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Abstract

In many non trivial application domains, object types with a complex structure occur. Data modelling
techniques which only allow flat structures are not suitable for representing such complex object types. In
this paper a general data modelling technique, the Predicator Set Model, is introduced, which is capable
of representing complex structures in a natural way.

The expressiveness of the Predicator Set Model is illustrated by means of a number of examples.
In those examples, the Predicator Set Model’s expressiveness is related to the expressiveness of more
traditional modelling techniques. Furthermore, some notational conventions are defined, which enable a
more compact representation of complex structures.

1 Introduction
The conventional Relational Model and ER approach allow for a high-level description of data and rela-
tions, abstracting from representation and implementation details. Main disadvantage, however, is their
incapability of representing complex structures in a natural way. In these techniques, complex structures
have to be “flattened”, i.e. represented non-hierarchically, which leads to overspecification. This in turn
does not comply with the conceptualisation principle as it is formulated in [ISO87].

Various application domains indeed contain objects with complex structures. Documents (and Hyper-
texts) are an example in the field of office automation. In [Wig90] it is estimated that 1% of all recorded
information is contained in so-called formatted databases (e.g. a relational database), 4% is recorded on
microfiche, while the remaining 95% is contained in unformatted databases. Unformatted databases are
capable of containing objects with variable components and varying size (e.g. documents and graphics;
typically grammar governed data).

Another domain in which complex objects are important is the field of method engineering or meta-
modelling ([VHW91]). In this field, meta-models are constructed, capturing the structure of models that
are expressed in some modelling technique. Many modelling techniques contain concepts that correspond
to complex structures, e.g. whole diagrams have such a complex structure. It is not natural to represent
these object types as flat structures (see e.g. [Wel88]). Computer Aided Design (CAD) and Computer
Aided Manufacturing (CAM) are also areas in which such complex structures frequently occur.

Finally, in the development of so termed Evolving Information Systems ([FOP92], [MS90], [Ari91],
[Rod91]) where the information structure itself is allowed to change over time as well, there is a need
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for a modelling technique which incorporates all basic modelling concepts. This implies the need for a
modelling technique with an expressivity which is based on a set of powerful modelling concepts.

In this paper a general data modelling technique is introduced, which has been defined formally in
[HW93] and [HPW93]. This modelling technique, the Predicator Set Modelling technique (Predicator
Set Model for short), indeed is capable of representing complex structures in a natural way. In this paper
a number of examples are given to make it plausible, from a practical point of view, that the Predicator
Set Model allows for the elegant representation of complex object types. Notational conventions will be
introduced that allow for compact representations of complex objects.

2 Basic Data Modelling Concepts
One of the key concepts in data modelling is the concept of relation type or fact type. In ER ([Che76]) and
NIAM ([NH89]) a relation type is considered to be an association between object types. In figure 1 the
graphical representation of a binary relation type R between object types X1 and X2 in the NIAM style is
shown, while in figure 2 the corresponding ER diagram is depicted.�
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Figure 1: A NIAM relation type

The basic building element of fact types is the connection between an object type and a role, the so-
called predicator. In figure 1, p1 is the predicator connecting X1 to r1, and p2 the predicator that connects
X2 to r2. In the Predicator Set Model, which is an extension of the Predicator Model ([BHW91], [HW92]),
a fact type is considered to be a set of predicators. A relation type is therefore considered as an association
between predicators, rather than between objects types. Fact types are regarded as object types. This is
called objectification. In the sequel some examples of objectifications are shown. Sometimes, we will
prefer to denote the predicators involved in a relation type seperately. In section 5 some examples of this
are shown.
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R

r1 r2

X2

Figure 2: The corresponding ER diagram

Two special kinds of object types are entity types and label types. The difference is that labels can, in
contrast with entities, be represented (reproduced) on a communication medium. As a result, label types
are also called concrete object types. All other object types are called abstract, they are not representable
by themselves. As usual, a clear distinction is made between concrete object types and abstract object
types. The gap between these concrete and abstract object types can only be crossed by special binary fact
types. These fact types correspond to bridge types in NIAM ([NH89], [Win90]), and attribute types in ER
([Che76]). Each entity type must be identifiable in terms of label types.

