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Abstract - An increasing number of approaches to conceptual information modelling use verbalisa- 
tion techniques as an aid to derive a model for a given universe of discourse (the problem domain). The 
underlying assumption is that by elaborate verbalisation of samples of facts, taken from the universe 
of discourse, one can elicit a complete overview of the relevant concepts and their inter-relationships. 
These verbalisations also provide a means to validate the resulting model in terms of expressions famil- 
iar to users. This approach can be found in modern ER variations, Object-Role Modelling variations, 
as well a8 different Object-Oriented Modelling techniques. After the modelling process has ended, 
the fact verbalisations are hardly put to any further use. As we belief this to be unfortunate, this 
article is concerned with the exploitation of fact verbalisations after finishing the actual information 
system. The verbalisations are exploited in four directions. We consider their use for a conceptual 
query language, the verbalisation of instances, the description of the contents of a database, and for 
the verbalisation of queries in a computer supported query environment. To put everything in per- 
spective, we also provide an example session with an envisioned tool for end-user query formulation 
that exploits the verbalisations. @ 1997 Elsevier Science Ltd. All rights reserved 

Key words: Information Modelling, ER, Object-Role Modelling, Verbalisation, Natural Language 
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1. INTRODUCTION 

When developing an information system using a conceptual modellilg approach, usually the 
first task is to derive a complete model of the underlying universe of discourse (also referred to 
as the application domain, or problem domain). Extracting this information from the universe 
of discourse is a hard problem, and is comparable to the problem of knowledge elicitation for the 
design of expert systems [58, 9, 341. A wide range of modern conceptual modelling techniques 
start out by verbalising sample forms, cases, etc. taken from the universe of discourse. This 
verbalisation process is usually conducted in close cooperation with a domain expert. Examples 
of such approaches are the ER variation discussed in [lo], NIAM [49, 601, Object-Role Modelling 
(ORM) [30], OMT [52], and the KISS method [43]. The underlying assumption is that by elaborate 
verbalisation of the samples from the universe of discourse, a sufficient overview of the structure 
and rules in the universe of discourse can be obtained. 

The verbalisations resulting from this initial step are then used as input for the actual design of 
the conceptual model. In this article we only focus on the information modelling side of conceptual 
modelling. So in our case verbalisations are used as input for the design of the so called information 
model. In the next section we argue that the information model essentially provides a crude 
grammar of the language spoken by the communication partners in the universe of discourse. It 
should already be noted though that this grammar does not have the richness and power (and 
inherent ambiguity) of a real natural language grammar. 

As stated before, verbalisation of samples has been introduced as a means to obtain a complete 
overview of the universe of discourse. This in itself has proven to be useful in the many projects 
in which methods like OMT, ORM, NIAM, and KISS have been used. Even more, some modern 
CASE-Tools like InfoModeler [4] fully support these verbalisation techniques. During the modelling 
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process, the fact verbalisations can also be employed for verbalisation purposes. By showing 
users some sample instances verbalised as natural language expressions, the users can validate the 
correctness of the information model [22, 321. After the modelling process has been finished, these 
carefully crafted verbalisations are hardly put to use. In this article we are concerned with ways 
to exploit these verbalisations after the information system has been built. 

The first area in which we will try to exploit verbalisations is to define a query language that 
is closer to the language users are used to. The idea for a more natural query language was born 
out of frustration with the formulation of queries in SQL. After all the trouble modellers and users 
have gone through in verbalising samples from the universe of discourse to arrive at a properly 
designed conceptual schema, it comes as an anti-climax if end-users (and database administrators) 
still have to use SQL to formulate queries, and even more, have to refer to the actual tables to 
access the information. This frustration has fueled the development of so-called conceptual qzley 
languages such as RIDL [47] and LISA-D+ [36]. 

In this article we present a further refined version of LISA-D. What conceptual query languages 
have in common is that they allow for the formulation of queries in terms of the conceptual model, 
which is a gain in itself. Moreover, these languages use the verbalisations resulting from the 
samples to cater for query formulations that more closely resemble the language used by people 
in the universe of discourse. So-far, these languages have not received much attention due to the 
over exposure of commercial SQL systems. Nevertheless, the increasing number of commercially 
available tools that allow some form of natural language querying also support this development 
in the direction of query languages that are ‘closer to the people’. A first commercial attempt in 
this direction can be found in the InfoAssistant tool, which is marketed by the same company as 
InfoModeler. 

The second and third area in which we attempt to exploit fact verbalisations is concerned with 
the verbalisation of instances. Better verbalisation of instances is beneficial in two ways. The first 
way we can put these to use is in a further enrichment of the LISA-D language by improving on 
the way instances can be verbalised in this language. A second use is related to the integration 
of structured databases into the World-Wide-Web (WWW). At present, standards like 239.50 [3] 
receive a lot of attention, as they provide an avenue to access meta data about databases, i.e. 
what a database is about. The fact type verbalisations give us a good handle on the semantics 
of the stored information. Therefore, if we can use the fact type verbalisations as meta data 
and make it accessible through such protocols, then we expect the precision of selecting relevant 
databases to increase. If an instance of an object type in a conceptual schema can be verbalised 
explicitly, then this verbalisation can be used to advertise this database to search engines for the 
WWW (or internet in general). In [51], this idea is discussed in the context of federated databases 
without elaborating on the role of fact verbalisations. However, it should be clear that elaborate 
verbalisation of instances can aid in finding the underlying database. Verbalisations of instances 
carry more conceptual information than the table headers or the actual tuples in the database. 

A fourth area in which we try to exploit verbalisations is support for verbalisation of queries 
in the context of computer supported query formulation (CSQF). 

The central focus of this paper is both on a formalisation of the verbalisation of the samples 
provided during the analysis phase, as well as their exploitation for the above four purposes. The 
structure of the paper is as follows. In Section 2, verbalisation as an approach for conceptual 
modelling is explained in more detail, with a special focus on Object-Role Modelling (ORM). 
There we will also justify our focus on ORM, although our results are most certainly not exclusive 
to ORM. Section 3 shows how the verbalisations on facts can be used to construct a conceptual 
query. In Section 4 a verbalisation mechanism for instances is discussed, while some applications 
will be highlighted. The verbalisation of paths through conceptual schemas, needed for query 
verbalisation in a CSQF environment, is addressed in Section 5. This is followed in Section 6 by 
a brief discussion of a way to support users in query formulation processes. This sample session 
allows us to highlight the benefits of exploiting fact verbalisations. 

iLanguage for Information Structures and Access Descriptions. 
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2. INFORMATION STRUCTURES 

When using a verbalisation baaed approach to information modelling, the modelling technique 
used to express the resulting models should feature a rich set of modelling constructs. The reason 
for this is that the (syntactic) constructs used in examples of verbalisations should have direct 
pendants in the used information modelling technique. This does not only warrant a natural way 
of modelling, but also maintains the rich semantics of verbalisations in natural language as much as 
possible. Among the first to apply this principle to conceptual modelling was Nijssen [48, 54, 441. 

The information modelling technique we use throughout this paper is a modernised version 

of NIAM, called Object-Role Modelling (ORM). Before continuing we give a brief account of the 
history of this ORM version. In [5] the Predicator Model was introduced as one of the first 
formalisations of NIAM [49, 60, 301. The Predicator Model was superseded by the first version 

of PSM [39, 361. PSM was mainly designed to deal with complex objects occurring in complex 

domains such as CAD/CAM, hypermedia, office automation and meta-modelling. A proposal to 
refine the conceptual schema design procedure of ORM to effectively deal with complex objects 
during the modelling process was given in [18]. Meanwhile, new research has led to refinements 
of the original PSM model. In [40, 411 a new class of constraints is proposed that allows for a 

reduction of the number of constructs. Research into the relationships between ORM and other 

information modelling techniques [7, 35, 45, 33, 271 has led to a better understanding of the 
underlying constructs and their mutual relationships. Finally, in [19] an Object-Role Modelling 
version was proposed, the Conceptual Data Modelling Kernel (CDM Kernel) which tries to put 

all these results into perspective. A key feature of the CDM Kernel is that it provides a generic 
data modelling technique that is general enough to include ORM models, (E)ER models, and the 

information models of some 00 variations (at least the ones reported in [52, 431). 

The version of ORM (PSM) we employ in this article is setup such that it is most convenient 
for the purposes of this article. It is not complete with regards to the set of modelling constructs 
that exist in full ORM. From time to time we will briefly relate the formalisation used in this 

article to the one of the CDM Kernel. The CDM Kernel focuses on genericity and atomicity of the 
modelling constructs, whereas this article needs to focus on naturalness of modelling constructs 
from a verbalisation point of view. This latter requirement implies that some modelling constructs, 

though splittable from a formal point of view, should for pragmatic reasons not be split. 
To warrant a proper understanding of the definitions given in the remainder of this article, 

we shall provide a summary of the formalisation of ORM. We only provide a summary, as ORM 

and its formalisations have now been widely published. Before we provide this summary, however, 
we first discuss the used modelling constructs from a verbalisation (grammatical) point of view. 
Some of the examples used in this paper are taken from a fragment of the so-called Presidential 
Database, dealing with the election process of presidents from the United States of America. This 
example served as a unified example in the special issue of Computing Surveys [28] and made its 
first appearance in [59]. This example was chosen here for its intuitive simplicity. As the schema 

does not contain any advanced concepts, also other, more complex, examples will be used. 

2.1. Ve/erbalisation Based Approach to Information Modelling 

The point of departure of verbalisation based information modelling approaches is a description 
of the communication in the world to be modelled (universe of discourse) in terms of a set of sample 

sentences. The intention of the modelling process is then to derive a conceptual schema from this 
set. 

An interesting question that comes to the fore, is to what extent the process of deriving a 

conceptual schema from a set of sample sentences can be supported by automatic tools [15,13, 141. 
Another interesting issue that lingers beneath the surface, is to see to what extent these 

approaches depend on the language used to express the verbalisations. This actually involves 
two questions. First, one may wonder if this approach applies to all natural languages. The 
NIAM/ORM approach has been applied to English, Dutch, GermanFFrench, and even Japanese 
[31]. However, there is no guarantee that it can be applied successfully to all languages. Secondly, 
modelling a single domain in two different languages may lead to two different ‘conceptual’ models. 
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This may be caused by the fact that different languages may distinguish different sets of atomic 
concepts. 

In [30] and [43] the process of verbalising samples, refining the samples, and delivering up a 
conceptual model in ORM or KISS respectively, is discussed in full detail. An important role in 
this process is played by the notion of an elementary fact. What is sought after are the most basic 
facts in a universe of discourse. 

In our view, two of the key research challenges are now: 

1. Build tools to aid humans in the verbalisation of facts from the universe of discourse. 

2. Enhance the conceptual schema modelling language with constructs that allow for alternative, 
and more natural, verbalisations of facts to enrich query (and result) formulation. 

This article is concerned with the second challenge. In [15, 13, 12, 14, 11, 261 novel research efforts 
are described addressing the first challenge. 

In the next section we provide a relatively simple mechanism to formalise the verbalisations 
provided with a conceptual schema. This formalisation provides a form of a grammar, the infor- 
mation grammar. The information grammar essentially provides a grammar for the sample fact 
verbalisations used during the modelling process. As such it can be seen as a (very primitive) 
grammar of the language spoken in the domain; the expert language. 

2.2. Basic Type Classes 

Object types characterise the type and their structure of things that may occur in the universe 
of discourse. They can be recognised quite easily in the sample sentences, since they tend to 
correspond to nouns. In fact verbalisations, verbs typically express how object types participate 
in relationship types. In the formalisation, roles will be used to capture the way in which object 
types participate in relationship types. 

Figure 1 shows the membership relations between political parties and presidents as a binary 
relationship type. A president plays the role of being a member of a party, while a party plays the 
role of having members. 

