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Traditionally, information retrieval aims to find information carriers, such as documents, that
best match some query or some other (intentional) description of a searcher’s information need.
In this article, we take the approach that searchers turn to an information retrieval system with
the aim of finding several alternatives that completely satisfy their (complex) information need.
In other words, searchers expect the retrieval system to help them in covering their information
need, rather than merely providing them with a myriad of hopefully relevant information carri-
ers. Ideally, the system should respond by advising one or more packages of information carriers
with the requested cumulative effect. This also enables searchers to better trade off between the
costs of acquiring and reading/internalizing information carriers versus the expected informa-
tional benefits. This article focuses on a theory that aims to clarify the underlying problem area.
The theory may consequently be used to enhance information retrieval systems in general and
teaching and learning systems in particular, with abilities to better cover a searcher’s informa-
tion need. In the theory presented, we also cater to the fact that searchers may be in different
mental moods. The consequence of searchers being in different moods is that information carri-
ers are processed differently. Identifying this influence gives the opportunity to advise users
according to their specific moods. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

The coming of the World Wide Web has opened a new world of human inter-
action. E-commerce systems can be seen as a commercial exploitation of these
new opportunities. The most simple systems offer information structured as hyper-
text. The interaction with the visitor is very limited. A more general approach is
obtained by the introduction of targeted systems and recommender systems. See,
for example, Refs. 1-3. Targeted systems are made to be adaptive to visitor behav-
ior, by focusing on correlations between the behavior of visitors. Their goal is to
draw the visitor’s attention to other objects of interest. Recommender systems go a
step further. They assume a set of objects, characterized by their representation.
Besides recording visitor’s behavior, they use object characterizations and an
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expression of the visitor intention. The underlying data model is rather simple, as
the main focus of interest for such systems is on matching representation, per-
ceived visitor behavior, and the specification of the visitor interest.

In this article we focus on advanced interaction systems, which we refer to as
advisory systems. Rather than a monolithic set of objects, we assume a structured
representation of the characterization of information objects in terms of abstract
infons. Such advisory systems are particularly suitable for complex information
retrieval processes, for example, educational brokers for teaching and learning pro-
cesses and advisory companies such as intelligent travel agencies. In such com-
plex information retrieval processes, we need mechanisms to derive coherent
packages of structured documents, based on underlying knowledge models and
user profiles.

The World Wide Web has become the virtual reality of mankind, a world that
we shape without many of the imperfections of reality. We can jump to literally
every place in no time, live and die many times, change our identity at will, and
reach every resource anywhere anytime. In particular this is the promise of infor-
mation at your fingertips. The growing complexity of information space over-
whelms the wired consumer, and the vast increase in information is outpacing the
improvement of retrieval tools.

Traditional information retrieval systems aim to satisfy a searcher’s informa-
tion need by matching some explicit formulation of the searcher’s information
need to the set of available information carriers, such as documents and web pages.
The system then returns a set of information carriers that best match the formula-
tion of the searcher’s information need. In our opinion, this traditional approach
has two serious drawbacks:

Need formulation. Searchers are presumed to have a very clear understand-
ing of their information need, even though it is not likely that they will be
able to articulate their precise information needs in terms of a query lan-
guage. In the case of the Internet, this becomes even more apparent as the
collection of available information is endless. Although it has long since
been acknowledged (see, e.g., the Cranfield tests*) that users have diffi-
culty in expressing this need in a formal language, the fact that searching
for information is more of an interactive process of learning, clarification,
and discovery is not taken into account. This latter limitation of the infor-
mation retrieval field is most apparent in the way systems are evaluated.
The effectiveness of an information retrieval system is measured in terms
of precision and recall for a fixed set of queries on a standardized docu-
ment collection.

Need satisfaction. Even when the entire set of returned information carriers
is indeed relevant to the searcher’s information need, a searcher is still
required to manually wade through the result sets in search of the right
combination of information carriers to cover the information need. The prob-
lem with most systems is that a searcher is not provided with advice on an
effective combination and order to best read a selection of the information
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carriers to cover the information need. The word effectively here may refer
to different aspects, such as time, financial costs, and cognitive load.

In this article, we take the perspective that searchers are not just looking for a
set of relevant information carriers, but really expect an advisory system to help
them in covering their information need in an effective way. This is what we will
refer to as information coverage. This research is part of a larger research program
on advanced information retrieval techniques. For our other results in this line,
see, for example, Refs. 5 and 6.

2. THE INFORMATION COVERAGE PARADIGM

In this section we discuss the information coverage paradigm. We first dis-
cuss a general framework for information coverage. Then we focus on contexts for
application of the framework.

2.1. Framework

It is our belief that an information retrieval system should really play the role
of an information portal, as illustrated by the information coverage paradigm as
shown in Figure 1. On the left-hand side there is a searcher who is in need of
information. On the right-hand side, we find a collection of available information
carriers. This may be a limited collection of information carriers that is available
in some library, but could also be an endless set of carriers, such as all information
available via the Internet.

Selections & feedback

— o Information
5 e coverage

Information
portal

Options & atomic carriers
Searcher

Figure 1. The information coverage paradigm.
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In the middle of Figure 1 we find a system, which we will refer to as an
information portal. The information portal aims to satisfy the searcher’s informa-
tion need. It tries to do so by not only communicating with the searcher in terms of
queries and result sets; an information portal should really communicate with
searchers on two levels, rather than one:

1. The clarification level focuses on the clarification and discovery of the searcher’s actual
information needs. At this level of communication, the need formulation issue plays a
crucial role.

2. The contents level is concerned with the actual information aimed to fulfill the searcher’s
information need. At this communication level, the need satisfaction issue is a major
challenge.

The communication between the searcher and the information portal should
ideally be seen as an interactive dialogue in which the information portal tries to
clarify the precise information need while incrementally satisfying this need. Note
that special cases of information portals have been proposed, such as recom-
mender systems. Such systems try to make recommendations based on estima-
tions of user preferences. See, for example, Refs. 1-3.

There are many different ways to organize and initiate the communication at
the clarification level. For example, in the case of a traditional search engine for
the World Wide Web, the onus will be on the searchers, as they are required to
express their information need explicitly. In more advanced search engines, the
search engine will not only present information carriers that are considered rele-
vant, but may also present possibly related keywords as indications of improved
or alternative formulations of the searcher’s information need. This enables a more
interactive style of communication at the clarification level.

In the case of query by navigation, the onus shifts from the searcher toward
the information portal. See, for instance, Refs. 7-9. A query by navigation session
would typically start by the information portal offering the searcher a brief list of
key topics on which information is available. The searcher may then select a topic
from this list, which leads the information portal to react by showing a list of more
focused subtopics of the selected topic.

The communication concerning the actual information the searcher is look-
ing for involves the information portal providing the searcher with information
carriers and some form of feedback from the searcher to the information portal.
Ideally, the feedback from the searcher to the information portal should be as
complete as possible with regards to the perceived relevance to the searcher’s
information needs. The more feedback the information portal receives from the
searcher with regards to the relevance of information carriers, the better the in-
formation portal will be able to tune the set of selected information carriers to
the actual information need. Such a communicative approach is also capable of
handling drifting information needs. During the explorative phase of an informa-
tion coverage process, searchers are bound to learn more about that what they
are actually looking for. This is likely to lead to changes (drifts) in their infor-
mation need.
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Note that the two levels of communication cannot be seen separately. When a
searcher has finished reading an information carrier from a list of selected infor-
mation carriers, it is quite likely that the information need of the searcher has
changed as a result of the newly gained knowledge. This implies that this searcher
will look differently at the relevance of the next information carrier in the list.