Anothor basic concept of data modelling is specialisation, also referred to as subtyping. Specialisation
is a mechanism for representing one or more (possibly overlapping) subtypes of a type. Intuitively a
specialisation relation between a subtype and a supertype implies that the instances of the subtype are also
instances of the supertype. For proper specialisation, it is required that subtypes be defined in terms of
one or more of their supertypes. Such a decision criterion is referred to as the Subtype Defining Rule (see
e.g. [BHW91]). Identification of subtypes is derived from their supertypes.

Specialisation relations are organised in so-called specialisation “hierarchies”. A specialisation hier-
archy is in fact not a hierarchy in the strict sense, but an acyclic directed graph with a unique top. A
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specialisation hierarchy can thus be considered a semi-lattice: for each pair of subtypes (in the same hier-
archy), the least upper bound should exist. The least upper bound of two subtypes is that object type that is
supertype of both subtypes, and that has no subtype with this property. The top of this semi-lattice, i.e. the
top of a specialisation hierarchy, will be referred to as the pater familias (see [DMV88]). Consequently,
the identification of every object type in the hierarchy is derived from the pater familias of the hierarchy.
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Figure 3: Example of a specialisation hierarchy

As an example of a specialisation hierarchy, consider figure 3. There the following hierarchy is de-
picted:

Flesh-eater Spec Animal
Plant-eater Spec Animal
Carnivore Spec Flesh-eater
Omnivore Spec Flesh-eater
Omnivore Spec Plant-eater
Herbivore Spec Plant-eater

Each specialisation relation is represented as an arrow in figure 3. As a consequence, the pater familias of
object type Carnivore is Animal. The subtype defining rules are:

Flesh-eater = Animal is-of Type-of-animal {carnivore, omnivore}
Plant-eater = Animal is-of Type-of-animal {herbivore, omnivore}
Carnivore = Animal is-of Type-of-animal {carnivore}
Omnivore = Animal is-of Type-of-animal {omnivore}
Herbivore = Animal is-of Type-of-animal {herbivore}

3 Generalisation
Generalisation is a mechanism that allows for the creation of a new object type as a generic type for other
object types. The constituent object types in a generalisation are called the specifiers of the generalised
object type. As a result, the generalised object type is covered by its constituent object types. This means
that every instance of any specifier is also an instance of the generalised object type. Another consequence
is that the identification of a generalised object type is determined by the identification of its specifiers.

As an example, for the motivation and use of generalisation, consider a pricelist for individually priced
Products. A Product is either a Car, or a House. A Car is identified by a registration number, while a
House is identified by the combination of its zip-code and house number. Product is thus considered to be
a generic term for House and Car. Products have a price associated to them.

In traditional data modelling techniques, e.g. NIAM and ER, this Universe of Discourse is modelled
by the schema in figure 4. Note that the uniqueness of the combination between a zip code and a house
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Subtype defining rules:

Car = Product having as Product Type ‘Car’
House = Product having as Product Type ‘House’

Figure 4: Subtyping instead of Generalisation

number is modelled by means of an encircled U, a so-called uniqueness constraint. For the semantics of
complex uniqueness constraints, see [WHB92].

We will point out that this schema suffers from overspecification. Firstly, a special label type (P code)
has to be introduced in order to identify Products. Secondly, a special fact type and a special type (Product
Type) type are required to determine the type of the Product. This determination forms the Subtype Defining
Rule for Products (see figure 4). However, these extra object types are not conceptually relevant. Their
introduction should therefore be considered as a violation of the Conceptualisation Principle (see [ISO87],
[NH89] or [Win90]).
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Figure 5: Example of Generalisation

Using the concept of generalisation, these overspecifications are avoided. In figure 4 a more appropriate
schema for this Universe of Discourse is depicted. In this schema, the label type P code is no longer needed,
since products inherit their identification from Cars and Houses.
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4 Power and Sequence Types
Another situation that invites a system analyst, using a conventional modelling technique as eg ER or
NIAM, to a violation of the Conceptualisation Principle, is when groups of objects occur just as groups,
without any other identification than their composition. The most primitive manifestations of this phe-
nomenon are the power set mechanism in formal set theory, and the sequencing (lists) mechanism. How-
ever, in its full glory, this phenomenon is a mechanism for schema decomposition (see also section 6).