Fig. 1: A Binary Relationship Type 

It should be noted that the information diagram of Figure 1 abstracts, not only from instances, 
but also from labels and references. Labels (or rather values) correspond to things that can be 
represented directly on a communication medium (for example strings as ‘Eisenhower D.D.‘), while 
entities correspond to things that cannot be represented directly on such a medium (for example 
the person referred to as ‘Eisenhower D.D.‘). In Figure 1, the object types Party and President 
are examples of entity types. Instances of the entity types cannot be represented directly, but need 
identification via value types such as President Name and Party Name. 

References are relations that connect between entities and values. Reference types [49] are also 
referred to as bridge types [60] as they bridge the gap between abstract and concrete object types. 
A typical manifestation of a reference type is the following sample sentence: 

There is a party with name ‘Republican’ 

This is an example of an existence postulating fact. The left hand side of Figure 2 contains the 
resulting schema fragment. Usually this kind of schema fragment is abbreviated as shown in the 
right hand side of Figure 2. 
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In Figure 2 also examples of two important constraint types are shown. The black dot is 
the graphical representation of a total role constraint. The total role constraint on the role with 

name with expresses the fact that each instance of Party should have an associated name. The 
arrow tipped bars are examples of uniqueness constraints. The bar under the role with name with 

captures the fact that each instance of Party has at most one associated name, while the bar under 

the role with name of captures the fact that no two different instances of Party have identical names. 
These three constraints are sufficient to guarantee that all instances from the entity type Party can 
be identified by instances from the value type Party Name. Note that value types are represented 

by dotted ellipses rather than solid ellipses. As this situation of a relatively simple identification 
occurs frequently, the abbreviation shown is used for these common cases. 

Party Name 
Party a (name) 

Fig. 2: Example of a Reference Type 

Identification can, unfortunately, be quite complex. An example is shown in figure 3. In this 

example entity type Address can be identified by the combination of Street and House Nr. Instances 
of Street can be identified by combinations of instances from Community and Street Name. Entity 
type Community is identified by value type Community Name. 

contains is in contains is in 

has 

Community 

Name 
Street 

Name 

has 

Fig. 3: An Example of Complex Identification 

Relationship types may be treated as object types, a process referred to as relationship objecti- 
fication. As an example consider Figure 4, which contains the complete schema of the presidential 

database. In this figure, relationship type Marriage is an objectified relationship type. Marriages 
may result in a number of children. Corresponding sample sentences could be: 

President ‘Washington G.’ is spouse of person ‘Custis M.D.’ 

The marriage of president ‘Washington G.’ with person ‘Custis M.D.’ resulted in 0 children 

Strictly spoken, objectification is not an elementary concept. In [19] it is shown how objec- 
tification can be regarded as a special flavour of abstraction. Due to our focus on verbalisation, 

however, objectification needs to be treated as a distinct modelling construct. 
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The running example of Figure 4 also contains an example of specialisation. Object type 
President is a subtype of object type Politician, which on its turn is a subtype of object type Person. 

This specialisation hierarchy results from one of the last steps in the ORM design procedure in 
which types which may have instances in common are merged into subtype hierarchies. 

has as vice president is vice president of 

I I I 

has as president is president of 
/ 1 hIwon, wonby/ 

when was born is member of has as member 

I -L&xJ”(=J y71--- 
of de wasbomin . Z&state of 

State -a (name) 

Party -0 (name) 

Fig. 4: Part of an Information Structure Dealing with Presidents of the United States of America 

2.3. Complex Type Classes 

Objectification is not the only type construction mechanism. In this article we also discuss 
collection types (or power types) and schema types. Besides these two additional type constructs, 
one might decide to introduce: bag types, sequence types, list types, array types, etc. Objecti- 
fication, collection types and schema types are addressed in this article as examples of possible 
(non-elementary) type construction mechanisms. However, as in the case of objectification, these 
type constructions are not elementary. Nevertheless, the additional type constructs are introduced 
for the same reason as objectification; they more directly support the natural verbalisation of 
phenomena in the universe of discourse. 
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2.4. Inheritance between Object Types 

Most advanced data modelling techniques offer constructs to define inheritance relations over 
types. Typical examples are specialisation, generalisation, and polymorphism. Is this article we 
will formally take the approach of only having one class of inheritance between types, independent 
of the question whether two different flavours of inheritance should indeed be distinguished. For 
the purposes of this article the existence of an inheritance hierarchy as such is simply sufficient. 

2.5. Formal Syntax 

We have now arrived at the formal definition of PSM. For the intentions of this paper we will 

not discuss the constraints that can be defined on a conceptual schema. Rather, we focus on the 
underlying information structure of a conceptual schema as this structure provides the base upon 
which verbalisations will be build. The formalisation below is provided only to make the article 

self-contained. 

A conceptual schema without constraints is referred to as an information structure. An infor- 

mation structure Zs consists of the following components: 

1. A nonempty finite set QY of object types. 

2. A set L4f c m of entity types. 

3. A set VC 5 C.B of value types. 

4. A finite set ‘R0 of roles that represent the ways in which object types may participate in 

relationship types. 

5. A function Player : 7W + CB. At the base of a role is an object type playing that role. 

6. A partition %X of the set Ro. The elements of I?JZ are called relationship types. Relationship 

types are also object types: RL: C 03. 

The auxiliary function Rel : IW + I212 yields the relationship type in which a given role is 
contained, and is defined by: Ret(p) = T W p E T. 

7. A set C7- C_ U3 of collection types. 

8. A set SC 2 0!!J of schema types. 

9. A function Elt : CT+ CB yielding the element type of collection types. 

10. A relation < E SC x (LX3 capturing the decomposition of schema types. 

11. A binary relation SubOf c Ui? x Q? capturing the (unified) inheritance hierarchy. 

12. A many-sorted algebra D = (D,F), with l? a set of concrete domains (e.g. string, natno) 

and F a set of operations (e.g. +). 

13. A function Dom : VL + 27. The instances of a value type originate from its associated domain. 

A detailed discussion of well-formedness rules on information structures is not provided here. These 
axioms can be found in the aforementioned publications on ORM. 

2.6. Verbalisation Information 

Given an information structure, a first simple verbalisation for this structure can be defined 
by providing names for the schema constructs present. The verbalisation IX.!3 of an information 

structure Zs is composed of the tuple Va = (ONm, PNm, RNm, MFix) of namings. During information 
analysis, all types receive a unique name, recorded by the function ONm : Cl3 + NM, where m 
is a set of names. 
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Roles also receive a name of their own. This name is referred to as the partici@ion name, 
and are provided by the function PNm : 7?Cl +NM. Roles of different relationship types may have 
identical participation names. However, two roles of the same relationship type must have different 
participation names. Roles may also have a reverse participation name, RNm : Ro +NM which 
verbalises the decomposition of the relationship type into the components involved. 

The participation names are usually omitted from schema diagrams. Schema diagrams usually 
only feature so-called mis-/kc verbalisations. For instance, the fact verbalisation: 

The president with name ‘Eisenhower D.D.’ is a member of the party with name ‘Republican’ 

has as underlying mix-fix verbalisation: . . . is a member of . . . . This is an example of a binary rela- 
tionship type. A ternary example, from the presidential database, is: . . . has nr of . . . in . . . . Formally, 
these mix-fix verbalisations are captured by the relationship: 

MFix C NM' x IW’ 

If MFix([tul,. . . ,wm], [PI,. . . ,pn]) then m + 1 = n, and all roles used must be from one relationship 

type: {PO, . . . , p,} C Rel(po). Furthermore, the wi’s must all be non-empty names. 

As an illustration, consider the ternary fact type in the presidential database example, and 
assume that the three involved roles are p, q and r for Person, Voters and Election respectively. We 
could now have the following possible verbalisations: 

MFix([‘has’, ‘in’], [p, q,r]) 

MFix([‘has in’, ‘as result’], lp, T, q]) 

MFix([‘chose for’, ‘in’], [q,p, T]) 

MFix([‘in’, ’ chose for’], [q, T, P]) 

MFix([‘in which’, ‘had’], [r,p, q]) 

MFix([‘had’, ‘for’], [T, q,p]) 

MFix([‘who was a candidate in’], [p, ~1) 

MFix([‘that had as participant’], [r,p]) 

MFix([‘who was an election candidate’], b]) 

The first six verbalisations cover all possible orders in which a ternary fact type can be verbalised. 
The last three verbalisations are examples of partid verbalisations, which only deal with a selection 
of all roles of the fact type involved. In the next section we will see that these partial and total 
verbalisations, and in particular the binary ones, play a crucial role in the verbalisation of queries 
in LISA-D. 

Please note that it is not a requirement that all possible orders of verbalisation be provided. 
All that is required is at least one complete verbalisation (covering all roles). However, the more 
verbalisations is provided the more flexible the resulting information grammar becomes. 

We realise that when using a more advanced mechanism from linguistics, for example functional 
grammars [25], a more flexible verbalisation mechanism would result. However, the aim of this 
article is simply to explore the possibilities provided when a repository of verbalisation information 
is available to us. The above definitions capture the minimal amount of verbalisation information 
that can be reasonably gleaned from a modelling process without burdening the actual process. 
Capturing verbalisations as functional grammar expressions would lead to a more intensive mod- 
elling process as each verbalised fact needs to be dissected into its linguistic components [ll]. 
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3. CONCEPTUAL QUERY LANGUAGE 

In this section the aim is to exploit fact verbalisations in the context of a conceptual query 
language. Simply allowing any question that can be formulated in the expert language as a 
query would introduce interpretation problems due to the inherent ambiguity of natural language. 
Therefore, we focus on a controlled way to do this without introducing ambiguity. 

As explained in the previous section, the first step of the ORM design procedure results in a 

set of sample sentences describing the structure of the universe of discourse. The names of object 
types and the facts in which they can play a role originate from these sentences. Consequently, 

using these names in the formulation of queries and constraints will yield results very close to their 
original formulation in natural language. However, one should realise that with this mechanism one 

does by far not obtain the richness of a natural language. This apparent disadvantage, however, 
comes hand in hand with the advantage that the inherent ambiguity of natural language is absent. 

Designers of query languages based on this idea necessarily have to perform a delicate balancing 

act between on the one side the requirement to define a mathematically based and unambiguous 
language, and on the other side the need to define a language that is close to natural language. 
The result is a language in which expressions have a clear intuitive meaning as they are close to 

natural language, but which handles ‘sluggish’ when formulating expressions. The word ‘sluggish’ 
here depends on one’s background. From a pure natural language point of view, the resulting 

language is certainly not flexible and elegant. When looking from an SQL point of view though, the 
resulting language is highly flexible, orthogonal, and closer to one’s intuition. Finally, by adding 

tool support helping users in the query formulation process, the ‘sluggishness’ of the language 

should be dramatically lessened. 

The first language to pursue these ideas was the language RIDL (Reference and IDea Language 
[23, 471. RIDL, however, never received much acceptance as it did not have a formal syntax 

and semantics, and was based on a restricted binary version of ORM (see e.g. [55]). LISA-D 
(Language for Information Structure and Access Descriptions) can be considered as a redesign of 
RIDL, however, with a functionality far exceeding it. The formal semantics of LISA-D is defined 
in [36] by means of a translation to path expressions, Path expressions form the semantical base for 
information grammars. They also form the basis for visualisation of the disclosure mechanism (see 
section 6) used in the proposed computer supported query formulation system. Path expressions 
are an extension of relational algebra emphasising concatenation of relations. Appendix 7 presents 

an overview of path expressions. 