The combination of both levels of communication, with the intention of cov-
ering a searcher’s information need, is the major challenge of information cover-
age. We aim to develop a theory for this information coverage process, where we
take the functionality of an idealized information portal as a starting point. In doing
so we will build further on our earlier results.® The theory presented there focused
on a fundamental grounding of the query by a navigation process. We now aim to
extend this theory to formally underpin the information coverage problem.

2.2. Understanding the Searcher

For an information portal, it is most useful to have an understanding of the
goal and expectations with which a searcher turns to the system. We consider cog-
nitive and operational levels for defining goals of searchers. The (initial) informa-
tion need with which a searcher turns to the information portal is the searcher’s
cognitive goal. In addition to the cognitive goal, a searcher is likely to have some
operational goal as well. This goal relates to the tasks that have led the searcher to
turn to the system in the hope of gaining new knowledge relevant to the task. For
more details about goal-driven learing, see, for example, Ref. 10.

Although, as discussed above, it may not be an easy task for searchers to
express their cognitive goal, it will be less hard for them to express their opera-
tional goal, especially when this can be done using some predefined terminology/
ontology in the context of the searcher’s task description, a context that may, for
example, be provided by the business process model or a workflow model. Oper-
ational goals can have different forms, for instance, task profiles of employees or
student goals when attending courses.

The expectations with which a searcher turns to an information portal, in
addition to plainly fulfilling their information need, correspond to the cognitive
mode of that searcher. A searcher may have different cognitive modes, such as:

1. abreath-first mode where a searcher prefers to be first informed briefly of the different
aspects of the subject of their information need

2. a depth-first mode in which searchers prefer to be informed fully about the key issues
involved in their information need

3. arepetitive mode where searchers want to be informed about the same issue multiple
times, possibly from different perspectives. This mode is particularly useful for search-
ers who need some time to let new knowledge sink in.

4. amonotonic incremental mode is essentially the opposite of the repetitive mode. In other
words, in this mode searchers want to be confronted with as little redundancy as possi-
ble with regards to the information they will read.

A single user may actually have different cognitive modes at different points
in time. For example, during office hours he or she may operate in a breath-first
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mode where it concerns information needs pertaining to his or her work tasks,
whereas after office hours the same searcher may operate with a depth-first mode
when looking for information pertaining to one of his or her hobbies, say.

2.3. Information Coverage Scenarios

Below we briefly discuss two example scenarios of applications of an infor-
mation portal that aids searchers in the formulation of their information needs and
helps them in determining an effective order in which to read selected information
carriers. Using these scenarios we would like to argue the socioeconomic rele-
vance of information portals and the research involved. The example scenarios are
concerned with personalized information delivery and computer-based training.

2.3.1. Personalized Information Delivery

As our socioeconomic environment progresses from a postindustrial to an
information society, the economic climate for content providers, such as publish-
ers, should be favorable. This is, however, not a trivial point. Contemporary West-
ern economies are service based rather than goods based. More and more money
seems to be made in providing services than in the selling of goods. In addition,
everyone with a PC and Internet connection can be an author and a publisher.
Consequently, traditional content providers no longer have a publishing monop-
oly. This forces the entire content industry into exploring new business models.
The emergence of the World Wide Web has raised these questions in the board-
room of every publisher and broadcaster. For more background on these issues,
the reader is referred to Refs. 11-14.

The past decennium has already shown some directions in which the ecology
of information services may evolve: selling information via the Internet, organiz-
ing information in portals, online bookshops that remember individual customers’
behavior, multifunctional agents in the form of smartcards, and so on. What these
new directions have in common is a combination of new ways of accessing infor-
mation and innovative business models, used by new entrepreneurial companies
that were able to embrace technological advances, thereby reshaping the informa-
tion ecology. We believe that the above discussed concept of an information portal
helping searchers in covering their information needs in an effective way is a poten-
tial cornerstone of new business models for content providers. An information
portal would provide an excellent means to provide searchers with a personalized
access mechanism to the available content. This leads to personalized information
delivery. The use of an information portal for personalized information delivery
would open up the possibility of providing searchers with the information they
would need for the tasks at hand, taking the searchers goals and cognitive modes
into proper consideration. The level and quality of personalization would, in addi-
tion to the quality and subjects of the actual contents, be the potential competitive
advantage a publisher may need.
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2.3.2.  Computer-Based Training

The importance of knowledge, and in particular the dissemination of knowl-
edge, in modern society does not need any further arguing. In a fast-changing
world, organizations will frequently be confronted with the need to disseminate a
new body of knowledge within the organization, for example, new knowledge con-
cerning the production of a company’s primary product. If available in an elec-
tronic format, such bodies of knowledge are likely to be available in a weakly
ordered fashion, for example, as computer-based training material, a set of docu-
mentation manuals, or a set of web pages.

Different groups within the organization are likely to be interested in differ-
ent aspects of the body of knowledge as it is available. Decision makers are likely
to be interested in different aspects than people from the working floor. Persons
from these groups will also have a rather different cognitive identity. Decision
makers will be more interested in obtaining an overview of the whole, whereas a
work-floor employee is likely to want to be informed about the finest details. A
decision maker might get irritated by repeated offering of the same information,
whereas another employee would be appreciating this as a valuable feature as sup-
portive for learning.

When disseminating a new body of knowledge in an organization, it would
be useful if an information portal would be able to act as a personal mentor to
those people who want to acquire portions of the new knowledge. When an infor-
mation portal would act as a personal mentor, one would expect the information
portal to somehow gain an understanding of the learning and reading behavior of
the user. When an information portal would exhibit such behavior, it would allow
the information portal to better tune the knowledge provided to the individual needs
of the users.

2.4. Example Application Context

In this section we describe an example context for the application of informa-
tion coverage. An employment service office provides the following service. A
customer, being interested in a specific job title, is curious to know what educa-
tional plan is required to meet the requirements of this job title.

The system is aware of the package of tasks that are associated with this job
title. For each task the system knows what knowledge is required to be capable of
performing that task. The system starts from the educational level of the customer
and determines an educational plan by considering the characterizations of all
courses known by the system.

In this example context, we have three levels of description: jobs, tasks, and
courses. We suppose the employment service office considers the courses shown
in Table I.

Courses are basic information carriers. For each course in Table I, the con-
tents in terms of information items are given. The required foreknowledge is
listed as well. As an example, the statement i; — is expresses that item i requires
item ;. We are aware of the fact that the course overview in Table I is rather
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Table I. Overview of courses.

Course Name Contents Foreknowledge
DM Domain modeling i,0p,13

RE Requirements engineering iy, is

I Information systems ig, 17,13 i1 = g, I1h = lg, Iy — i7
TS Technical systems i9, 010,011 ir = iy, I3 — g, i5 = I1p
SS System security 12,113

MF Mathematical foundations 014,115,116, 117

1A Industrial applications 013,119, 20

simplified and that in practice the required foreknowledge is much more
complicated.

Based on course descriptions, a person may be advised to take certain courses.
The aim of taking courses is to be capable of performing necessary tasks. We
suppose the employment service office considers the tasks shown in Table II.

Tasks may be seen as complex information carriers. For each task in Table II,
the required courses are given. Note that, as a consequence of the foreknowledge
defined on information items, we may derive that task 7, requires task 7. The
same holds for task 75. An overview of jobs is given in Table III.