In the Predicator Set Model the concept of power type is introduced as the equivalence of power sets
in formal set theory. An instance of a power type is a set of instances of its element type. An instance of
the power type is identified by corresponding instances of the element type, just as a set is identified by its
elements in formal set theory (axiom of extensionality), see [HK87].

As an illustration of the expressive power of power object types the chemical reactions example from
[Fal93] is discussed. The considered Universe of Discourse deals with simple chemical reactions. A
chemical reaction takes a set of input substances with their associated quantities, and produces a set of
output substances in corresponding quantities.

Chemical
Reaction
#CR ID

Substance
#Chem Code

Quantity
#Int

Input/
Output

indicator
{i, o}

��
�
@@@���

@@@

Reaction
Schema

�
�

�
�

�
�

�

�
�
�
�
�

E
E
E
E
E

c
c

c
c

c
c

R1 H2 2 i
R1 O2 1 i
R1 H2O 2 o
R2 CH3 − CH2OH 2 i
R2 O2 1 i
R2 CH3 − CHO 2 o
R2 H2O 2 o

Figure 6: Chemical Reactions in ER

This Universe of Discourse could be modelled in an ER schema in terms of a quartenary relationship,
as shown in figure 6. In this relation, the attribute CR ID is used to identify chemical reactions. The entity
type Substance describes wich substance is subject to the chemical reaction, and the entity type Quantity
describes in what quantity. The Input/Output indicator makes the distinction between input and output
substances to the chemical reaction. A first problem with this solution is the superfluous identification of a
chemical reaction. Only some chemical reactions are sufficiently important, to have a name of their own.
The others are just identified by their description in terms of what goes in and what comes out. The second
problem is that this solution does not allow for the addition of a chemical reaction by one elementary
update. This is caused by the fact that in the model of 6 several object instances are needed to denote one
reaction.

The use of a power type offers a much better opportunity to model this Universe of Discourse (see fig-
ure 7). In this model, a chemical reaction is modelled as a relationship between a set of input reagents, and
a set of output reagents. This schema is better understood by studying a sample population (see figure 7).
This sample population is in the style of nested relations as, encountered in the NF

2 datamodel [SS86].
The main difference is that NF

2 uses a nested table heading (and thus nested tuples).
The solution of figure 7 also solves the update problem which was mentioned before. In this model a

chemical reaction is denoted as a single object instance. Therefore, the above mentioned elementary update
problem is solved. The consequence is that an update operation of a chemical reaction can be considered
as a single operation in the Predicator Set Model.

Sequence types are ordered power types, their instances are tuples of arbritrary length. As an example,
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consider a freight train as depicted in figure 8. A train is identified by a train code, and consists of a loco-
motive followed by a sequence of freight cars. This Universe of Discourse is modelled in the information
structure diagram of figure 9.

5 Relation with Context-Free Grammars
In this section the relation between context-free grammars and the Predicator Set Model is discussed. First
we show how a context-free grammar is translated into a Predicator Set schema. In [HW93] a formalised
translation mechanism is given.

Context-free grammars are generally employed for describing document structures (see for exam-
ple [BW90], [SDBW91], [BW92]). The Predicator Set Model has sufficient expressive power to describe
such structures elegantly. This is done by interpreting context free grammars in terms of the Predicator
Set Model. The translation also shows the usefulness of the Predicator Set Model for describing hypertext
information structures. In the translation, generalised object types will play a crucial role. In [HW93] the
formalised translation mechanism is given. The reverse process, i.e translating a Predicator Set schema
into a context free grammar, is discussed there as well.

In the world of documents a lot of effort has been put into the design of standards for the communication
and denotation of document structures and contents ([ISO86]). In this example the following grammar,
which is denoted in the style of SGML, is considered for describing the structure of a book.