The core of LISA-D is formed by the simple verbalisation W of the information structure Zs as 
we have discussed in the previous section. In Subsection 3.1 the basic lexicon is introduced, which 

is filled by all simple names of the concepts in the information structure. In Subsections 3.2, 3.3, 
3.4, and 3.5 the general (application-independent) grammar rules are introduced. Subsection 3.6 
concludes with a mechanism for specifying application specific grammar rules, and a discussion on 

the expressive power of LISA-D. 

Finally, it should be noted that not the complete definition of path expressions and information 
descriptors is presented. For both, only a relevant subset of the existing constructions is presented, 

while the aspects that are new in the current LISA-D version do receive a more detailed discussion. 
For a complete definition of the ‘old’ version of LISA-D, refer to [36, 501. 

3.1. Construction of the Lexicon 

The basis for LISA-D information descriptors is a lexicon, assigning a meaning to the words 

(names) that constitute the language. The meaning of names is administered by the relation 

Lexicon C NM x ‘PE 

where NM is a set of names. The expression Lexicon(n, P) is used to indicate that n serves as a 
name for path expression P. We can now fill this lexicon with the predefined names and their 
meaning. 
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3.1.1. Named Concepts 

The naming MS = (ONm, PNm, RNm, MFix) is used to make an initial filling of the lexicon relation. 
For this initial filling we do not yet utilise the mix-fix verbalisations provided by MFix. These latter 
verbalisations will receive a separate treatment in Subsection 3.3. 

The name ONm(z) of object type 5 simply represents the path expression z: Lexicon(ONm(z), z) 

providing, as it were, a path from itself to itself. As object types are usually nouns, we could also 
introduce the names: Lexicon(Article(ONm(z)) ONm(z), z), where Article is a function providing the 
article for a given noun. 

If p is a role which has some fact participation name, then this name, PNm(p), describes a path 
from the player of p to its corresponding relationship type: Lexicon(PNm(p), p). Tf p is a role which 
has a reverse participation name, then this name, RNm(p), describes a path from the relationship 
type corresponding to p to its player: Lexicon (RN m (p) , p’). 

3.1.2. Anonymous Concepts and Generic Names 

When using complex types like objectifications and collection types, or the graphical abbre- 
viation for simple identification cases, some relationship types may remain unnamed. These re- 
lationship types are the so-called imphit relationship types. They are formally present in the 
conceptual schema, however, they are never drawn explicitly. For these, thus far anonymous, rela- 
tionship types we can introduce default names. In Figure 5 these default names are listed for all 
the implicit relationship types. 

WHICH IS 

. 
‘, IS OF c.” ‘... ,,,,,,,.. ” 

IS THE 

OF 
““-“. 

:’ . . . . 
‘,. 

‘. 

,:’ 

IN”OLiE&N 

‘. 2’ 
.,,, ..” 

PART OF 

CONTAINING 

Fig. 5: Illustration of Naming of Anonymous Concepts 

With these generic names, we will be able to formulate expressions like: 

Nr of Children WHICH IS <= 3 

President INVOLVED IN Marriage 

Nr of Children that resulted from a Marriage OF President: ‘J.F. Kennedy’ 
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The phrase President: ‘J.F. Kennedy’ is a denotation mechanism for instances of object types. Through- 
out this section we will use the ‘colon notation’ for this purpose. In the next section we discuss 

instance denotation, and in particular its verbalisation, in more detail. 

3.2. Atomic Information Descriptors 

The semantics of information descriptors are defined by means of the D function in terms of 
the path expressions as defined in Appendix A. We define the semantics of LISA-D using the style 

of denotational semantics [53, 561, using abstract syntax. 
The basic building blocks for LISA-D information descriptors are the names from Lexicon and 

constants. The meaning of a name is obtained as the sum of all possible interpretations as recorded 

by this lexicon. 

m[n] = U P 
P:Lexicon(n,P) 

Examples of atomic information descriptors are names for object types (e.g. Year). Constants form 
the second group of atomic information descriptors. The string constant ‘Ford G.R.’ therefore is a 
valid information descriptor. Formally, if c is a constant, then: 

rD[clJ = c 

3.3. Concatenation of Information Descriptors 

Atomic information descriptors as such are obviously rather limited. More useful information 

descriptors result when using concatenation. There are two ways to concatenate (atomic) informa- 
tion descriptors. The simplest concatenation operator for path expressions makes its appearance 

on the information descriptor level as a simple string concatenation: 

Besides this basic form of concatenation, there is another form that utilises the mix-fix predicate 
verbalisations. This form of concatenation is able to concatenate n information descriptors, where 
n depends on the chosen mix-fix verbalisation. 

Suppose PI,. . . , P,_l are existing information descriptors. Using a mix fix verbalisation like 

wl,...,w,_i, we could concatenate these to become the information descriptor: 

Wl [Pll . .’ [Pn-l] w,_~. For n = 1 this simply leads to WI. The resulting information de- 

scriptors can, obviously, be used in further concatenations. For those cases where n > 1, the 
square brackets [Pi] are needed to avoid ambiguities. In pure natural language, one would usually 

replace these brackets by commas. For example, the information descriptor we have seen before: 

An administration which has as president a person who has a nr of voters [WHICH IS >= lOOOOOO] in an election 

would in natural language become: 

An administration which has as president a person who has a nr of voters, that is larger 

or equal to 1000000, in an election 

Formally this class of information descriptors is introduced as: 

qw1 [Pl] 9 ‘. [Pn-11 WrJi = U 
MFix([wl,...,w,],[po,...,p,l) 

po O<;c)<n Fr(pi+ oWpi1) OP,+ 

When n = 1 this simply becomes: D[wi] = pe opl+. This latter case is a very important one. 
In most ORM schemas about 90% of the relationship types are binary, and for these binary 
relationship types we always have n = 1. As a result, this mechanism allows us to easily traverse 
a conceptual schema. 
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Incidently, one relatively easy, yet mechanical, way to derive partial mix-fix verbalisations from 
more complete ones is to define: 

MFix([url,. . . ,w,w+l,. . . ,%I, bo,. . . ,PLI,P~,P~+I,. . . ,h]> I- 

MFix([wl,. . . ,w SOme ONm(Pb=h)) w+I,. . .wJ, [PO,. . . ,PGI,P~+I,. . . ,nJ) 

An example of this would be: 

MFix([‘chose for some person in’], [q, r]) 

which can be derived from 
MFix([‘chose for’, ‘in’], [q,p, r]) 

as used in the earlier given list of example mix-fix verbalisations. 
A crucial effect of concatenation is that it significantly reduces the number of possible in- 

terpretations. As can be seen from the definitions given above whenever a name, or a mix-fix 
verbalisation, has multiple path expressions as interpretation, we simply unite all possible results. 
Doing this is a very natural way to deal with the fact that in conceptual schemas role names, 
and in particular mix-fix verbalisations, are not unique. Please note, however, that this form of 
ambiguity is of a different magnitude than the ambiguities introduced by a full natural language. 

3.4. Verbalising Abstract Operators 

In the new version of LISA-D, information descriptors can also be combined by the use of 
the block, subset and superset operators from the path expression language (see appendix). The 
following definition shows the verbalisation of these operators: 

verbslisation 1 onerator 

MISSING 

ALL IN 

EVERY 

AND ALSO 

INTERSECTION 

OR OTHERWISE 

UNION 

BUT NOT 

MINUS 

4 

B 

!a 

m 

n 

M 

U 

+ 

Note that the definitions of each of the above operators from the path expression language is given 
in the appendix. 

An example of the use of one of these operators could be: 

President who has EVERY Hobby 

or 
President who has EVERY Hobby of President: ‘Johnson’ 

The ALL IN operator is employed in a complex query in Subsection 3.6. As another example, to 
find the presidents that were born in California and served four years, one can formulate: 

President (who was born in the State: ‘California’ 

AND ALSO 

who served the Nr of years: 4 ) 

Functions and binary relations from the many-sorted algebra D = (‘D, F) can be used in information 
descriptors. The expressions 45 + 25 and Nr < 35 are valid examples of information descriptors and 
can be translated straightforwardly to path expressions. 
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Finally, LISA-D has been extended with two comprehension operators, which serve as the 
verbalisations of the comprehension operators of the path expressions: 

lID[,INPWHEREC]I = {I&’ (C} 

IID[PWHEREvINQ] = {I’ IvE&} 

An example of the use of the first comprehension operator can be found in the following information 
descriptor yielding the presidents having two hobbies: 

x IN President WHERE NUMBER OF(Hobby of x) = 2 

An example of the application of the second comprehension operator can be found in the informa- 
tion descriptor yielding all presidents who where inaugurated at an age younger than 45 years: 

Person x who is president of an Administration which is inaugurated in a Year 

_< 45 + Year of birth of the President: x 

WHERE x IN President 

The above expression is an example of a correlation expression. The use of the second comprehen- 
sion operator allows for the definition of complex correlation expressions. 

3.5. Predicates 

In LISA-D, predicates are treated as information descriptors as well. The basis for predicates 
is formed by the boolean values, which are introduced as special zero-adic operators: 

The conditional clause construction is introduced as follows: 

expression D[expressionj 

IF C THEN P ELSE Q if IlD[Cj then lID[P] else llD[Q] 

The evaluation of this construct requires the evaluation of condition C, and, depending on the 
result of this evaluation, either P or Q is evaluated. The test whether an information descriptor 
has an empty result provides an illustration of the usage of the conditional clause: 

SOME P s IF P THEN TRUE ELSE FALSE 

NO P s IF P THEN FALSE ELSE TRUE 

For the moment, the g keyword is employed as an abbreviation definition mechanism. In the 
next subsection we introduce the macro mechanism, which allows us to properly introduce such 
abbreviations. Using the above operators, some further notational shorthands are defined. The 
traditional operations on predicates can be formed in the usual fashion using logical connectives 
and quantification: 

expression defined as 

Ci AND Cs (SOME CI) INTERSECTION (SOME Cs) 

Cl OR Cz (SOME CI) UNION (SOME Cs) 

EXISTS P WHERE C SOME (z IN P WHERE C) 

ALL I’ FULFIL C NOT SOME (z IN P WHERE NOT C) 
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3.6. Extending the Information Grammar 
C. 

In the previous subsection, examples of the introduction of new language constructs were shown. 
In this section this idea is formalised by the definition of the concept of macro. The macro concept 
as introduced here is beyond the original LISA-D definition, which only had a simple rudimentary 
form of macro definitions at its disposal. 

The purpose of macros is the enrichment of the retrieval language by assigning meaning to new 
language constructs. Each macro can be seen as a new grammar rule, extending the information 
language. The general format of a macro definition is: 

wherexr,..., X, are the names of the variables that are local to this rule. Each of the variables 
denotes a syntactical category that is to be instantiated by information descriptors upon application 
of the macro. The combination wc, . . . , w, forms the name of the macro. As a result of this 
definition, the expression 

wc PI Wl...P, wn 

is introduced as a valid information descriptor. To avoid ambiguity, the rule markers we,, . . , w,, 
have to satisfy certain rules. The first requirement is that rule markers which separate variables 
are not empty. Rule markers should also not already be defined by the lexicon. Furthermore, the 
rule markers wi, . . . , wn should not occur as starting markers of other macro definitions (one might 
say that the language should be LL(l), see e.g. [2]). Finally, the rule markers receive the lowest 
priority of operators to avoid problems with the parsing of empty markers. 

The evaluation of a macro call uses a fixpoint computation, as macros may be defined recursively 
in terms of each other. The idea of a fixpoint computation is to start from a bottom value (in 
our case the empty path expression) and to iterate the application of the definition of the macros 
involved until (hopefully!) some iteration does not produce new results. The existence of fixpoints 
is guaranteed if this computation has a monotonous nature. In that case, the evaluation schema 
yields the least fixpoint solution. 