3. UNDERLYING COST MODELS

What information exactly is has been studied intensively before; see, for exam-
ple, Refs. 6 and 15. Different authors have provided diverse theories of the nature
of information.'®=2° In this article we take a modest approach to information theory,
and only assume information to consist of information particles called infons as
suggested by Barwise!>'1® and applied to the field of information retrieval by van
Rijsbergen and Lalmas,>' Huibers et al.,* and Huibers and Bruza.*® This broad
view on information is in line with the approaches taken in Refs. 16 and 17.

‘When a collection of alternative information carriers is available to a searcher,
some mechanism is needed to determine the relative relevance of these carriers to
the searcher’s needs. One factor in determining this relevance is the topical rele-
vance of the information carrier with respect to the searcher’s information need.

Table II. Overview of tasks.

Task Name Courses
T, Basics DM, RE
g3 Analysis IS, SS
T; Hardware TS, SS
n Research MF

Ts Development 1A

International Journal of Intelligent Systems DOI 10.1002/int



INFORMATION COVERAGE IN ADVISORY BROKERS 1163
Table III. Overview of jobs.

Job Name Required skills
Ji Information researcher 1., T,
Jr Information developer T, 1T, Ts
J3 Technical researcher T, 15, T,
Jy Technical developer T, 1, Ts

This is, however, not the only factor involved. Other factors may have to be con-
sidered as well. For example,

the reliability of the information provided by an information carrier
the amount of money that may have to be paid to obtain the carrier
the cognitive load the searcher must endure in reading the information carrier
the amount of time needed to gain access to the information carrier.

To be able to rank the available information carriers while taking such factors
into account, a price—performance ratio is introduced. The better the price—
performance ratio of an information carrier, the more preferred the carrier is pre-
sumed to be.

The actual price—performance ratio associated with a set of information car-
riers is based on some underlying cost model. As electronic commerce has increas-
ingly gained attention, the need for such models becomes more pressing. For more
background about cost models in electronic commerce, see, for example, Ref. 24.

3.1. Nonmonotonicity

Below we will actually see that the price—performance ratio cannot be calcu-
lated for one particular information carrier in isolation. Some of the factors involved
in computing the price—performance ratio do not behave monotonically with respect
to sequences of information carriers. An example of such a factor is the purchase
price of an information carrier. When obtaining more information carriers from
the same supplier, then the subsequent information carriers may be obtained at a
lower price then when they were purchased in isolation. To illustrate this, consider
the following example:

For example, suppose chapters A-1 and A-2 are from book A and chapter B-1 is from book B,
and A-1 and B-1 are similar in content. Let us also presume book A is priced at $40, book B is
priced at $30, and that the searcher does not yet own either book.

If the information portal has to chose from either A-1 or B-1 to fulfill the searcher’s information
need, the portal is likely to opt for B-1, as this requires the purchase of book B, which is cheaper
than book A. However, if A-2 is also needed to cover the searcher’s information need, then first
purchasing book B might not be such a good idea after all, as it is still required to also purchase
book A.
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One might argue that in the age of electronic commerce, the above example is
antiquated as one in that context one might use micropayments to purchase spe-
cific chapters of even smaller pieces of relevant information. However, even in the
case of micropayments, the purchase price may still behave nonmonotonically. It
is not unlikely that content providers will try and increase the loyalty of their cli-
entele by offering a price reduction based on a customer’s volume of consump-
tion. In that case, it may be wiser to purchase chapters A-1 and A-2 using a single
content provider, rather than purchasing B-1 and A-2 from different content
providers.

Finally, it is not only the purchase price that is likely to behave nonmonoton-
ically. The cognitive load of a searcher is likely to be nonmonotonic as well; when
an information portal advises a searcher to first read an introductory article before
studying an in-depth report on a certain topic, the cognitive load when reading the
in-depth report is likely to be less than when skipping the introductory article.

The cost model considered in this section is defined relative to a certain infor-
mation need N. This need N is treated as an implicit parameter to the model.

3.2. The Performance of an Information Carrier

The performance of an information carrier is measured in terms of numbers
of infons. At present, two factors are identified that contribute positively toward
the performance of an information carrier:

e the number of hits in terms of the information need covered
e the curiosity itraises in terms of infons in the searcher’s mind.

Let PF = {hits,curiosity} be the set of performance factors used
in the cost model. This allows us to define a function Performance: P& X
SE X IC — R identifying the performance of an information carrier for a given
factor and state.

In principle, the number of hits may be determined as |Hits(s,N,c)|. How-
ever, the content of information carriers may not always be reliable. In other words,
not all of the infons provided by an information carrier may actually be true. There-
fore, we presume a function Reliability : ZC — [0, 1] to exist, which expresses the
reliability of an information carrier in terms of the infons provided by c that are
indeed true. Using the notion of reliability, the number of hits provided by an
information carrier can be defined as

Performance(hits,s,c) = Reliability(c) X |Hits(s, N,c)|

The fact that certain infons provided by an information carrier may be false
will also be taken into account, however, not as a (negative) performance factor,
but rather as a cost factor. Obtaining true infons may come at the cost of having to
deal with false infons as well. The performance in terms of the curiosity may sim-
ply be defined as
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Performance(curiosity,s,c) = Curiosity(s,c)

We presume the Performance function to be generalized to sequences of
carriers as follows:

Performance( f,s,[c]) = Performance( f,s,c)

Performance( f,s,C ++ D) = Performance( f,s,C)
+ Performance( f,s X C,D)

Depending on the state of the searcher, he or she may value the number of
hits provided by an information carrier higher than the curiosity raised or vice
versa. In other words, these performance factors need to be weighed in order to
combine them into one unified performance value. We therefore presume there to
be a weight function:

Weight: PF X S — [0,1]

such that

v_vesg[ S Weight(f,s) = 1}

fePE

The overall performance of an information carrier c relative to a searcher S, com-
bining all factors, may then be defined as the weighed average

Performance(s,c) = >, Weight(f,s) X Performance( f,s,c)
=

3.3. The Price of an Information Carrier

Information carriers come at a price to the searcher. The price of an informa-
tion carrier does not only consist of its economic value. There are many different
factors involved in the total price. If PR denotes the set of identified price factors,
then the function

Price: PR X SE XIC - R

is presumed to identify the specific value of a price factor of a given information
carrier. The different factors as identified so far of the total cost of an information
carrier may be grouped into three phases:

1. First, the searcher must obtain the information carrier. The costs of obtaining an infor-
mation carrier involve three factors:

e the total (economic) price (obtain-price) of obtaining the carrier
e the amount of time (obtain-time) that is required to obtain the carrier
e the cognitive load (obtain-1load) on the searcher when obtaining the carrier.
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2. The next step is for the searcher to read the information carrier. The costs of reading an
information carrier involve two factors:

e the amount of time (read-time) that is required to read the carrier
e the cognitive load (read-1oad) on the searcher when reading the carrier.

3. After the searcher has finished reading an information carrier, there may be additional
costs in that the information gleaned from the information carrier may turn out to be
false. This is captured by the 1ies factor.

This leads to the following set of price dimensions:

PR £ {obtain-price, obtain-time, obtain-1load,
read-time, read-load, lies}

We presume that for obtain-price, the Price function also takes into
account which information carriers are already purchased by the searcher, as well
as any pricing schemes that may be offered by content providers that influence the
purchase price.