〈book〉 → 〈title〉 〈contents〉
〈contents〉 → 〈chapter〉+

〈chapter〉 → 〈title〉 〈sections〉
〈sections〉 → 〈section〉+

〈section〉 → 〈string〉
〈title〉 → 〈string〉

〈string〉 → 〈char〉+

This grammar can be translated to the Predicator Set Model schema of figure 10. In this figure, the
predicators of fact types have been drawn seperately. The translation is directly derived from the grammar
rules: each nonterminal symbol becomes an entity type, and each terminal symbol a label type. Each
production rule describes a specifier of the object type corresponding to the lefthand side.

It is important to note that the Predicator Set schema resulting from the translation of a context-free
grammar does not exhibit explicitly the order of the symbols in the righthand side of production rules. This
corresponds to a mapping oriented view to the righthand side of a production rule, rather than the usual
tuple oriented view. The resulting Predicator Set schema can be viewed as a representation of the abstract
syntax ([Mey90]) corresponding to the grammar at hand.

The grammar box is used as a notation to incorporate in this way context free grammars in the Predicator
Set Model. The grammar box takes as inputs the object types that correspond to terminal symbols. The
output of the grammar box is the start symbol.

With respect to this use of context-free grammars, a bad schema will result if the context-free grammar
does not satisfy some aesthetical rules. Firstly, there can be useless symbols, i.e. symbols that do not occur
in any derivation from the start symbol. In terms of the Predicator Set Model these symbols correspond to
isolated object types. Secondly, the object types that correspond to the terminal symbols can be identified
without making use of the grammar box, since they are interpreted as label types. The identification of
the object type, corresponding with the start symbol of the grammar, then depends on the structure of the
grammar.

6 Schema Decomposition
In this section a notational shorthand for schema objectification, which facilitates the specification of com-
plex object types is introduced. This is done by discussing some examples, which make use of this short-

7



�
�
�
�〈char〉

string

�
�
�
�title

�
�
�
�section

sections

I �

�� ��
����������

�
�
�
��

�
�
�
�chapter

contents

6

�� ��

�
�
�
�book

@
@

@
@@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

6

Figure 10: Example of translation of SGML structure

8



�
�
�
�〈char〉

�
�
�
�book

6

6

〈book〉
〈contents〉
〈chapter〉
〈sections〉
〈section〉

〈title〉
〈string〉

→

→

→

→

→

→

→

〈title〉 〈contents〉

〈chapter〉+

〈title〉 〈sections〉

〈section〉+

〈string〉
〈string〉

〈char〉+

Figure 11: The use of a grammar box

hand, in order to demonstrate its elegance in modelling.
The need for decomposition in large systems has been generally recognised. A well known example

is the decomposition mechanism for Activity Graphs ([Sch84]). In an Activity Graph, both processes
and data may be subject to decomposition. However, data modelling techniques usually do not provide a
decomposition mechanism. In the Predicator Set Model, schema objectification has been introduced for
this purpose.
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Figure 12: Schema objectification

Schema objectification is a construction mechanism that allows us to define part of a schema as an
object type. Instances of such object types are then populations of their corresponding schemas. As a result,
these objectified schemas have to be valid information structures, i.e. Predicator Set Model. Furthermore,
populations should satisfy the decomposition rule, meaning, that instances of an object type O should be
valid populations of the objectified schema as well.

Schema objectification, however, is not an elementary concept, since it can be defined in terms of the
concepts of power object type and fact type. The idea is to construct a power object type xp for each object
type x from the schema g to be objectified. Each of these power object types xp is the base of a predicator
px, that is part of a fact type Fg (see figure 12). This fact type is to relate sets of instances of the object
types involved in the schema objectification, which are part of th same schema instance.

As an example of schema objectification, consider a meta-model for Activity Graphs. In figure 13 two
sample activity graphs are depicted.
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Activity Graphs are bipartite directed graphs consisting of activities and states. The direction of the
arrow between an activity and a state indicates whether that state is input or output of that activity. Activities
and states can be decomposed in other Activity Graphs. In figure 13 the rightmost Activity Graph shows
the decomposition of activity A1.

In figure 14, the meta-model of Activity Graphs is depicted. As can be seen there, an Activity Graph
is an objectified schema consisting of activities, states and input and output relations. The binary relations
between activity and Activity Graph and state and Activity Graph represent the decomposition relation.