Let the i-th generation be the result of i iterations of the fixpoint computation. Formally, the 
semantics of an information descriptor is then defined as the union of all i-th generations: 

D[PJ = u ID” [P] 
i>O 

The i-th generation D”I[Pl is inductively defined in terms of the structure of information descriptors. 
If P is a name from the lexicon or a constant, then simply 

Di [PI = IqPJJ 

For compound operators the i-th generation is obtained by computing the associated operator, 
applied to the i-th generation of the arguments. For example: 

ID” [P UNION Q] = Di [P] U ID” [Q] 

The evaluation of macro call wc PI WI . . . P, w,, with righthand side E, is defined recursively as 
follows: 

IiD0 [PI = 0.pE 

IDi+’ [PI = ID” [E [X, := PI,. . . ,X, := PJ 

The expression E [Xi := PI,. . . ,X, := P,,] represents E where all formal parameters Xj are 
replaced by their actual counterparts Pj. Note that this substitution takes precedence over inter- 
pretation. 
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is parent of f 

i 
P 9 

6 Person 

Fig. 6: Simple PSM Schema 

As an example of the use of recursive macros consider Figure 6, which records the parental 
relation between persons. The ancestor relation is defined by the following macro: 

Ancestor fi a Person who is parent of a Person UNION a Person who is parent of an Ancestor 

This assigns the following meaning to the information descriptor Ancestor: 

D[Ancestor] = ilo (p o q’)i 

may lead to 

i=i=i 

win 

Fig. 7: Schema of a Simple Game 

As a more complex example of the use of recursive macros, consider the set of positions in 
a 2-person game (see Figure 7). In this domain the relationship type may lead to describes how 
positions can be reached from one another. The unary relationship type is a direct win gives all 
winning positions for the first player. The question now is to yield all positions from which the 
first player can win [17]. This is captured by the following macro: 

Winning Positions g a Position which is a direct win UNION 

a Position which may lead to a Position ALL IN 

Position which may lead to Winning Positions 

The above query is an example of a query that cannot be expressed as a so-called stratified 

query (see Figure 8, taken from [17]). Stratified queries can express all the first order queries and 
negation is allowed between the so-called strata. It has been shown however that stratified queries 
do not express all fixpoint queries, in particular, they have difficulty taking fixpoints over universal 
quantifiers, as needed in the above query (see [42, 211). 
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[ Computay Queries J 

I Fixpoint Queries I 

I 

Stratified Queries 

/ > 

First Order Queries Horn Clause Queries 
= Relational Algebra (Datalog) 

< , 

Conjunctive Queries 

Fig. 8: Query Language Expressiveness Hierarchy 

The macro mechanism of LISA-D allows for the specification of arbitrary fixpoint queries. 
There are, however, some relatively simple queries which cannot be expressed as fixpoint queries 
(due to lack of arithmetic operations). An example is the query Even, which determines whether 
the number of instances in a certain relation is even [17]. LISA-D provides the necessary basic 
arithmetic operators and this query can therefore be straightforwardly expressed: 

EVEN R 15 IF NUMBER OF(R) / 2 = 0 THEN TRUE ELSE FALSE 

Whether every computable query can be expressed in LISA-D remains an issue for further research. 

4. VERBALISATION AND DENOTATION OF INSTANCES 

As we have seen in the earlier sections, during information analysis the information structure 
ZS and its verbalisation Mu are derived from a set of sample sentences. From these sample sen- 
tences, the verbalisation and denotation of instances can be derived as well (see Subsection 2.1). 
The resulting verbose representation of instances can be used by the information system in user 
dialogues (e.g. part of LISA-D), as well as to verbosely describe the contents of a database to a 
search engine [51]. 

Each object type in a conceptual schema has a number of ways to uniquely identify its instances, 
called identification schemes. In general we will require there to be at least one such identification 
scheme. In practice, most object types will only have a single identification scheme. For each of 
these identification schemes, verbalisation rules can be formulated to denote the instances in a richer 
format. As an illustration, consider the address example shown in Figure 3. An Address is identified 
by the combination of a community name, street name and house nr. As a result, one could denote 
an address as: Address: (Nijmegen, Toernooiveld, 1). This might, with some caution, be abbreviated 
to: Address: Nijmegen, Toernooiveld, 1. This is reasonably acceptable. It is, however, not very scalable 
to other situations. As an example of this weakness, consider the denotation of a relationship type 
instance. The marriage between president Washington and Custis would be denoted in this way as: 
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Marriage: ‘Washington G.‘, ‘Custis M.D.‘, which is rather mechanical to say the least. A more human 
oriented verbalisation of this fact would be: the marriage between ‘Washington G.’ and ‘Custis M.D.‘. For 

a final example of a verbalisation consider Nr of Voters. Denoting an instance of this object type 
would e.g. lead to: Nr of Voters: 10000. A more elegant verbalisation would be to simple state: 
10000 voters. 

This section deals with the introduction of a scalable verbalisation mechanism that allows us 
to define more elegant and situation specific verbalisations of instances. The verbalisations are 
provided by a set of verbalisation rules. In the remainder of this section we first (Subsection 4.1) 
discuss the underlying verbalisation mechanism in general. This is followed in Subsection 4.2 by a 
discussion on how to utilise the verbalisation mechanism in the context of LISA-D queries. 

4.1. The Verbalisation Mechanism 

The verbalisation mechanism used here is rather simple. The basic idea is to associate a set of 
meta production rules to each object type. These rules will govern the verbalisation of its instances. 
Given a set of those meta rules and a set of instances, a set of concrete production rules can be 
derived from the meta rules. In the verbalisation mechanism used in this article, the resulting 
set of concrete production rules will correspond to a traditional context free grammar. However, 
when a more ambitious approach is required, the same principle could be applied to more advanced 
forms of grammars (e.g. functional grammars). 

Each of the (meta) verbalisation rules is associated to an object type. Doing this allows us to 
derive instance specific verbalisation rules while using the structural information that is locked in 
the underlying information structure. For example, inheritance between types will have a great 
influence on this process as we will see below. 

Each of the rules associated to an object type is numbered by a natural number. These numbers 
are used to identify the verbalisation rules. This provides us with more explicit control during the 
generation process of verbalisations. As such, the number does not provide any ordering; we could 
have chosen any domain of labels. The general format of a verbalisation rule is: 

(0:xli) _)Wi)V~W1...Wn_l Vnwn 

for n > 0, where each wj (0 5 j 5 n) is a (possibly empty) string, each Vj (1 5 j 5 n) an eZement 
verbalasation and i the rule number. The rule describes a verbalisation of instances of the object 
type named 0. In this rule, z is used as a reference to the instance that is to be denoted. Note 
that typing of z is necessary as a value can be an instance of more than one object type. For 
example, if 0 is a subtype of another object type, then z is also an instance of that supertype. 

Each element verbalisation yields the verbalisation of a specific property of object CC. An element 
verbalisation for object type named 0 has the form: 

(0:DxllL) 

where attribute rule D is a LISA-D information descriptor and L a rule preference list. The latter 
list gives the preferred order in which verbalisation rules for 0 should be tried. The information 
descriptor D x provides the property to be verbalised. This is only useful if the evaluation of D x 
yields a single object related to x. 

The 0-th verbalisation has a special status. It is the main verbalisation rule. A sophisticated 
verbalisation system typically features a mixture of verbalisation rules for object types, based on 
alternative ways to identify instances and partial verbalisations. Therefore, the main verbalisation 
rule usually has the format: 

(0:x10) + (0:x 11 L) 

Each of the alternatives listed in L must be a complete verbalisation of 0 in line with the identifi- 
cation schemes of 0. We usually abbreviate (0 : 2 IO) to (0 :x), both in the header of the rules as 
well as in the bodies. 

Element verbalisations usually omit explicit verbalisation of typing information. For example, 
we would use ‘J.F. Kennedy’ in the presidential database example if only referring to ‘J.F. Kennedy’ as a 
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person. When referring to this person as a president, this would become president ‘J.F. Kennedy’. This 
way of treating typing information, and using it only when needed, is a convention used in natural 
language that keeps sentences readable. However, when we integrate the element verbalisations in 
the LISA-D language, special care must be taken not to introduce ambiguities this way. In some 
situations explicit typing must simply be added. As an example, we consider the formula example 

,, . . . . . . . . . . . . . . . . 

name ; 

~‘.....,..,.. ” 

“Complex formula” 

Fig. 9: Registration of Formulas 

(see Figure 9). Instances of object type Formula are verbalised by the verbalisation rule of the root 
(morph) object type from which they originate. In addition, formulas may have a special name, in 
which case this name is preferred as the verbalisation. This leads to the following verbalisations: 

(Formula:z) + (Formula:z (1 3,2,1) 

(Formula:z13) + (Formula name:is of z) 

(Formula:z/2) + (Variable:z) 

(Formula :z 11) + (Complex formula :z) 

The examples used here are complete verbalisations. Below we also discuss examples of partial 
verbalisations. 

Instances of relationship type Complex formula are denoted as expressions of the form (z 0 y). 
However, the arguments z and y should not be represented by their name (formula name or variable 
name), but rather in terms of their construction. This is laid down in the following rule: 

(Complex formula :z) + (Complex formula :z )I 2,1) 

(Complex formula :z 12) + ( (Formula :is left arg of x 11 2) 0 (Formula : is right arg of z (1 2) ) 

(Complex formula :x I 1) + (Formula :is left arg of x) , (Formula : is right arg of z) 

where is left arg of and is right arg of we presumed to be role participation names. Some examples of 
valid formulas are: U, (U 0 ti) and (U 0 (U 0 w)), where U, v and w are variables. 
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4.1.1. Deriving the Actual Grammar 

367 

The (meta) verbalisation rules are treated as meta-rules in the sense of two-level grammars (see 
e.g. [57]). They are instantiated by a population of the information structure. As a result, with any 
population Pop, a concrete verbalisation grammar can be associated. Note that this instantiation 
mechanism is independent of the actual class of grammar used. In this case we are using context 
free grammars, but it could be applied to more advanced grammars as well. 

The nonterminals of the resulting grammar are: 

{ (0 : ZI ( i) 1 v E Pop(O) A i a verbalisation rule number for 0 } 

The rules of the verbalisation grammar originate from meta rule instantiation, a process consisting 
of two steps. Consider meta rule: 

(O:zli)+w,, (AI:DIz~~LI) WI...W,_~ (A,:D,,zllL,) wn 

The first step instantiates element verbalisations, while the second step processes the rule preference 
list for each element verbalisation. 

Let u be an instance of 0, or, w E Pop(O), and oj (1 5 j 5 n) an (the) instance which is 
associated with v via information descriptor Dj v. Then the resulting intermediate rule is of 
the form: 

(0:vli) +wo ((-4:~ IILl)) WI...W,,--1 ((&:anllL$ wn 

In this step the rule preference lists are processed. This list provides the order in which 
verbalisations are to be applied (if possible!). In case of an empty list, the element (( Aj : aj 11 )) 
is replaced by (Aj : aj). If the list Lj is not empty, then let rj be the first rule number in 
Lj for which (Aj : aj I rj) appears as the left hand side of some intermediate rule. Then the 
element (( Aj : aj 11 Lj)) is replaced by (Aj : aj I ~j). 