Using the reliabilty function on information carriers, we are able to define a
measure for the cost of being confronted with false information in terms of the
number of false infons

Price(lies,s,c) = (1 — Reliability(c)) X |Supply(S,c)]

We presume the Price function to be generalized to sequences of carriers as
follows:

Price(f,s,[c]) = Price(f.s,c)

Price(f,s,C ++ D)

Price(f,s,C) + Price(f,s X C,D)

For each of the cost factors we may define the respective price—performance ratios
for sequences of informtion carriers as follows:

Price( f,s,C)

Performance(s,C)

Ratio( f,s5,C) £

To be able to combine the three resulting ratios into a single unified price
performance, the performance ratios need to be normalized first. This is done by
computing the relative deviation of what would be the maximum comfort zone for
the searcher with respect to the specific price factor. In other words, what would,
on a per-infon basis, be the maximum purchase price at which the searcher would
instantaneously approve the purchase of an information carrier? Let the function
MaxPrice : PR X S — R-, denote these maximum values. This allows us to
normalize the three price—performance ratios as follows:
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0 if Ratio( f,s,C) < MaxPrice( f,s)
Ratio”( f,s,C) & | MaxPrice( f, s)

- otherwise

Ratio( f,s,C)
mapping them to a domain between 0 and 1. To combine the normalized price/
performance ratios into a unified ratio, we combine them using weights:

Weight: PR X S€ — [0,1]

where, again,

Vsesg[ > Weight(f,s) = 1}

fepe

This leads to

Price(s,C) = >, Weight(f,s) X Ratio”( f,s,C)
fEPR

4. A THEORY FOR DEMAND AND SUPPLY

Before discussing how information coverage may be achieved in practice, we
first need to develop a thorough understanding of the problem area itself. This is
done by developing a theory for information coverage, a theory that allows us to
define how an idealized information portal should operate in matching demand
and supply of information. Once this idealized information portal has been
described, we will have a feeling of what to strive for when developing an infor-
mation portal in practice.

4.1. Information Carriers

Thus far the term information carrier has been used without actually provid-
ing a definition. In this article, we limit ourselves to information carriers that are
available via the Internet. In this context, an information carrier can be described
as any entity from which information may be experienced. Information carriers
may be compound, in which case some mechanism will be available to unfold the
carrier into smaller information-carrying objects. Information carriers may be
present in several compound information carriers.

Depending on the media used, users can experience an information carrier.
For example, users can read the carrier, listen to it, or view it. By stating that a user
experiences an information carrier, it is meant that the user reads or views or lis-
tens to the information carrier.
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4.2. A Model of Searchers

Information carriers can be seen as autonomous objects. However, the amount
of information that is actually carried by an information carrier is in the eyes of the
beholder. In other words, different searchers will perceive the same information
carrier differently. Even more, the same searcher is likely to perceive the same
information carriers differently at different moments. For example, when looking
for leisure, a searcher will have less appreciation for a theoretical book on math-
ematics than the next day, when the same searcher is preparing for a mathematical
exam. It may also be the case that a searcher who has already experienced an
information carrier, when experiencing the same carrier a second time, absorbs
additional information that was not absorbed during the first experience. To model
this, we take the view that a searcher is in a certain state at the start of experienc-
ing an information carrier and will be in a different state afterward. Let SE be the
set of searcher states. Each state belongs to a unique searcher, determined by the
function Id : S€ — D, where 7D is the set of searchers.

To model the subjective perception of information carriers by users, we pre-
sume the existence of the following two aspects in the state of a searcher:

e The knowledge a searcher has accrued thus far. This is administrated by the function
Kn:SE — p(T). The set 7 refers to elementary information particles, the infons (see
Refs. 15 and 16, and for an application to the field of information retrieval see Ref. 6).

e The mood of a searcher. By taking the mood of a searcher into consideration, we are
able to model the subjective nature of a searcher experiencing an information carrier.
The mood of a searcher in a specific state is obtained by the function Md : S& — MO,
where MO is the set of moods a searcher may have.

If i is the identity of a searcher, then S&; is used to denote the set of searcher states
of i:

SE; = {s|ld(s) = i}

When a searcher experiences an information carrier, then this will lead to a
change in both the searcher’s knowledge and mood or to a change in state. In this
article we restrict ourselves to state changes caused by experiencing information
carriers. We do not consider other state changes. For example, forgetting informa-
tion may be seen as a special change of state. During the interaction between the
searcher and the information portal, we assume the state of the searcher to be
stable. This is referred to as the stable searcher assumption.

We assume searchers to be rational in the sense that their knowledge does not
contain gaps. So if a searcher knows some information particle, then this searcher
is also aware of the components of this particle. Technically, the knowledge func-
tion Kn is presumed to be closed under information inclusion:

[IC1] (Information closure) o — 7 AT € Kn(s) = o € Kn(s)

Here 0 — 7 expresses that the information of ¢ is contained in the information
in 7. If a searcher has the intention to acquire some infon 7, then this searcher has
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Searchers
TD  searcher identities
& searcher states
MO searcher moods
Id:  &—=ID identity of searcher
Kn:  SE—(T) searcher knowledge in some state
Md: &E—-MO searcher mood in some state
IC1: (information closure) g— fA feKn(s)=ge Kn(s)
S 2 Iz | wWig) =i}

Figure 2. The model of searchers.

information need 7. But in our model, this searcher will also have to learn all
preliminary information, that is, all infons o such that ¢ — 7. Note that we will
not have such a restriction on information carriers. If an information carrier has a
knowledge gap, then this gap may be seen as the necessary advance knowledge to
be able to experience this carrier. We will come back to this issue in Section 5. Our
model of searchers is summarized in Figure 2.

4.3. Information Provision

The information needed by users is provided on information carriers. For-
mally, information carriers are introduced as the set ZC. As stated before, a carrier
really only carries data. The carriers are used to transfer information, as data, from
one person to another.

For the moment we presume that when a searcher experiences an information
carrier, this will be an uninterrupted process where the searcher exclusively con-
centrates on the specific carrier. In other words, the experience of an information
carrier ¢ cannot be interleaved with the experience of another information carrier
d. In Section 4.6 we will drop this assumption and discuss compound information
carriers and their accumulated effect on the searcher.

When a searcher in state s experiences an information carrier ¢, then this
searcher will end up in a new state denoted as s X c:

X:SEXIC— SE

Obviously, the new state belongs to the original searcher:

[IC2] (Stable identities) Id(s X ¢) = Id(s)
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We assume that searcher knowledge is not lost by experiencing an information
carrier. This has been introduced as the stable searcher assumption. The motiva-
tion is to safeguard the information portal from a mission impossible.

[IC3] (Nonvolatile searcher memory) Kn(s) C Kn(s X ¢)

The knowledge of a searcher and the mood this searcher is in are determining for
the observing potential of this searcher.

[IC4] (Base for observing) Let s; and s, be states of the same searcher; then
Kn(s;) =Kn(sy) AMd(s;) =Md(s,) = Kn(s; X ¢)=Kn(s, Xc).

By this axiom, the functions Kn and Md materialize the cognitive identity of a
searcher. An immediate consequence is that differences in information absorption
must be explained by a different mood of the searcher.

LEMMA 1. Let s; and s, be states of some the same searcher, then
Kn(s;) = Kn(s,) A Kn(s; X ¢) # Kn(s, X ¢) = Md(s,) # Md(s,)

As we remarked, a searcher may absorb additional information when ex-
periencing an information carrier a second time. Therefore, we will not assume
Kn((s X ¢) X ¢) =Kn(s X ¢). The X operator is left-associative, and thus we may
omit parentheses and write s X ¢; X ¢, rather than (s X ¢;) X ¢;.