7 Conclusions
The suitability of the Predicator Set Model for complex application domains has been illustrated by means
of a number of examples. The theoretic background has been described in [HW93]. In that paper, the
relation with contex free grammars and formal set theory has been established, thus giving evidence, from
a formal point of view, for the completeness of the Predicator Set Model.

In the future a method will be developed to support the construction of schemata from informal de-
scriptions. Heuristics and guidelines should be ingredients of this methods. A prototype implementation is
considered.

References
[Ari91] G. Ariav. Temporally oriented data definitions: Managing schema evolution in temporally

oriented databases. Data & Knowledge Engineering, 6(6):451–467, 1991.

[BHW91] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verification of
object-role models. Information Systems, 16(5):471–495, October 1991.

[BW90] P. D. Bruza and Th. P. van der Weide. Two level hypermedia - an improved architecture for
hypertext. In A.M. Tjoa and R. Wagner, editors, Proceedings of the Data Base and Expert
System Applications Conference (DEXA 90), pages 76–83, Vienna, Austria, 1990. Springer-
Verlag.

[BW92] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for Information Disclo-
sure. The Computer Journal, 35(3):208–220, 1992.

[Che76] P.P. Chen. The entity-relationship model: Towards a unified view of data. ACM Transactions
on Database Systems, 1(1):9–36, March 1976.

[DMV88] O.M.F. De Troyer, R. Meersman, and P. Verlinden. RIDL* on the CRIS Case: A Workbench
for NIAM. In T.W. Olle, A.A. Verrijn-Stuart, and L. Bhabuta, editors, Information Systems
Design Methodologies: Computerized Assistance during the Information Systems Life Cycle,
pages 375–459, Amsterdam, The Netherlands, EU, 1988. North-Holland/IFIP WG8.1.

[Fal93] E.D. Falkenberg. An Approach to Deterministic Event-Tuned Information Analysis. In G.M.
Nijssen, editor, Proceedings of NIAM-ISDM. NIAM-GUIDE, September 1993.

[FOP92] E.D. Falkenberg, J.L.H. Oei, and H.A. Proper. A Conceptual Framework for Evolving Infor-
mation Systems. In H.G. Sol and R.L. Crosslin, editors, Dynamic Modelling of Information
Systems II, pages 353–375. North-Holland, Amsterdam, The Netherlands, EU, 1992. ISBN
0444894055

[HK87] R. Hull and R. King. Semantic Database Modelling: Survey, Applications and Research
Issues. ACM Computing Surveys, 19(3):201–260, September 1987.

[HPW93] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of a conceptual
language for the description and manipulation of information models. Information Systems,
18(7):489–523, October 1993.

11



[HW92] A.H.M. ter Hofstede and Th.P. van der Weide. Formalisation of techniques: chopping down
the methodology jungle. Information and Software Technology, 34(1):57–65, January 1992.

[HW93] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling.
Data & Knowledge Engineering, 10(1):65–100, February 1993.

[ISO86] Information Processing – Text and Office Systems – Standard General MarkUp Language
(SGML), 1986. ISO 8879:1986.
http://www.iso.org

[ISO87] Information processing systems – Concepts and Terminology for the Conceptual Schema and
the Information Base, 1987. ISO/TR 9007:1987.
http://www.iso.org

[Mey90] B. Meyer. Introduction to the Theory of Programming Languages. Prentice-Hall, Englewood
Cliffs, New Jersey, 1990.

[MS90] E. McKenzie and R. Snodgrass. Schema evolution and the relational algebra. Information
Systems, 15(2):207–232, 1990.

[NH89] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact
oriented approach. Prentice-Hall, Sydney, Australia, 1989. ASIN 0131672630

[Rod91] J.F. Roddick. Dynamically changing schemas within database models. The Australian Com-
puter Journal, 23(3):105–109, August 1991.

[Sch84] G. Scheschonk. Eine auf Petri-Netzen basier-en-de Konstruk-tion-s, Ana-ly-se und (Teil)Veri-
fica-tion-s-me-tho-de zur Modellierungsunterstützung bei der Entwicklung von Information-
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