Fig. 10: Sample Population 

n4 
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This two step construction mechanism is illustrated by showing its effect for the formula exam- 
ple, when populated as in Figure 10. The formula instance fi has an associated formula name 121, 
whereas formula instance fi has no such name. Note that the rule instantiation mechanism also 
looks after the generation of the proper concrete verbalisation rules for instances of polymorph 
types. The rule instantiation step results in: 

(Formula:fi 13) + ((Formula name:nl I( 0)) 

(Formula:fi 12) + ((Variable:fi 110)) 

(Formula : fl) + ((Formula : fi II3,2,1)) 

(Formula : fs 11) + ((Complex formula : fs II 0)) 

(Formula : fi) + ((Formula : fi II 3,2,1)) 

(Complex formula:fz 12) + ( ((Formula :fs II 2)) 0 ((Formula:f4 )I 2)) ) 

(Complex formula :f2 11) + ((Formula : f3 II 0)) , ((Formula : f4 )I 0)) 

(Complex formula : fz) + ((Complex formula : _fi I( 2,1)) 

(Formula:f3 12) + ((Variable:fs )I 0)) 

(Formula:fs) + ((Formula:fs I( 3,2,1)) 

(Formula:f4)3) + ((Formula name:724 II 0)) 

(Formula:fd 12) + ((Variable:fd II 0)) 

(Formula: f4) + ((Formula : f4 II 3,2,1)) 

In the second step, the rule preference lists are processed. This leads to: 

(Formula:fi 13) + (Formula name:nl) 

(Formula:fi 12) + (Variable:fi) 

(Formula : fl) + (Formula : fi 13) 

(Formula : f2 I 1) + (Complex formula : fi) 

(Formula:fi)O) + (Formula:fi) 

(Complex formula : fi) + (Complex formula : fi ( 2) 

(Complex formula : f2 12) + ( (Formula : f3 ) 2) 0 (Formula : f4 ) 2) ) 

(Complex formula : fi ) 1) + (Formula : f3) , (Formula : f4) 

(Formula : fz) + (Formula : _fi I 1) 

(Formula: f3 12) -+ (Variable: f3) 

(Formula:f3) + (Formula:f3)2) 

(Formula:f4/3). + (Formula name:n4) 

(Formula : f4 I 2) + (Variable : f4) 

(Formula:f4) + (Formula:f413) 

As this grammar is only invoked from the symbols (0:~) for all object types 0 and x E Pop(O), 

some rules of this grammar might be superfluous in that they will never be invoked. 
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4.1.2. Example Verbalisation Rules 

Now we have discussed the general principle, we can discuss some specific examples in more 

detail. We do this briefly for every class of object types. 

Value Types: For value types, it is sometimes useful to deviate from the standard rule, for 
example when dimensions are to be involved. Therefore, we could for example add the following 

rule for a value type Length. 

(Length:xl2) + (Length:2 11 l)yards 

Entity Types: For the example given in figure 3, we have the following default verbalisation: 

(Community:x) + (Community name:Community name of Community x) 

(Street :x) + (Street name:Street name of Street x) , (C ommunity : Community contains Street x) 

(Address:x) + (House Nr:House Nr of Add ress x) (Street: Street of Address x) 

This leads to a denotation of addresses in the following format: 

1 Toernooiveld, Nijmegen 

In some countries, this is not the accepted style to write addresses. For example, in some countries 
the preferred style to write this address is: 

Toernooiveld 1, Nijmegen 

What makes this case special is that while a street is identified by a street name (Toernooiveld) 

and the community name (Nijmegen), the house number needs to be placed in between. To obtain 
this kind of verbalisation we need to introducing two partial verbalisation rules for Street. 

(Street:x12) + (Street name:Street name of Street x) 

(Street:xl3) + (C ommunity : Community contains Street x) 

If we then change the complete verbalisations of Address to: 

(Address:x) + (Street:2 II 2,1) 

(Address: x 12) + (Street: Street contains Address x II 2) (House nr: House nr of Address x) , 

(Street: Street contains Address x II 3) 

(Address: x ) 2) -_) (House nr: House nr of Address x) (Street: Street of Address x) 

the desired verbalisation style is obtained. 

Relationship Types: Verbalisation of relations can benefit a lot from our verbalisation mecha- 
nism. The earlier used example of the marriage between ‘Washington G.’ and ‘Custis M.D.’ as opposed to 
the marriage: ‘Washington G.‘, ‘Custis M.D.‘, is an illustrative example. 

In particular for relationship types it is also useful to introduce partial verbalisations. A partial 
verbalisation, as its name suggests, only verbalises part of a fact instance. For example, the 
participation of a person in an election, irrespective of the received nr of votes, may be verbalised 

as: 

(Election results:x ( 2) + the participation of (Person : has Election results X) 

in (Election : with Election results X) 

Another typical example is the verbalisation of bridge types in the case of simple identifications. 
For example, the bridge type Registration that relates a Student to his/her Student number. The ver- 
balisation of this relationship type will mention the student and the student number. As, however, 
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students are denoted by their student number, this verbalisation would verbalise the same instance 
twice leading to: the registration of student 862424 with student nr 862424. A more natural verbalisation 
would be the registration of student 862424, which can be obtained by the additional rule: 

(Registration : z 12) + the registration of student (Student number: Student number of Registration z) 

Although this latter verbalisation is a partial verbalisation, one could argue that it is complete 
from an identification point of view. The reason is that instances of Registration are necessarily 
functional dependent on the student number. This implies that each instance of Registration can be 
uniquely identified by a student number. In particular for bridge types it therefore makes sense 
to allow these semi partial verbalisations as complete verbalisations as they prevent redundant 
verbalisations. 

Inheritance Hierarchy: Inheritance of verbalisations really illustrates the advantages of using 
meta verbalisation rules. Depending on the actual type of an instance, the (preferred) verbalisation 
will be adopted based on its inherited verbalisation. 

In the inheritance hierarchy, the default is that verbalisations are inherited downward. However, 
the inherited verbalisations may be overriden. In case of the running example, the verbalisation 
of instances of President differs from the verbalisation of instances of Person. The following example 
shows how this can be handled. 

(Person : Z) + (Politician : z) 

(Politician :2) + (Politician :z I( 2,1) 

(Politician : z 12) + (President: z) 

(Politician : z 11) + politician (Person : rc) 

(President : 2) + president (Person : z) 

Complex Types: So far, the verbalisation of special object types (such as collection types and 
schema types) has not been discussed explicitly. If the verbalisation of a collection type or schema 
type does not employ the underlying element type(s), there are no special problems. If it does, 
however, a special notation needs to be introduced to indicate that the information descriptor D z 
may yield more than one instance. Consider for example the following possible verbalisation rule 
for the object type Convoy of the schema in Figure 11: 

(Convoy: 2) + the convoy consisting of (Ship: IN z)+ 

Convoy set 

Fig. 11: Example Collection Type 

In this case Ship IN x may yield several instances for a concrete instantiation of 2, hence the 
plus. To capture this case, the instantiation of the element verbalisation is treated differently. In 
general, a verbalisation of the form (0 : D z 11 L)+ yields: 
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if ai,...,a, (m > 1) result from the evaluation of D v for some v E Pop(O). In case m = 1, the 
element verbalisation yields: 

((0 :a1 II L)) 

Note that the rules for populating collection types exclude the possibility m = 0 (see [36]). Of 
course, the verbalisation of power types may employ some external identification. As an example, 
suppose that convoys do have convoy codes: 

(Convoy :Z 12) + the convoy (Convoy code: is name of z) 

4.2. Object Denotations 

Verbalisation rules specify how object instances are represented in the universe of discourse. 
As this is the preferred way to denote instances as used by the parties involved in the universe of 
discourse, it makes sense to ensure that in the communication with the information system these 

denotation styles can be used as well. 

To use the verbalisation rules in the context of LISA-D, a different treatment of the rules is 
required. For the verbalisation of instances, a backward chaining approach was followed in that the 

verbalisation rules allowed us to re-write the instances of abstract types (entity types, collection 

types, etc.) in terms of instances of other object types, and eventually value type instances. For 
LISA-D, this process needs to be reversed. What is needed is a forward chaining approach. In 
a LISA-D information descriptor, instances of abstract types are denoted using values from the 
underlying value types. In processing an information descriptor the actual abstract instance is 
required. Therefore, a mechanism is required that derives the abstract instance from the concrete 
value type instances. Such a mechanism should yield a path expression that performs this forward 

chaining task. 
For object denotations in LISA-D, we introduce an additional syntactic category. The bulk of 

LISA-D’s definition was centered around the syntactic category information descriptor, but for the 

object denotations an extra category is required. This is the object denotation category, and its 
semantics (in terms of path expressions) will be provided by the function: 

0: ObjectDenotationx w x CB-+P& 

For each of the verbalisation rules of the form: 

(ONm(o):z[i) + wg (ONm(ol):Dl z (1 L1)wl . ..w.-1 (ONm(o,):D,z 11 L,)w, 

we can define: 

o([wo [&I w . . . ~-1 [&I 4 (4 0) = f$ Fr(DEDj]+ oOl[Bj] (mj, oj)) 
j=l 

where El,..., E,, are existing object denotations, and mj is the first element from Lj such that a 

verbalisation rule labeled mj for object type oj indeed exists. 
The square brackets in the object denotation are only required when their absence would 

introduce ambiguities, otherwise they can be omitted. The actual integration of object denotations 
into the category of information descriptors is done as follows. Let E be an object denotation, o 
an object type, such that O[E] (0, o) is defined, then we have the following information descriptor: 

DI[TQ(o) : E] = O[E] (i,o) 

where TQ(o) = Article(o) ONm(o) provides the type qualification for object denotation E. 
Where this does not lead to ambiguity, the type qualification can be reduced. For example, in 

the case of the marriage between ‘Washington G.’ and ‘Custis M.D.‘, no type qualification is needed. On 
the other hand, omission of typing information is not a luxury that can be afforded in the formula 

example: 
Formula: u 

Formula: ( u 0 v ) 

Formula: ( u 0 ( v 0 ‘w ) ) 
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5. QUERY VERBALISATION 

In the next section, we discuss a sample query tool that should support users with the for- 
mulation of queries. The intention of this tool is to provide the user with a guidance system to 
interactively compose queries. Simple queries correspond to linear paths through the information 
structure, while complex queries result from applying operators to other queries (see Subsection 
3.4). 

The proposed query tool needs the ability to verbalise a given linear path expression and yield 
a LISA-D information descriptor. The reason for this requirement is two-fold. Firstly, one of the 
key features of the envisioned query tool is to let users navigate through an information structure, 
and while doing so they build a linear path. This resulting path should eventually be presented to 
the user in the form of a (readable) LISA-D information descriptor. The second reason to require 
a verbalisation mechanism for paths is that if we build a natural language query tool that takes 
a query in natural language and then tries to interpret this, the ‘interpretation’ will lead to a 
number of possible path expressions. The resulting path expressions have to be shown to the users 
for perusal such that they can select the proper interpretation. Key to this is the verbalisation of 
these path expressions. 

In this section we do not discuss the verbalisation of all complex operators that could be used 
in a path expression. The complex operations themselves usually have a direct translation, and 
do not pose a real challenge for verbalisation. More challenging is the verbalisation of linear 
path expressions, and verbalisations in the context of mix fix predicate verbalisations and instance 
verbalisations. In this section, we therefore focus on these aspects of path verbalisation. 

The verbalisation function we seek should take a path expression P and find an information 
descriptor D such that D[O] is equivalent to P. So in essence we are trying to define an ‘inverse’ 
of D. For one P there are, however, usually multiple D’s that would meet our needs. Therefore, 
we define a scoring system that expresses which verbalisation is preferred over another by using a 
demerit system. We define the verbalisation function in terms of a set of derivation rules that derive 
the verbalisation alternatives, together with associated penalty points. The predicate p(P, n, 2) 
is used to express the fact that path expression P can be verbalised as n, with penalty 2. The 
verbalisation cost of a linear path is then defined as: 

Cost(P) = min {Q 1% [P(P, n, a>1 } 

The chosen verbalisation p(P) of path P should be a candidate with the least demerit points, so 

P(P, P(P), Cost(P)). 
As a running example in this section, we consider a small (abstract) fragment of the presidential 

database (see Figure 12). Object types A, B, C and D correspond to Hobby, President, Person 

and Nr of children, while fact types F, G and H correspond to Recreation, Marriage and Offspring 

respectively. Furthermore, the fact participation name of role T is is partner in. 