Example 1. Assume {interested, informed, bored, alerted} C MO, then repeat-
edly offering the same document may lead to

1. Md(s) = interested
2. Md(s X ¢) = informed
3. Md(s X ¢ X ¢) = bored.

The rationale for this is the following rule of experience:
Md(s) = bored = V_.[Kn(s) = Kn(s X ¢)]

which states that bored people do not learn. In the absence of external state change
triggers for state change (the stable searcher assumption), there can only be an
informative way to escape from being bored:

Md(s X ¢ X ¢ X agenda) = alerted

4.3.1. Exploring the Search Space

The experience operator induces an ordering relation on searcher states. State
s, may result in state s, (denoted as s; —»" s,) by experiencing information carriers
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subsequently. This relation is the reflexive transitive closure of experiencing a
single information carrier:

[IC5] (Learning trajectories) s; —»* s, & s; =5 v . [57 X ¢ —=* 55 ]
The condition ¢ —»™ i, where ¢ and ¢ are predicates over states, is introduced as

b —>" = vs1[¢(51) = asz[w(SZ) A S =" 55]]
Example 2. Let ¢ be a predicate; then we introduce

i€ ¢ = 3, [d(s)Ald(s) = i]
We call ¢ a group predicate if
V[ld(s) € ¢ = ¢(s)]

The group thus covers states {s|¢(s)} and has members {i|i € ¢}. We call ¢ a
subtype of s if

ST Y=V [d(s)=> ()| Agisa group predicate
As an example,
starting student C student

A subtype will have actual group knowledge, but may also be supposed to satisfy
some knowledge threshold.

Example 3.  Assuming courses are the information carriers provided, a teaching
program must supply sufficient information to go through subsequent stages:

1. starting student —»* st year student
2. 1st year student —»* 2nd year student
3. 2st year student —»* bachelor.

These conditions between state predicates must hold for all individual students.

We assume each searcher has an initial state upon entering the information
portal. Let b (i) be the initial state of searcher i.

[IC6] (Entry point) b(ld(s)) —»* s

New states can only be reached by experiencing an information carrier. The finite-
ness of a searcher experience history is expressed by the State Induction Scheme.
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4.3.2. Personal and Collective Carrier Semantics

The supply of an information carrier to the searcher knowledge is expressed
as the incremental information provision (see Figure 3) of an information carrier
in a given searcher state:

Supply(s,c) = Kn(s X ¢) — Kn(s)

The supply of an information carrier may vary from state to state. Each state may
extract some special kind of infons. Yet it will be useful to realize the overall
information content of an information carrier for a given searcher. For this pur-
pose, the information semantics of an information carrier, relative to a searcher i,
is defined as the potential information it may provide to this searcher:

InfoSem(c,i) = J Supply(s,c)
SESE;

The above definition is taken from the searcher’s point of view. From the informa-
tion carrier’s point of view, the informational semantics will be introduced as the
result of the indexing process, that is, the characterization of the information car-
rier. In this section, we restrict ourselves to the viewpoint of the searcher. The
general informational semantics, the infomantics, of an information carrier may be
defined as the whole of information it may provide to any searcher:

InfoSem(c) = \J InfoSem(c, i)
i€ID

LEMMA 2. InfoSem(c) = U,InfoSem(s,c).

Personal information semantics
B K x I8 experience searcher of infons
IC2: (stable identities) w81, c) = g2 = Ild(s) = Id(s2)
IC3: (Nonvolatile searcher memory)  Kn(s) C Kn{sx c)
Kn(s1) = Knisg) A Md(sy) = Md(s2)
= Kn{s; x ¢} = Kn(sg & ¢)

IC4: (Base for observing)

IC5: (Learning trajectories) 81 -#* 838 = 82V 3o [81 Ko 8
Supplyis,c) £ Kn(x(s,c))— Kn(z)
@ =1 e o, [@ls1) = 3s, [th(s2) A 51— 52|

ay

InfoSemic,i) U.ese, Supply(s, )
InfoSemic) £ |, InfoSem(c, i)

Figure 3. A model for information provision.
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Proof.
o € InfoSem(c) © 3;[o € Supply(c,i)]
e 3 3,[ld (s) =i A o € Supply(c,i)]

& 3, [o € Supply(s,c)] u

4.3.3. Comparing Information Absorption

When experiencing the same information carrier in different searcher states,
the supplied information will differ. This allows us to compare different states of
the same searcher based on his or her capacity for absorbing information from that
information carrier. We will call a state s; subabsorbing to state s, if the informa-
tion supplied by each carrier c is also present after experiencing ¢ from state s,:

SubAbsorber(s,,s,) = V.[Supply(s,,c) C Kn(s, X ¢)]

The situation is depicted in Figure 4.

Example 4. Let 5| be a state where the searcher is bored; then each other state
of this searcher will be absorbing. The reason is then being bored (Md(s) =
bored implies to no information carrier has a learning effect: V.[Kn(s) =
Kn(s X ¢)]. Thus for each carrier ¢ we have Supply(s,c) = 0 and, consequently,
SubAbsorber(s,s’) for each other state s’.

This absorption relation is a partial order on searcher states.
LEmMMA 3. The relation SubAbsorber is both reflexive and transitive.
The absorbing potential is further described by the following lemma.

LEMMA 4. Let SubAbsorber(s,s;); then Kn(s;) C Kn(sy) = Kn(s; X ¢) C
Kn(S] X C).

-~ — — — >+ — >

Kn(s1)  Supply(si,c)
Figure 4. SubAbsorber(s,s,).
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Proof. Suppose SubAbsorber(s,s,), and let Kn(s;) C Kn(s,); then

Kn(s; X ¢) = Kn(s;) U Supply(s;,c)
C Kn(s;) UKn(s, X ¢)
C Kn(s,) UKn(s, X ¢)
= Kn(s, X ¢) u
We do not assume SubAbsorber to be an antisymmetric relation. We will

further explore this situation. States s; and s, are considered equally absorbing
(EgAbsorber(s;,s,)) if they are mutually subabsorbing:

EqAbsorber(s;,s,) = SubAbsorber(s,,s,) A SubAbsorber (s,, s,)

The motivation for this definition is the generalization of Lemma 4.

LEMMA 5. Let EqAbsorber(s;,s;); then Kn(s;) = Kn(s,) = Kn(s; X ¢) =
Kn(s; X ¢).

So, in equally absorbing states, the searcher mood has no effect on the assim-
ilating potential of knowledge. The situation is depicted in Figure 5.

LEMMA 6.
InfoSem(c,i) =AUBUC

where

e A =InfoSem(c,i) — Supply(si, c) is the knowledge in information carrier ¢ that searcher
i is not familiar with in state s .

e C = InfoSem(c,i) — Supply(s,,c) is the analogon for state s,.

e B = Supply(s;,c) N Supply(s,,c).

Proof.  First we note that both Supply(s;,c) C InfoSem(c, i) and Supply(s,,¢) C
InfoSem(c, i) due to the definition of InfoSem. Next let o be an infon from

Kn(s1) Supply(s1, ¢)

Figure 5. An impassive searcher.
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InfoSem(c, i) that is not available in either A or C. As o & A, we conclude
¢ € Supply(sy,c). Analogously we conclude o € Supply(s,,c). This enables
us to conclude o € B. |

4.3.4. The Impassive Absorber

A typical searcher that may be distinguished is referred to as the impassive
absorber: a searcher who will always obtain the same information from an infor-
mation carrier, independent of the mood the searcher is in:

ConsistentAbsorber (i) = V,, s,ess,[EdAbsorber (s, s,)]

This is, for example, the case for an automated searcher, as such a searcher cannot
change moods. Searchers who have a constant mood are impassive.

LEMMA 7.V cse[Md(s;) = Md(s,)] = ConsistentAbsorber (i).

