedings of the 19th Panhellenic Conference on Informatics, ser.
PCI ’15. New York, NY, USA: ACM, 2015, pp. 5–10. [Online].
Available: http://doi.acm.org/10.1145/2801948.2802040
[14] U. Frank, “Domain-specific modeling languages: requirements
analysis and design guidelines,” in Domain Engineering. Springer,
2013, pp. 133–157.
[15] D. Moody, “The physics of notations: Toward a scientific basis
for constructing visual notations in software engineering,” Software
Engineering, IEEE Transactions on, vol. 35, no. 6, pp. 756–779,
Nov 2009.
[16] Gammaitoni, L., & Hochgeschwender, N. (2016). RPSL meets
lightning: A model-based approach to design space exploration of
robot perception systems. RPSL meets lightning: A model-based
approach to design space exploration of robot perception systems.

[17] Gammaitoni, L., Kelsen, P., & Mathey, F. (2014). Verifying
modelling languages using lightning: a case study. MoDeVVa
2014: Model-Driven Engineering, Verification and Validation, 19-
28.
[18] A. Osterwalder, “The business model ontology - a proposition
in a design science approach,” Ph.D. dissertation, University of
Lausanne, Ecole des Hautes Etudes Commerciales HEC, 2004.
[19] J. Gordijn and J. Akkermans, “Value-based requirements
engineering: exploring innovative e-commerce ideas,”
Requirements Engineering, vol. 8, pp. 114–134, 2003,
10.1007/s00766-003-0169-x. [Online]. Available:
http://dx.doi.org/10.1007/s00766-003-0169-x
[20] B. model generation, “Value proposition canvas,”
https://strategyzer.com/canvas/value-proposition-canvas, [Online;
accessed 01-February-2018].
[21] R. Halvorsrud, E. Lee, I. M. Haugstveit, and A. Følstad,
“Components of a visual language for service design,” in ServDes.
2014 Service Future; Proceedings of the fourth Service Design and
Service Innovation Conference; Lancaster University; United
Kingdom; 9-11 April 2014, no. 099. Linko ̈ping University
Electronic Press, 2014, pp. 291–300.

[22] Kalbach, J. (2016). Mapping experiences: A complete guide to
creating value through journeys, blueprints, and diagrams. "
O'Reilly Media, Inc.".
[23] Jackson, D. (2006). Software abstractions (Vol. 2). Cambridge:
MIT press.
[24] Gammaitoni, L., & Kelsen, P. (2017). F-Alloy: a relational
model transformation language based on Alloy. Software &
Systems Modeling, 1-35.
[25] Gammaitoni, L., Kelsen, P., & Ma, Q. (2016, July). Agile
validation of higher order transformations using F-Alloy. In
Theoretical Aspects of Software Engineering (TASE), 2016 10th
International Symposium on (pp. 125-131). IEEE.
[26] Jackson, D. (1998). Boolean compilation of relational
specifications. Technical Report. Massachusetts Institute of
Technology Cambridge, MA, USA.
[27] Franzoni, C., & Sauermann, H. (2014). Crowd science: The
organization of scientific research in open collaborative projects.
Research policy, 43(1), 1-20.

Figure1 VIVA metamodel