5.1. Simplification of Verbalisations 

The first verbalisation rule handles the simplification of paths: 

[Vl] (simplification rule) If path PI can be simplified to P2, then: 

where path Pz is simpler than PI if they have the same semantics, and P2 is smaller than PI in 
terms of the number of operators. For example: 

p(Aoaopoq+oBob,n,a) I- p(AoaopoRel(p)o f oqt oBob,n,a) 

p(Rel(p)o f,n,(Y) !- p(AoaopoRel(p)of oqt oBob,n,a) 
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h/ H 

Fig. 12: A Minuscule Fragment of the Presidential Database 

5.2. Elementary Verbalisation 

An empty path expression is only used as a starting point in the navigation tool. Therefore we 

verbalise it as follows: 

[V2] (empty path expression) k p(e, Start, 0) 

The verbalisation of typed instances is governed by the verbalisation rules for instance denotation 
as discussed in Subsection 4.1.1. Let, X((ONm(o):z)) be the verbalisation of instance z of object 

type o as follows from the grammar introduced in Subsection 4.1.1. Now we can define the following 
verbalisation rule: 

[V3] (instantiation de) I- p(ooz,TQ(o) X((ONm(O):z)),O) 

where TQ(o) provides the type qualification for object type o if needed to prevent ambiguities. 

Note that there is no derivation rule for the verbalisation of isolated constants, as a constant may 

belong to several label types. Of course, abstract objects have no direct verbalisation, as such 

objects are verbalised in terms of associated concrete objects. As an example of the instantiation 

rule, we consider the example of Figure 12. In this example, we assume each object type to be 
identified by a label type with an underlying domain of strings. Then we have: 

P(A o a, hobby ‘fishing’, 0) 
P(B o b, president ‘Washington G.‘, 0) 

if a and b have the names fishing and ‘Washington G.’ respectively. 

5.3. Verbalisation of Information Structure Components 

Naming of information structure components enters the verbalisation system via the lexicon. 
Some names in the lexicon have been introduced as generic names. These generic names are used 
as a default verbalisation, but preference goes to the more specific names as specified by the user. 
Let therefore g(n) have value 2 for all generic names n, and value 1 otherwise. The involvement 
of the lexicon, and the preference for non-generic names is then expressed by the following rule: 

[V4] (lexicographic verbalisation) Lexicon(n, P) I- p(P, 72, g(n)) 



374 

Some examples are: 

ARTHUR H.M. TER HOFSTEDE et al. 

p(A, a hobby, 1) p(B, a president, 1) 

&, is, 1) p(p, INVOLVED IN, 2) 

&I+> of, 1) P(q+, OF, 1) 

5.4. Composing Verbalisations 

The main rule for composing verbalisations is juxtaposition of already verbalised parts. We 
take for each concatenation a penalty of 2 point into account: 

[V5] (concatenation of verbalisations) 

Mix-fix verbalisations also lead to concatenation of existing verbalisations. 

[V6] (m&-k VerbaIisation) 

MFix([wl,...,~n],[po,...,~n])Ap(~l,ml,~l)A...~p(~,-1,m,-l,a,-1) I- 

P(PO O<;c)<n Fr(pi+ 0 pi> opnt, ~1 [ml] . . . [m-l] wn , al+ . . . ~-1) 

The following example shows some verbalisation variants. The first results from verbalising each 
element, the second results from simplification to A opo q+ o B, and the use of a mix-fix predicate 
verbalisation. The third variant by using generic names for roles. 

P(A op o f o qt o B, a hobby which is a recreation pursued by a president, 6) 

P(A o p o f o qt o B, a hobby of a president, 1) 

P(A op o f o qt o B, a person INVOLVED IN a recreation OF a hobby, 8) 

The preferred verbalisation is therefore a hobby of a president. 

6. COMPUTER SUPPORTED QUERY FORMULATION 

This section discusses a case study in which the benefits of verbalisation for computer supported 
query formulation (CSQF) are highlighted. A more elaborated discussion of the underlying ideas 
can be found in [38]. 

We start of with a discussion of query by navigation. This is followed by a discussion on 
how a natural language query tool could be used to provide a flexible query tool. The section 
concludes with a brief discussion of an integrated query workbench that combines the different 
query formulation styles using a syntax directed editor. 

6.1. Query by Navigation 

From an end user’s point of view, conceptual query languages, and natural language query 
approaches for that matter, are particularly useful for ad-hoc queries. Database administrators may 
have pre-defined some standard queries but a large number of queries still need to be formulated 
on an ad-hoc base, and preferably by the end users themselves. 

End users, however, usually do not have a good overview of the information stored. In particular 
in the context of evolving information systems [37], or federations of information systems, this 
problem comes even more to the fore when the structure of the conceptual schema changes regularly. 
The result is that irrespective of the actual query language used, be it a SQL, a conceptual query 
language, or a natural language, users still have to deal with the fact that they don’t Lnow what’s 
out there. Users may start to feel Iost in conceptual space. This problem of feeling lost in conceptual 
space, was found to be similar to the problem of lost in hyperspace as it can be encountered in the 
world of information retrieval. In the context of information retrieval, this problem is approached 
by using query by navigation [29, 46, 20, 1, 81. The query by navigation interaction mechanism 
between a searcher and the system is well-known from the Information Retrieval field, and has 
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proven to be useful. This has triggered us in applying this principle to query formulation on 
information systems [16, 38, 371. The effectiveness of query by navigation has been proven using 

empirical testing in [6]. 
In line with the above discussion, a query formulation process (both for an information retrieval 

system, and an information system) can be said to roughly consist of four phases: an ezpcplorutive 
phase, a constructive phase, a feedback phase, and a presentation phase. A more detailed discussion 
of these phases, and their inter-relationships can be found in [38]. 

A query by navigation system for query formulation in information systems is aimed at the 

explorative phase. The reason to briefly discuss query by navigation in this article is that it 
provides a very natural application of the verbalisations provided with a conceptual schema. In a 

query by navigation session, a user essentially builds a linear path through the conceptual schema. 
This path is verbalised using the verbalisations provided with the conceptual schema. As these 
verbalisations are directly based on samples taken from the universe of discourse, the resulting 

paths are verbalised in a way that more directly relates to the user. 

Start 

V person 
V politician 
v president 
V administration 
V year 
V age 
V nr of years 
V state 

V party 
V hobby 
V election 
V voters 
V children 
V marriage 
V election results 

H beam down 

Fig. 13: The Starting Node of the Hyperindex 

To illustrate the elegance of query by navigation, we offer the reader a ‘test drive’ with such a 
system. The example is in the context of the presidential database example, but let us presume 
the user of the system is not really aware of the information stored in the system. The first node 
shown to the user is depicted in Figure 13. It simply lists all object types in the conceptual schema. 
Let us presume the user is interested in presidents who are married to someone, and the number 
of children that resulted from these marriages. In the starting node, the user may select ‘president’ 
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aa the first refinement of the information need. This leads to the example node as presented in 
Figure 14. The associated node shows the direct environment of object type President. The set 
of possible refinements of the current focus is built as follows. For each n-ary relationship type 
in which the current focus (president) plays a role, we have n - 1 possible refinements since there 
are n - 1 possible ways to continue the path through this relationship type. The associative links 
are now derived from the subtyping hierarchy in the conceptual schema. In our example ORM 
schema these are the supertypes of the object type President, being Politician and Person. An obvious 
refinement of this interface would be to link it to an organisation specific dictionary in which terms 
like President and Politician are defined (possibly organised as a hypermedia document). 

The president who 

A Start 

v . . . 
v .*. 
v . . . 
v . . . 
v . . . 
v . . . 
v . . . 
v .*. 
v ..* 
v ..* 
v . . . 
v . . . 
v . . . 
v . . . 
v . . . 

has an election result 

has voters in an election 

had the nr of voters 

is president of an administration 

is vice president of an administration 

is spouse in a marriage 

has won an election 

is involved in a marriage 

was born in the year 

died at age 

has served for the years 

was born in the state 

is member of the party 

has hobby 

has person name 

D person 

D politician 

# beam down 

I 

Fig. 14: The Quest for a President who is Married with a Politician 

Let us presume the searcher selects the president who is involved in a marriage as the next focus. 
This action leads to the node depicted in Figure 15. This node shows a second class of associative 
links. Besides associative links resulting from subtyping, we also distinguish associative links to the 
reversed formulation of the current focus, i-c. the marriage of a president. When navigating through 
the hyperindex, refinements to the current focus will take place on the tail of the current focus. 
By reversing the current focus, refinements can be made on the front as well. 
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The president who is involved in a marriage 

A president 
A marriage 
V . . . with as spouse the person 
D . . . that resulted in children 
D the marriage of a president 

~ 

H 

I 

beam down 

Fig. 15: Focus on Marriage 

The president who is involved in a marriage with as spouse the person who 

A the president who is involved in a marriage 

A person 

V ..+ has an election result 

V . . . has voters in an election 

V . . . had the nr of voters 
V . . . is president of an administration 

V ,,, is vice president of an administration 
V . . . is the spouse of a president 

V . . . is involved as spouse in a marriage 
V . . . is spouse in a marriage 

V .., has person name 
D the president who is involved in a marriage with as spouse the politician 
D the president who is involved in a marriage with as spouse the president 
D the person who is spouse in the marriage of the president 

I beam down 

Fig. 16: Preliminary Result in the Hyperindex 
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The user decides to select the refinement with as spouse the person, leading to Figure 16. The 
user considers this, for the moment, to be a proper description of the information need. To get 
an impression of the query result so far, the user selects the beam down option. This results in 
the node depicted in Figure 17. This node is neither part of the hyperbase, nor is it part of the 
hyperindex. It is an ad-hoc node representing the result of the focus of Figure 16 interpreted as 
a query on the underlying database. The user can now select an instance for further navigation, 
which will then indeed take place in the hyperbase. 

f \ 

Results of: 
The president who is involved in a marriage with as spouse the person 

L , 
I 

? 

A the president who is involved in a marriage with as spouse the person 

v president ‘Washington G.’ is involved in a marriage with as spouse ‘Custis M.D.’ 

V president ‘Madison J.’ is involved in a marriage with as spouse ‘Todd D.D.P.’ I 
V president ‘Polk J.K.’ is involved in a marriage with as spouse ‘Childress S.’ 

i J 

Fig. 17: Preliminary Result of the Query 

6.2. Natural Language Query Interface 

A language like LISA-D is better suited for non expert users to specify their own queries, 
then a language like SQL. However, due to its unavoidable formality, LISA-D as such may still be 
regarded as too limiting for end users. Therefore, it makes sense as a next step to develop a (more) 
natural language front end for LISA-D. Given a query in a full natural language, this query could 
be interpreted as a path expression using the verbalisations specified with the conceptual schema. 
This obviously requires more linguistic information than we currently specify at the moment [24]. 

In Figure 18 an example natural language query is given. This query is ambiguous in that 
it is not clear to which person the who is the vice president of an administration refers to. The system 
would therefore be able to interpret this query in at least two ways. By translating each of these 
interpretations to a path expression, and re-verbalising these path expressions, we can build a feed 
back system that enables the system to have a natural dialogue with users. Figure 18 also shows 
the different interpretations. 

This raises of course the question: how realistic is this ? What is certainly possible with the 
limited verbalisation information we use in this article is to provide a mapping between natural 
language expressions expressing linear paths in a conceptual schema and a (partial) query. For 
example, a query like: 

In which state was president ‘Clinton’ born? 

Using existing techniques it should be possible to re-phrase this in the more structured format: 

In which state was-born president ‘Clinton’ 

which highlights those parts of the expression that correspond to nouns (hinting at object types). 
This expression can be interpreted as a small conceptual graph, which can be matched against the 
conceptual schema; which is essentially a conceptual graph as well. 