Proof.  Axiom IC4 provides the cognitive identity of a searcher by the functions
Kn and Md. Let s, and s, be states of the same searcher; then from this axiom we
conclude that Kn(s;) = Kn(s,) A Md(s;) = Md(s,) = Kn(s; X ¢) # Kn(s, X ¢).
As Md(s;) = Md(s,), we have Kn(s;) = Kn(s,) = Kn(s; X ¢) # Kn(s, X c)
Consequently, ConsistentAbsorber (7).

By this axiom, the functions Kn and Md provide the cognitive identity of a
searcher. An immediate consequence is that differences in information absorption
must be explained by a different mood of the searcher. See Figure 6.

LEMMA 8. Let s, and s, be states of the same searcher; then Kn(s;) = Kn(s,) A
Kn(s; X ¢) # Kn(s, X ¢) = Md(s;) = Md(s,).

An impassive user is an effective information consumer.

LEMMA 9. [Ifiis an impassive absorber with state s, then

InfoSem(c,i) C Kn(s X ¢)

SubAbsorber(s;, s2) 7, [Supply(s1,¢) € Kn(sz x ¢)]
EqAbsorber(sy, 59) SubAbsorber(s, s2) A SubAbsorber(s2, 51)

ConsistentAbsorber(i) £ Y, s,ese. [EqAbsorber(sy, s2)]

[=

Figure 6. A model to compare information absorption.
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Proof. Let i be an impassive absorber with state s; then for each other state s’ of
this searcher we have Supply(s’,c¢) C Kn(s X ¢), which leads to

InfoSem(c,i) = |J Supply(s’,c)
s'ESE;

U Kn(sXc)

s'€SE;

Kn(s X ) u

N

There is another way to put this.

Lemma 10. Ifi is an impassive absorber, then
Id(s) = i= Kn(s) U InfoSem(c,i) = Kn(s X ¢)

As a consequence, an impassive absorber is a maximal absorber. The infor-
mation that is obtained by an impassive absorber does not depend on the mood of
this kind of searcher. An impassive absorber will fully commit all information that
can be obtained from an information carrier to memory. In other words, we have
the following lemma.

LEMMA 11. Let s be a state of an impassive absorber i; then Kn(s X ¢ X ¢) =
Kn(s X ¢).

4.4. Cognitive Features of Searchers

The incremental model for information retrieval is based on an increment
function that measures the residual relevance (S, x) of a document x after a set S
of documents already has been presented to this searcher. The set S is also referred
to as the miniprofile of the searcher. In this article we focus on the Supply func-
tion, which measures the incremental provision of an information carrier. We will
discuss the cognitive searcher features presented in Ref. 5 in terms of the model
presented in this article.

The cognitive feature Repetition describes the effect of experiencing an infor-
mation carrier for a second time. A searcher has this feature if a second experience
is completely redundant:

IM1  Repetition: s, X ¢ —»* s, = Supply(s,,c) =0

The cognitive feature Growth expresses a monotonic effect of searcher knowledge
on information recording capability of the searcher:

IM2  Growth: Kn(s;) C Kn(s,) = Supply(s;,c) D Supply(s,,c)

The following cognitive features describe how information carriers influence each
other for each searcher. We will say that information carrier ¢ is about carrier d,
denoted as ¢ < d, when experiencing d makes c superfluous for searcher i:

c=<,d= Kn(b(i) X dXc)=Kn(b(i)Xd)
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A searcher possesses the cognitive feature Effectiveness when the relation < is
transitive:

IM3  Effectiveness: c¢<;dnd<;e=>c<;e

1 1 1

A weaker version of this cognitive feature is named Effective growth:
IM3a  Effective growth: x <y=V[I(S,x)=1(S,y)]

Information carrier c is independent of carrier d when the experience of d does not
affect the experience of c¢. This is denoted as ¢ |d, in that

cl;d 2 Supply(b(i) X ¢,d) = Supply(b(i),d)

The cognitive feature Independence states that this property is carried over to all
states (see Table IV):

IM4  Independence: c|;d= V csc [Supply(s X c,d) = Supply(s,d)]

The last cognitive feature describes the relation between aboutness and
independence:

IM5  Exclusion: c|;,dne=<;d=c|;d

Using these cognitive features, searcher classes may be defined. For example:

The globe trotter. The first searcher class we consider is the globe trotter,
examining a particular field of interest in order to find out sufficient details.
In terms of the search process, a globe trotter is seen as a searcher trying to
cover some topic of interest without really being interested in complete-
ness. Experiencing new sensations is the incentive of this searcher.

The student. Next we consider the cognitive setting of the student. A student
is a searcher who is trying to get acquainted with some topic. The topic is
not stable; reading a document might draw the student’s attention to a new
area of interest. Reading an information object a second time may be prof-
itable, especially when documents read in between have contributed knowl-
edge that enables the student to learn more in a second reading pass.

The collector. A rather different searcher class is the collector. A collector is
a searcher wishing to collect information objects with respect to some topic.

Table IV. Cognitive identities characterized.

Searcher type Repetition Growth Effectiveness Independence Exclusion

X — I I I
Globe trotter — X X — —
Student — — — X %
Collector X X X X
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It is not profitable to have an object more than once. The collector tries to
make the collection complete.

A collective searcher does not benefit from experiencing the same document
twice, even if this searcher has experienced other information carriers in between:

Collecting (i) £ Vs, mese [$1 X ¢ = 5, = Supply(s,,c) = 0]
LEMMA 12.  An impassive searcher is a collective searcher.

Proof. Let i be an impassive searcher with states s; and s, such that s; X ¢ —»*
s,. From this latter property, we conclude Kn(s; X ¢) C Kn(s,). As i is impassive,
we have Supply(s,,c) C Kn(s; X ¢). Consequently, Supply(s,,c) C Kn(s,). This
is only possible if Supply(s,,c) = 0. u

4.5. The Demand of a Searcher

A searcher may have several needs. For example, in our ongoing example, a
searcher may have a need for computer science, English literature, and art
history. The set of all information needs is denoted as ZV. In each searcher state
each need is present to some extent. In the context of this article, we will restrict
ourselves to the need for information.

The information need a searcher may have corresponds to a need for infons.
What infons are needed depends on the current mood of the searcher and what the
searcher already knows. This subjective meaning of information need is modeled
by the function

Demand : SE X IN — p(I)

The total need Need(s) of a searcher in some state s thus is obtained by

Need(s) = > Demand(s,N)
N

Differences in the meaning of a searcher’s information need are either caused by
differences in a searcher’s mood or in her or his level of knowledge:

[IC7] (Effect of mood) Let s, and s, be two states of the same searcher; then,
Demand(s,,N) # Demand(s,,N)
= Md(s,) # Md(s,) v Kn(s,) # Kn(s,)

Searchers do not cheat in their actual demand for infons; in other words, knowl-
edge that is already known is not needed:

[IC8] (No cheating) Kn(s) N Demand(s,N) =0
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A consequence is that it does not make sense to offer an impassive absorber the
same information twice. Another impact of this axiom is that experiencing an infor-
mation carrier has an influence on the subjective meaning of the information need.

LeEmMA 13. Demand(s X ¢,N) N Supply(s,c) = 0.

Proof.  Using the definition of Supply we have
Demand(s X ¢, N) N Supply(s,c)
= Demand(s X ¢,N) N (Kn(s X ¢) — Kn(s))
C Demand(s X ¢,N) N Kn(s X ¢)

=90 -

4.5.1. Classifying Information Exchange

The relevance of an information carrier ¢ with regards to a need N for a
searcher Id(s) can be expressed as follows:

Overhead (s, N,c) = Supply(s,c) — Demand(s,N)
Shortage(s, N,c) = Demand(s,N) — Supply(s,c)

Hits(s,N,c) = Supply(s,c¢) N Demand(s,N)

This situation is shown in Figure 7. Hits represent the benefits of an information
carrier. Overhead information will be negatively appreciated. Shortage corre-
sponds to unfulfilled searchers’ needs. However, information shortage may not be
part of the subjective meaning of the information need anymore, as a result of
experiencing the information carrier.