In this process, the system can derive that the closest match according to the information 
available is: 

State which is birthstate of President: ‘Clinton’ 



Exploiting Fact Verbalisation in Conceptual Information Modelling 

Natural Language Query 

Your request: 

How many children resulted from a marriage between 

a politician and a person who is the vice president 

of an administration? 

Interpretations: 

GIVE Nr of children that resulted from 

Dl 

a marriage between [a politician] 

and [a person who is vice president of an administration] 

GIVE Nr of children that resulted from 

a marriage between [a politician who is vice president of an administration] 

and [a person] 

IEvaluate) 0 Exit 

Fig. 18: Resolving Ambiguities by Re-Verbalising Interpretations 

6.3. Query by Construction 

The query by navigation interface on its own, does not allow users to build queries with all 
kinds of complex operators. This is not a flaw of query by navigation. The aim of query by 
navigation was to offer users a tool to explore the information stored in the information system, 
not to provide them with a complete query formulation tool. 

Also a natural language query interface does not provide a means to formulate all possible 
queries in a convenient way. A natural language query tool will allow for the specification of a 
larger set of queries than a query by navigation tool does, but it does not support the formulation 
of arbitrarily complicated queries. One could indeed specify a complex fix-point query involving 
different complex operations in natural language, but this would be rather tedious to do, and is 
bound to lead to a large number of ambiguities. Using natural language query formulation is suited 
for path expressions that do not contain too many complex operations. 

To support the formulation of arbitrarily complex queries, we therefore need a tool that basically 
provides a syntax directed editor. An example of this is shown in Figure 19. This Qzlery by 
Construction tool basically provides a query workbench. Query ‘snippets’ that either result from a 
query by navigation session, or natural language query, can be dragged onto the query workbench 
where they can be combined into complex queries using an array of operations. The power of 
such a query workbench is obviously the combination of tools. The combination of tools should be 
rich enough to accommodate users with different levels of expertise. Finally, the roles that each 
of the query formulation tools discussed in this section could play in a query workbench, can be 
characterised by the following phrases: 

Query by navigation I don’t know what I’m looking for, but I’ll know when I find it. 

Natural language query I know roughly what I want, but I don’t know how to say it formally. 

Query by construction Now that I have all the bits and pieces, I want to formulate the proper 
complex query. 
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_ AND ALSO _ 

_ BUT NOT _ 

. . . 

LzzA~ . . . 4 
. . . . . . 
hobby: _ 
marriage: _._ I 
president: _ 
politician: _ 
state: _ 
. . . . . . 
. . . 

J! 

Query by Construction 

c party which has as member the president 

who was born in the state COregon) 

AND ALSO 

who has the hobby Model railroads 

BUT NOT 

who is the vice president of an administration 

0 
Exit 

Fig. 19: Example Query by Construction Session 

What remains to be done with regards to the sketched querying mechanism is empirical testing to 

verify that it is indeed an improvement over traditional query mechanisms. The effectiveness of 
query by navigation in the context of information retrieval [6] gives us the hope that this mechanism 
will work well in the context of conceptual query formulation. F’urthermore, the producers of 
the InfoModeler CASE Tool [4] have recently launched a product featuring similar underlying 
principles. 

7. CONCLUSIONS 

In this article we have discussed four ways to exploit fact verbalisations. We did so in the 
context of a formal framework capturing our (modest) repository of verbalisation information. We 
have shown how an information system can communicate with users in a language that more closely 
resembles the language of the users. Query results can be presented in user-friendly formats and 
data can be conveniently presented to the system, which also facilitates the discovery of databases 
by search engines on the internet. Furthermore, the grammatical foundation provides a basis for 
sophisticated query formulation support, as outlined in Section 6. 

The verbalisation mechanisms described in this paper are very liberal. Subtypes may be given 
different verbalisations as their supertypes, complex types may be verbalised not only using their 
structure, but also using external identifications, and verbalisations may employ context depen- 
dencies and be of a partial nature. In addition to that, a powerful mechanism has been presented 
for the specification of derived information: macros. This mechanism can also be straightforwardly 
supported by the described query formulation support system. Although emphasis has been on 
Object-Role Modelling, the results are sufficiently general to be applicable to other data modelling 
techniques. 

Focus in this paper has been on (basic) grammatical aspects of conceptual data modelling, 

where we did not yet dare venture into the area of linguistics. The latter step will be part of future 
research in attempt to further improve the naturalness of LISA-D and instance verbalisations. 



Exploiting Fact Verbalisation in Conceptual Information Modelling 381 

Acknowledgements - We would like to thank the anonymous referees for their comments and suggestions, which 
have led to improvements of the original article. 

REFERENCES 

[l] M. Agosti, Ft. Colotti, and G. Gradenigo. A two-level hypertext retrieval model for legal data. In A. Bookstein, 
Y. Chiaramella, G. Salton, and V.V. Raghavan, editors, Proceedings of the 14th Annual International ACM 
SZGIR Conference on Research and Development in Information Retrieval, pp. 316-325, Chicago, Illinois. 
ACM Press (1991). 

[2] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools, Addison-Wesley, Reading, 
Massachusetts (1986). 

[3] ANSI/NISO. 239.50-1995 (Versions 2 and 3) Information Retrieval: Application Service Definition and Protocol 
Specification (1995). 

[4] Asymetrix. ZnfoModeler User Manual. Asymetrix Corporation, llO-110th Avenue NE, Suite 700, Bellevue, 
WA 98004, Washington (1994). 

[5] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verification of object-role 
models. Information Systems, X3(5):471-495 (1991). 

[6] R. Bosman, R. Bouwman, and P.D. Bruza. The Effectiveness of Navigable Information Disclosure Systems. In 
G.A.M. Kempen, editor, Proceedings of the Znformatiewetenschap 1991 conference, Nijmegen, The Netherlands 
(1991). 

[7] G.H.W.M. Bronts, S.J. Brouwer, C.L.J. Martens, and H.A. Proper. A Unifying Object Role Modelling Ap- 
proach. Information Systems, 20(3):213-235 (1995). 

[S] P.D. Bruza and Th.P. van der Weide. Stratified Hypermedia Structures for Information Disclosure. The 
Computer Journal, 35(3):208-220 (1992). 

[9] B.G. Buchanan and E.H. Shortliffe. Rule-Based Expert Systems: The MYCZN Experiments of the Stanford 
Heuristic Pmgmmming Project. Addison-Wesley, Reading, Massachusetts (1984). 

[lo] E. Buchholz, H. Cyriaks, A. DiisterhBft, H. Mehlan, and B. Thalheim. Applying a Natural Language Dialogue 
Tool for Designing Databases. In Proceedings of the First International Workshop on Applications of Natural 
Language to Databases (NLDB’95), pp. 119-133, Versailles, France (1995). 

[ll] J.F.M. Burg. Linguistic Instruments in Requirements Engineering. PhD thesis, Free University, Amsterdam, 
The Netherlands (1996). 

[12] J.F.M. Burg and R.P. van de Riet. COLOR-X: Linguistically-based Event Modeling: A General Approach 
to Dynamic Modeling. In J. Iivari, K. Lyytinen, and M. Rossi, editors, The Proceedings of the Seventh 
International Conference on Advanced Information System Engineering, Lecture Notes in Computer Science, 
pp. 26-39, Jyvsskyla, Finland. Springer-Verlag (1995). 

[13] J.F.M. Burg and R.P. van de Riet. COLOR-X: Object Modeling profits from Linguistics. In Proceedings of 
the KBbKS’95, the Second International Conference on Building and Sharing of Very Large-Scale Knowledge 
Bases, Enschede, The Netherlands (1995). 

[14] J.F.M. Burg and R.P. van de Riet. The Impact of Linguistics on Conceptual Models: Consistency and Un- 
derstandability. In Proceedings of the First International Workshop on Applications of Natural Language to 
Databases (NLDB’95), pp. 183-197, Versailles, France (1995). 

[15] J.F.M. Burg, R.P. van de Riet, and S.C. Chang. A data-dictionary as a lexicon: An application of linguistics 
in information systems. In Bhargava B., Finin T., and Yesha Y., editors, Proceedings of the 2nd International 
Conference on Information and Knowledge Management (1993). 

[16] C.A.J. Burgers, H.A. Proper, and Th.P. van der Weide. An Information System organized as Stratified Hyper- 
media. In N. Prakash, editor, CZSMODgd, International Conference on Information Systems and Management 
of Data, pp. 159-183, Madras, India (1994). 

[I71 A.K. Chandra. Theory of Database Queries. In Proceedings of the Seventh ACM Symposium on Principles of 
Database Systems, pp. l-9, Austin, Texas (1988). 

[18] M.A. Collignon and Th.P. van der Weide. An Information Analysis Method Based on PSM. In G.M. Nijssen, 
editor, Proceedings of NZAM-ZSDM. NIAM-GUIDE (1993). 

[19] P.N. Creasy and H.A. Proper. A Generic Model for 3-Dimensional Conceptual Modelling. Data ti Knowledge 
Engineering, 20(2):119-162 (1996). 

[20] W.B. Croft and R. Dss. Experiments with Query Acquisition and Use in Document Retrieval Systems. In 
J. Vidick, editor, Proceedings of the 13th Annual International ACM SIGIR Conference on Research and 
Development in Information Retrieval, pp. 349-368. ACM Press (1990). 

[21] E. Dahlhaus. Skolem normal forms concerning the least fixpoint. In E. Borger, editor, Computation Theory 
and Logic, volume 270 of Lecture Notes in Computer Science, pp. 101-106. Springer-Verlag (1987). 



382 ARTHUR H.M. TER HOFSTEDE et al. 

[22] H. Dal&is. A method for validating a conceptual model by natural language discourse generation. In 
P. Loucopoulos, editor, Proceedings of the Fourth International Conference CAiSE’92 on Advanced Infor- 
mation Systems Engineering, volume 593 of Lecture Notes in Computer Science, pp. 425-444, Manchester, 
United Kingdom. Springer-Verlag (1992). 

[23] O.M.F. De Troyer, R. Meersman, and F. Ponsaert. RIDL User Guide. Research report, International Centre 
for Information Analysis Services, Control Data Belgium, Inc., Brussels, Belgium (1984). 

[24] F.P.M. Dignum and R.P. van de Riet. Knowledge base modeling based on linguistics and founded in logic. 
Data d Knowledge Engineering, 7:1-34 (1991). 

(251 SC. Dik. The Theory of Functional Gmmmar. Part I: The Structure of the Clause. Floris Publications, 
Dordrecht, The Netherlands (1989). 

[26] P.J.M. Frederiks. Object-Oriented Modeling based on Information Gmmmars. PhD thesis, University of 
Nijmegen, Nijmegen, The Netherlands (1997). 

[27] P.J.M. Frederiks, A.H.M. ter Hofstede, and E. Lippe. A Unifying Framework for Conceptual Data Modelling 
Concepts. Information and Software Technology, 39(1):15-25 (1997). 

[28] J.P. Fry and E.H. Sibley. Evolution of Data-Base Management Systems. Computing Surveys, 8(1):7-42 (1976). 

[29] R. Godin, J. Gecsei, and C. Pichet. Design of a Browsing Interface for Information Retrieval. In N.J. Belkin 
and C.J. van Rijsbergen, editors, Proceedings of the 12th Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval, pp. 32-37, Cambridge, Massachusetts. ACM Press (1989). 

[30] T.A. Halpin. Conceptual Schema and Relational Database Design. Prentice-Hall, Sydney, Australia, 2nd 
edition (1995). 

[31] T.A. Halpin and J. Harding. Automated Support for Verbalization of Conceptual Schemas. In S. Brinkkemper 
and F. Harmsen, editors, Proceedings of the Fourth Workshop on the Next Generation of CASE Tools, pp. 
151-161, Paris, France (1993). 

[32] T.A. Halpin and J.I. McCormack. Automated Validation of Conceptual Schema Constraints. In P. Loucopou- 
los, editor, Proceedings of the Fourth International Conference CAiSE’92 on Advanced Information Systems 
Engineering, volume 593 of Lecture Notes in Computer Science, pp. 364-377, Manchester, United Kingdom. 
Springer-Verlag (1992). 

[33] T.A. Halpin and H.A. Proper. Subtyping and Polymorphism in Object-Role Modelling. Data lY Knowledge 
Engineering, 15:251-281 (1995). 

[34] F. Hayes-Roth, D.A. Waterman, and D.B. Lenat. Building Expert Systems. Addison-Wesley, Reading, Mas- 
sachusetts (1983). 

[35] A.H.M. ter Hofstede, E. Lippe, and P.J.M. Frederiks. Conceptual Data Modeling from a Categorical Perspective. 
The Computer Journal, 39(3):215-231 (1996). 

[36] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Formal definition of a conceptual language for 
the description and manipulation of information models. Information Systems, 18(7):489-523 (1993). 

[37] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Computer Supported Query Formulation in an 
Evolving Context. In R. Sacks-Davis and J. Zobel, editors, Proceedings of the Sixth Austmlasian Database 
Conference, ADC’95, volume 17(2) of Australian Computer Science Communications, pp. 188-202, Adelaide, 
Australia (1995). 

[38] A.H.M. ter Hofstede, H.A. Proper, and Th.P. van der Weide. Query formulation as an information retrieval 
problem. The Computer Journal, 39(4):255-274 (1996). 

[39] A.H.M. ter Hofstede and Th.P. van der Weide. Expressiveness in conceptual data modelling. Data d Knowledge 
Engineering, lO( 1):65-100 (1993). 

[40] A.H.M. ter Hofstede and Th.P. van der Weide. Fact Orientation in Complex Object Role Modelling Techniques. 
In T.A. Halpin and R. Meersman, editors, Proceedings of the First International Conference on Object-Role 
Modelling (ORM-I), pp. 45-59, Townsville, Australia (1994). 

[41] A.H.M. ter Hofstede and Th.P. van der Weide. Deriving Identity from Extensionality. International Journal 
of Software Engineering and Knowledge Engineering (to appear) (1997). 

[42] P.G. Kolaitis. The expressive power of stratified logic programs. Information and Computation, 90(1):50-66 
(1991). 

[43] G. Kristen. Object Orientation, the KISS Method: l+om Information Architecture to Information System. 
Addison-Wesley, Reading, Massachusetts (1994). 

[44] C.M.R. Leung and G.M. Nijssen. Relational database design using the NIAM conceptual schema. Information 
Systems, 13(2):219-227 (1988). 

[45] E. Lippe and A.H.M. ter Hofstede. A Category Theory Approach to Conceptual Data Modeling. RAIRO 
Theoretical Informatics and Applications, 30(1):31-79 (1996). 

[46] D. Lucarella. A Model for Hypertext-Based Information Retrieval. In Proceedings of the European Conference 
on Hypertext - ECHT 90, pp. 81-94, Cambridge, United Kingdom. Cambridge University Press (1990). 



Exploiting Fact Verbalisation in Conceptual Information Modelling 383 

[47] R. Meersman. The RIDL Conceptual Language. Research report, International Centre for Information Analysis 
Services, Control Data Belgium, Inc., Brussels, Belgium (1982). 

[48] G.M. Nijssen. An approach for knowledge base systems. In Proceedings of the SPOT-2 Conference, Stockholm, 
Sweden (1981). 

[49] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design: a fact oriented approach. 
Prentice-Hall, Sydney, Australia (1989). 

(501 H.A. Proper and Th.P. van der Weide. Information Disclosure in Evolving Information Systems: Taking a shot 
at a moving target. Data &’ Knowledge Engineering, 15:135-168 (1995). 

(51) R. Richardson and A.F. Smeaton. An Information Retrieval Approach to Locating Information in Large Scale 
Federated Database Systems. In R.P. van de Riet, J.F.M. Burg, and A.J. van der Vos, editors, Proceedings of 
the Second Workshop on Applications of Natural Language to Databases (NLDB’96), pp. 52-64, Amsterdam, 
The Netherlands (1996). 

[52] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. Object-Oriented Modeling and Design. 
Prentice-Hall, Englewood Cliffs, New Jersey (1991). 

[53] J.E. Stoy. Denotational Semantics: The Scott-Stmchey Approach to Programming Language Semantics. MIT 
Press, Cambridge, Massachusetts (1977). 

[54] S. Tehrani and G.M. Nijssen. UCL: A User-Friendly Conceptual Language. The Australian Computer Journal, 
17(4):174-180 (1985). 

[55] G.M.A. Verheijen and J. van Bekkum. NIAM: an Information Analysis Method. In T.W. Olle, H.G. Sol, and 
A.A. Verrijn-Stuart, editors, Information Systems Design Methodologies: A Compamtive Review, pp. 537-590. 
North-Holland/IFIP, Amsterdam, The Netherlands (1982). 

[56] D.A. Watt. Programming Language Syntaz and Semantics. Prentice-Hall, Englewood Cliffs, New Jersey (1991). 

[57] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sintzoff, C.H. Lindsey, L.T. Meertens, 
and R.G. Fisker. Revised Report on the Algorithmic Language ALGOL 68. Springer-Verlag, Berlin, Germany 
(1976). 

[58] D.C. Wilkins, B.G. Buchanan, and W.J. Clancey. Inferring an expert’s reasoning by watching. In Proceedings 
of the 1984 conference on Intelligent Systems and Machines (1984). 

[59] S.E. Willner, A.E. Bandurski, W.C. Gorhan, and M.A. Wallace. COMRADE data management system. In 
Proceedings of the AFIPS National Computer Conference, pp. 339-345, Montvale, New Jersey. AFIPS Press 
(1973). 

[60] J.J.V.R. Wintraecken. The NIAM Information Analysis Method: Theory and Pmctice. Kluwer, Deventer, The 
Netherlands (1990). 

APPENDIX A: THE SEMANTICAL BASE: PATH EXPRESSIONS 

The set of all path expressions is referred to as P&. Path expressions are constructed from 
elements of the information structure (roles, types) and by a number of operators. Path expressions 
are evaluated in the context of an environment. This environment consists of the current population 
and a partial function assigning values to actual variables. The meaning of a variable is its value 
in the current environment. In its elementary form, a path expression corresponds to a linear path 
through the information structure, starting and ending in a type. This path is interpreted as the 
description of a relation between these two ending points. 

As a result of uniting linear path expressions with different begin and end points, path ex- 
pressions, however, may be inhomogeneous. Such path expressions lead to inhomogeneous binary 
relations. Consequently, the semantics of a path expression is defined as a binary relation over 
(multiple) types. 

First we introduce the atomic path expressions. The empty path expression (0p~) and the 
neutral path expression (1~) are atomic path expressions. The empty path corresponds to the 
empty relation, while the neutral path is the identity relation (for all active values). The empty 
and neutral path form the zero- and one-element respectively for the concatenation operator for 
path expressions (to be introduced later). They are also used as truth values (False and True 
respectively). 

Constants are also atomic path expressions, The constant c is interpreted as a binary relation 
that only relates c with itself. Each type forms an atomic path expression, and is interpreted as 
the identity relation over that type (relating each of its instances only with that instance). Roles 
relate instances of their players to precisely those instances of the associated relationship type in 
which they play a role. For an overview, see Table 1. 
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IL- 
zero-adic 

name 

empty path 

neutral path 

constant c 

type X 

role p 

variable II 

expr 

@P& 
D-ue 

lP& 

False 

C 

X 

P 

21 

monadic 

reverse P+ 

front FrP 

i 

name 

concatenate 

blocking 

subset 

superset 

intersection 

union 

minus 

product 

expr 

PoQ 
P*Q 

J’@Q 

PBQ 

J’nQ 

PUQ 

P-Q 

PXQ 

-II- 
lt 

I 
rest 

name I expr 

confluence I b1:P1,..., 

predicates 

choice if C 

then P else Q 

Table 1: Overview of Path Expressions 

A number of operators and functions are available for the construction of composed path 
expressions. First we introduce the most important unary operators. They allow for the reversal 
of a path (“) and the isolation of the front elements of a path (Fr). 

Paths can be extended in several ways. The product (x) of two paths connects all front 
elements of the first path with all tail elements of the second path. Concatenation (0) is perhaps 
the most fundamental operator for extending paths. Instances are related via mutual intermediate 
instances. The inverse of concatenation is blocking (+ ). Instances from the front of the first path 
are connected to instances from the tail of the second path if they are not related via mutual 
intermediate instances. Consequently, P 4 Q = P x Q - P o Q. Paths can also be extended via 
de subset and the superset operators. The subset operator B yields all front elements of the first 
path expression whose second component is part of the front of the second path expression, while 
the superset operator D yields all elements of the first path expression which are related to all 
elements in the front of the second path expression (and possibly more). Furthermore, the usual 
set operators (n, U and -) are available, corresponding to intersection, union and set difference of 
the corresponding relations. 

Using a combination of the operator selecting elements at the front of a path expression (Fr) 

and the set operations, we can also define: 

PmQ 4 FrPnFrQ 

PlUQ A FrPUFrQ 

P+Q 4 FrP-FrQ 

These modified versions of the set operators are quite useful in practice as we usually like to apply 
these operators to the front elements only. 

Label types have an underlying domain. For this domain a number of functions and binary 
relations will be available. These functions and relations can also be used to form information 
descriptors. The expressions 45 + 25 and P < Q are therefore valid path expressions. 

The confluence operator is used when different sorts of information are to be integrated. For 
example, name, day of birth, salary and address of each employee of some specific department. If 
PI,... , P, and Q are path expressions then lpi : PI, . . . , p, : P,, 1 Q] is a path expression, referred 
to as the confluence of PI,. . . , P, under Q via roles pi,. . . ,p,. This relation will contain a tuple 

-i Pl:zl,..., p, :zn} iff for some value y path expression Pi relates zi to y (for 1 5 i 5 n), while y 
occurs in the first component of the evaluation result of path expression Q. The restrictive effect 
of the condition can be neutralised by choosing Q = lp& = True. As a shorthand, we define: 
[pl:P~ ,..., p,:P,]=[pl:P~ ,..., p,:P,I The]. 

Two special operators are the comprehension operators. The first comprehension operator 
restricts a domain to some condition. In the expression {V E P ( C} the domain to be restricted 
is P, ZI a variable running over this domain (via the environment in which path expressions are 
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evaluated), while C is the restricting condition. The second comprehension operator yields all 
expressions which result by substituting a variable with values from a specified domain. In the 

expression {P ( u E Q } P is a path expression containing one or more occurrences of variable u 

and Q is a path expression acting as the domain for v. 
Finally, it is possible to specify conditional path expressions (if . . . then . . else .). 

APPENDIX B: GRAPHICAL CONVENTIONS 

This appendix contains a legenda with the graphical conventions used fol :c )RM schemas in this 

article. 

(23 

E is an object type 

V is a value type 

Object type E is identified 
by value type V 

A role (predicator) p 

A binary relationship type 
with roles p and q 

A ternary relationship type 
with roles p, q and r 

An objectitication 
(nesfing) 

A 

-_,\ 

c3 B 

A Q 
a B 

Schema type C consists 
of ob.ject types A and 8 
and t-acf type f 

Object type B is a 
specialisation of A 

Ob.ject type A 1s a 
generalisation of B 

Fig. 20: Construction Mechanisms Used for ORM Schemas 