Demand(s, N')

Demand(s & ¢, V) Supply(s, c)
_“‘\_l 1 o
| Curiosity | Remaindey Va porizedL Hits Overhead |
) . )
2. bt N i

Figure 7. Demand/supply classes.
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The demand for information, given a certain information need N, will also be
influenced by experiencing information carriers:

Satisfaction(s, N, ¢) = Demand(s,N) — Demand(s X ¢,N)

A

Remainder (s, N,c) = Demand(s,N) N Demand(s X ¢, N)

Curiosity(s,N,c) = Demand(s X ¢,N) — Demand (s, N)

Satisfaction corresponds to that part of the information need that has been satis-
fied by experiencing an information carrier. In our model, the presentation of an
information carrier is a reason for searcher satisfaction. This is expressed by the
following lemma.

LEmMMA 14. Hits(s,N,c) C Satisfaction(s, N, c).
Proof. Let f € Hits(s,N,c); then (1) f € Supply(s,c), leading to f &
Demand(s X ¢,N) (Lemma 13), and (2) f € Demand(s,N). Consequently
f € Satisfaction(s, N, c).

The residual information need is part of the missing information.
LEMMA 15. Remainder(s, N, c) C Shortage(s,N,c).
Proof. Let f € Remainder(s,N,c); then (1) f € Demand(s,N) and (2) f €
Demand(s X ¢,N), leading to f € Supply(s,c) (Lemma 13). Consequently f E
Shortage(s, N, c).

Searcher satisfaction cannot be a result of overhead information. This is an
immediate consequence of the definition of these quantities.

LEMMA 16. Satisfaction(s,N,c) N Overhead(s,N,c) =

Axiom IC8 asserts that the knowledge supplied by an information carrier will
no longer be part of the information need of the searcher. We take an even stronger
position and presume that searcher satisfaction is only caused by the information
carrier presented.

[IC9] (Causal satisfaction) Satisfaction(s,N,c) C Supply(s,c)

The consequence of this axiom is that searchers are impassive, in the sense
that they will not lose interest in information shortage.

LEMMA 17. Shortage(s,N,c) C Demand(s X ¢,N).
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Proof. Let f € Shortage(s,N,c); then (1) f € Demand(s,N) and (2) f &
Supply(s,c), and thus f & Satisfaction(s, N, ¢) (Axiom IC9), which can be rewrit-
ten as f &€ Demand(s,N) v f € Demand(s X ¢, N). Combining (1) and (2) leads
tof € Demand(s,N) A f € Demand(s X ¢,N).

If an information carrier is exhaustive for an information need, then this informa-
tion carrier contains all requested information.

LeEMMA 18. Demand(s X ¢,N) = @ = Demand(s,N) C Supply(s,c).

Proof.  Suppose Demand(s X ¢, N) = @; then Axiom IC9 yields Demand (s, N) C
Supply(s,c). u

4.5.2. Demand Drift

Inspecting an information carrier may lead to an interest in new information.
This is referred to as demand drift. In our model (see Figure 8), demand drift is
captured in the function Curiosity(s, N, ¢). Typically, during a search session, the
information portal will assume a nondrifting searcher. However, in other applica-
tions, for example a teaching environment, the intention of the information portal
might be to bring about a specific demand drift, in order to provoke the student’s
interest in relevant materials (of course, the information portal might also try to
bring the student in a beneficial mood).

First we investigate the absence of demand drift. An immediate consequence
of the definition of Curiosity is the following lemma.

Information
N Information Needs
Demand: SEx — (T)  information need of searcher
IC8:  (no cheating ) Kn(s) N Demand(s, N) = @

Demand(s;, N) # Demand(sz, N)

i perplmind) — Md(s1) # Md(s2) v Kn(s;) # Kn(sa)

1C9:  (Causal satisfaction ) Satisfaction(s, N, ¢) C Supply(s,¢)
Overhead(s,N,c) 2 Supply(s.c) — Demand(s, N)
Shortage(s,N,c) £ Demand(s, N') — Supply(s, c)
Hits(s,N,¢) £ Supply(s,c) N Demand(s, N)

Satisfaction(s,N,c)
Remainder(s,N,c)
Curiosity(s,N,c)

Demand(s, N') — Demand((s,c), N)
Demand(s, V') 1 Demand(x (s, ), N)
Demand(x (s, ¢), N) — Demand(s, N)

e (e

Figure 8. The model of demand.
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LEMMA 19. If Curiosity(s,N,c) =0, then Demand(s X ¢,N) C Demand(s,N).
Furthermore, in that case Remainder(s,N,c) = Demand(s X ¢,N), and thus
Demand(s X ¢, N) C Shortage(s, N, c).

For such search actions, the residual information need amounts to the short-
age of the presented document.

LEMMA 20. If Curiosity(s, N, c) = 0, then Demand(s X ¢, N) C Shortage(s, N, ¢).

Proof. 1If f € Demand(s X ¢, N), then from the premise and Lemma 19, it fol-
lows that f € Demand(s,N). It furthermore follows from Lemma 13 that f &
Supply(s, c). We may therefore conclude that f € Demand(s,N) — Supply(s, C).
From the definition of Shortage, then it immediately follows that f &
Shortage(s, N, c). u

Lemmas 17 and 20 may now be combined into the following lemmas.
LEMMA 21. If Curiosity(s, N, c) =0, then Demand(s X ¢, N) = Shortage(s, N, ¢).
LEMMA 22. If Curiosity(s, N, c) = 0, then Remainder (s, N, c¢) = Shortage(s, N, c).

Proof. From the definition of Remainder it follows that
Remainder (s, N,c) = Demand(s,N) N Demand(s X ¢,N)
With Lemma 21 we have
Remainder (s, N,c) = Demand(s, N) N Shortage(s, N, c)
As Demand(s, N) C Shortage(s, N, c), we can conclude that

Remainder(s, N,c) = Shortage(s, N, c) u

4.6. Compound Information Carriers

So far, information carriers have been considered to be elementary. In this
section we focus on compound information carriers (see Figure 9). There will be
two possibilities to construct new information carriers. The first operator, called
sequencing, concatenates information carriers. Let ¢; and ¢, be information carri-

+ & 0 xIG-—IC Sequential presentation
IC10:  (Sequential decomposition) sw(c) +cz)=sKep e

|: xIX-I Parallel presentation

Figure 9. Compound information carriers.
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ers; then their concatenation is denoted as c¢; + ¢,. Concatenated information car-
riers are experienced by the searcher in the order in which they are concatenated.

[IC10] (Sequential decomposition) s X (¢; + ¢2) =s X ¢; X ¢y

At this point we conclude that compound information carriers can describe the
relation —»* easily:

LEMMA 23. 5, " s, © 3. [s1 X c=s,].

The second constructor for information carriers lets the searcher experience
the involved information carriers at the same time. This is denoted as ¢; | c,. The
interpretation is that information carrier ¢, supports the effect of ¢;.

[IC] (Parallel decomposition) Kn(s X (¢;|c;)) C InfoSem(c;)

Information carrier c; is said to support c;, with respect to a searcher state s,
iff

Kn(s X ¢;) C Kn(s X (c]c;))
It is said to disturb c, with respect to s iff

Kn(s X (¢;]lc)) € Kn(s X ¢;)

5. AREASONING MODEL FOR INFORMATION PORTALS

Before a learning trajectory is started, a learner is in a certain state s; € SE.
This state can be thought of as an encapsulation of the learner’s current mood,
knowledge, and identity. His knowledge at this point is Kn(s;). Note that this is a
subset of the total amount of information that exists in the world: Kn(s;) C Z.

By learning, we want to increase our knowledge. The only way to learn is to
study information carriers. Recall that Axiom IC4 states that learning an infon by
definition increases our knowledge. Learning, and thus extending our knowledge,
is not enough in the context of our example. We want to achieve a certain task, so
we should learn the right things. This means that we want to move from our cur-
rent state s; to a specified state s, in which the learning task is completed. Even
more so, we want to do this as efficiently as possible by optimizing the steps from
51 to s,,. Note that Kn(s;) C Kn(s,) C Z.

5.1. Toward Learning Packages

The central problem we consider here is the following: given initial state s
and information need N, determine a cost-optimal compound information carrier
from the set of carriers that satisfy this need:

{c € IC|Demand(s X ¢,N) = 0}
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The rationale is that information carriers will contribute to searcher knowledge.
However, a searcher may not be capable of grasping information available in an
information carrier, as the searcher lacks the required base knowledge. This prob-
lem is caused by the Information Closure rule expressed in Axiom IC1. Let Pre (i)
be the required foreknowledge for infon i:

Pre(i) = {i'|i’ > ini #i}

Infon i thus can only be supplied by information carrier ¢ in searcher state s if the
required foreknowledge is available in this state:

i € Supply(s,c) = Pre(i) C Kn(s) U Ch(s)

The foreknowledge for information carrier ¢ thus consists of all infons that are not
mentioned in this carrier, but are contained in an infon that is part of carrier c:

Pre(c) ={i'|i" & Ch(c) A Jiccn[i’ = il}
An information carrier is appropriate for a searcher in state s if

IsFit(s,c) = Pre(c) C Kn(s)

5.2. Learning Packages

A series of information carriers is referred to as a learning package. Consider
learning package cy,...,c. The foreknowledge Pre(c;) of package c; should be
available after the student has processed carriers cy, . .., c;—. Assume the student
starts in state s; then, when entering on carrier c;, the knowledge of the student
amounts to

Kn(s X ¢, X -+« X¢;_;)

The missing knowledge at this point for a successful complete processing (i.e.,
optimal processing) of carrier ¢ equals

Pre(c;) —Kn(s X ¢, X -+ X ¢,_)

Thus the total foreknowledge that is required for the learning package cy,...,ck
for optimal processing is expressed as

k
Prequn(Crs ... ¢) = U (Pre(c;) = Kn(s X ¢; X -+ X ¢;_y))

i=1

This is referred to as the subjective approach. It requires a thorough insight into
the knowledge of a student and the effect of experiencing information carriers.
The objective approach is based on the objective estimation of the infor-
mation contents of an information carrier. This approach is prescriptive, in the
sense that it requires the student to obtain the normative information contents for a
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successful participation in a learning package. Upon processing information car-
rier ¢;, the student should have learned (and not forgotten!)

i—1
2 Ch(cj)
j=1
So the student comes short of
i—1
Pre(c;) — >, Ch(c;)
j=1

and thus the required knowledge for optimal processing of the learning package
may be identified as

k

i-1
Pregp(ci,...,c0) = U (Pre(ci) - Ch(cj)>
j=1

i=1

After processing the learning package, starting from state s, the student will be in
state s X ¢y X+ .- X ¢;. In subjective terms, this determines the resulting level of
the student:

Postgp(s) = Kn(s X ¢; X -+ X ¢y)

In objective terms, the student is assumed to have reached level

Post,,;(s) = Kn(s) U U Ch(c;)

i=1

5.3. Providing Advice

Suppose a student is interested in a course that is characterized by re-
quired knowledge level PRE, training the student onto knowledge level POST.
Furthermore, the course requires the student to be in mood m. The initial state s
of the student then should be such that PRE C Kn(s) and Md(s) = m.

A semisubjective approach to the effect of an information carrier is an aver-
aging schema for what a student may learn form this carrier. The extreme values
are determined by the results of the best students and the information that is obtained
by the average student:

() Supply(s,c) C InfoSem(c,m) C |J  Supply(s,c)

s:Md(s)=m s:Md(s)=m

Let Cost(s, c) be the cost for optimal processing information carrier ¢ in state s.
Then the total cost of a learning package is expressed as

k
Cost,(cy,...,c,) = X, Cost(s X ¢, X -+ X¢;_y,c;)
i=1
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5.4. Examples of Learning Packages

A learner called Lou is faced with the task of learning something. (S)he
has to learn about several topics including discrete mathematics, economics, and
econometrics in order to get a certificate in economics. In this example, Lou has to
take one final exam that covers all the topics that (s)he learned about before.

Lou recognizes that some of the topics overlap. For example, “functions” are
likely to be covered in both mathematics and econometrics, whereas the cost mod-
els are likely to be covered in both economics and econometrics. The amount of
time available for study implies that the student must use his/her time efficiently,
which in turn implies that studying the same subject many times should be avoided
whenever possible. This is where the recommender system comes in handy: it will
advise Lou which material should be read and in what order.

Lou logs into the system which “automagically” knows everything about Lou.
At this point the system knows his/her mood, background knowledge, and which
well-defined task must be completed. The system is now challenged with the task
to give advice on which material should be read and in what order. In order to do
this the system must know the following:

e the beginning state Lou is in, which encompasses both mood and knowledge (a set of
infon’s)

e the desired end state after the learning trajectory (also a set of infon’s)

o the infons that are contained in the study material as well as the required knowledge
before any infon can be studied and understood

e what effect learning an infon has on Lou’s mood.

There are several possibilities for the recommendation that the system comes up
with. Assuming that there is exactly one book to be read for each topic, two exam-
ples of recommendations are:

1. Read the mathematics book first, then study economics, and finally use what is learned
to understand the economics book more quickly.

2. Start by reading the econometrics book. To be able to understand a section about cal-
culation price elasticity, some deeper insights in both economics and mathematics must
be gained first. So, the “normal track” is interrupted and Lou has to read sections of the
other two books at this point.

By reading the recommended literature in the specified way, Lou’s knowledge
will grow incrementally. Assuming that the system made a good outline, Lou won’t
have to read the same material over and over. Also, the system makes sure that
Lou has enough prior knowledge before each chunk of information (infon) is
learned. In the end, Lou should know enough to receive the certificate.

6. CONCLUSIONS AND FURTHER RESEARCH

In this article we considered a general model for information coverage. Advi-
sory systems should not only give relevant documents to searchers, but should
help searchers in covering their information need effectively. To be able to build
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such advisory systems, we need a flexible notion of cost. We described such a
notion, but at this point we do need to examine the applicability of our interpreta-
tion of cost in more detail.

In our theory of demand and supply, we proposed a number of basic rules
(axioms) for information coverage (IC axioms). The theory was further aug-
mented with basic properties in the form of lemmas, which are derivable from IC
axioms. Note that information carriers may support and disturb each other. This
has been defined in terms of the knowledge operator Kn in Section 4. We need to
examine similar but other forms of influence between information carriers.

Further research is directed toward the specialization of our theory to specific
situations and application domains, and to employ advanced techniques (such as
Bayesian belief networks and advanced cost models) to equip advisory systems
with better reasoning abilities.

Future advisory systems should help nonexperts in complex tasks more intel-
ligently. We do believe that concepts such as learning packages are a main chal-
lenge in this respect. Although our first experiences are positive, a more elaborate
practical validation is necessary.
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