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Abstract. Rule-driven systems development emphasizes the use of for-
malized, declarative rules for the mainstay of its models. The basic un-
derlying techniques are decades old, but now their application, that used
to concern only operational system and process definition (business logic,
data structure) is being extended to much higher-level items such as poli-
cies and architecture principles (we focus on the latter here). When using
ORM and Object Role Calculus (ORC) for formal modelling of architec-
ture principles, the underlying logical principles of the techniques may
lead to better insight into the rational structure of the principles. Thus,
apart from successful formalization, the quality of the principles as such
can be improved. We provide some examples and discussion based on
the analysis of principles taken from the The Open Group’s Architecture
Framework (TOGAF).

1 Introduction

Model-driven system development is a major direction in information systems
development today. Roughly speaking, it advocates the modelling of various as-
pects of enterprises as a basis for the design of both the detailed, operational
organization of the enterprise (mostly process engineering) and the IT to support
it. Model-driven IT development can be traditional (engaging human develop-
ers), but in an increasing number of cases fully automated creation (generation)
of software from models is strived for [2].
Increasingly, organizations make use of enterprise architectures to direct the
development of the enterprise as a whole and IT development in particular [8].
These developments are fuelled by requirements such as the Clinger-Cohan Act
in the USA1, which force government bodies to provide an IT architecture based
on a set of architecture principles.
One of the key roles of enterprise architecture is to steer the over-all enter-
prise/system development within a large organization (enterprise). A more spe-
cific way of expressing this is to state that “Architecture serves the purpose of
1 http://www.cio.gov/Documents/it_management_reform_act_Feb_1996.html
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constraining design space”2. In most (enterprise) architecture approaches, this
constraining is done by means of so-called architecture principles [7, 10]. These
principles usually take the form of informal statements such as (taken from [10]):

Users have access to the data necessary to perform their duties; therefore,
data is shared across enterprise functions and organizations.

According to the TOGAF architecture framework [10], “Principles are general
rules and guidelines, intended to be enduring and seldom amended, that inform
and support the way in which an organization sets about fulfilling its mission.”
Such principles typically address concerns of the key stakeholders within an or-
ganization. In this case, a stakeholder may be highly concerned about the orga-
nization’s ability to flexibly deploy their workforce over different work locations.
When using architecture principles as the core element in enterprise architecture,
informal statements as exemplified above arguably do not provide enough pre-
cision to concretely limit design space. Therefore, they have limited power as a
steering instrument. The call can already be heard for for SMART3 treatment of
architecture principles. Both in view of their formulation and their enforcement,
formalizing principles in a rule-like fashion can be expected to bring the SMART
objectives closer. What is more, if architecture and development are complex,
and demands on quality, performance, and agility are high, formalization of such
rules will enable their embedding in a fully rule-based modelling setup. This may
include capabilities for simulation of alternative architectures and their impact,
quantitative analysis, and formal verification of and reasoning about and with
rules (for example, weeding out contradictions and inconsistencies, or deriving
new facts). These and other advantages claimed by rule-based approaches (most
prominently, the Business Rules Approach or BRA [12]) may thus also become
available to system development under architecture.
It has been argued by some architects that architecture principles should never
be formalized, since this would lead to them being too restrictive. They should
“leave room for interpretation”. We would argue, however, that sharp definition
and careful, rational composition of rules should not be mistaken for overly
detailed regulation. Even the sharpest formalization of a high-level principle
merely sets constraints; if the principle is general enough, ample room is left for
more details, at lower levels of design, within those constraints.
In this case paper we do not discuss any further the question whether formaliza-
tion of architecture principles in a rule-driven development setup is a good idea
or not. Instead, we assume that it is at the least an idea worthwhile exploring.
What we focus on is the idea that formalization, when properly and systemati-
cally performed, may also lead to better analysis of certain patterns of meaning
underlying the principles, and thereby to improvement of the (formulation of)
the principles as such –even of their informal formulations.
2 See: http://www.xaf.nl
3 Specific, Measurable, Achievable, Relevant, Time-bound; a common mnemonic used

in project management.
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We base our account on the ORM and ORC (Object Role Calculus) approach
because of its formal foundations, its close relation to the BRA, and its long
running affiliation with cooperative domain modelling involving varied, often
non-technical domain experts. The Object-Role Calculus [6] (ORC) is an evolved
variant of RIDL [9]. Two earlier variants where Lisa-D [5], which provided a
multi-sets based formalization of RIDL, and ConQuer [11, 1], which provides a
more practical approach (that is, from an implementation point of view). The
ORC aims to re-integrate the Lisa-D and ConQuer branches of RIDL.

2 Architecture Principles, Rules, and Formalization

In their Architecture Framework (TOGAF), the Open Group [10] lists five cri-
teria that distinguish a good set of principles:

1. Understandable: The underlying tenets can be quickly grasped and un-
derstood by individuals throughout the organization. The intention of the
principle is clear and unambiguous, so that violations, whether intentional
or not, are minimized.

2. Robust: Enable good quality decisions about architectures and plans to be
made, and enforceable policies and standards to be created. Each principle
should be sufficiently definitive and precise to support consistent decision
making in complex, potentially controversial, situations.

3. Complete: Every potentially important principle governing the manage-
ment of information and technology for the organization is defined. The
principles cover every situation perceived.

4. Consistent: Strict adherence to one principle may require a loose interpre-
tation of another principle. The set of principles must be expressed in a way
that allows a balance of interpretations. Principles should not be contradic-
tory to the point where adhering to one principle would violate the spirit of
another. Every word in a principle statement should be carefully chosen to
allow consistent yet flexible interpretation.

5. Stable: Principles should be enduring, yet able to accommodate changes. An
amendment process should be established for adding, removing, or altering
principles after they are ratified initially.

We will use the following two example principles, also taken (rather arbitrarily)
from TOGAF, throughout the remainder of this paper:

Data is Shared (TOGAF1): “Users have access to the data necessary to per-
form their duties; therefore, data is shared across enterprise functions and
organizations.”

Common Use Applications (TOGAF2): “Development of applications used
across the enterprise is preferred over the development of duplicate applica-
tions which are only provided to a particular organization.”

Now we suggest the reader briefly compare the criteria for good architecture prin-
ciples with the following articles selected from the Business Rules Manifesto[12],
describing the nature of business rules:



3.2 Terms express business concepts; facts make assertions about these con-
cepts; rules constrain and support these facts.

3.3 Rules must be explicit. No rule is ever assumed about any concept or fact.
4.1 Rules should be expressed declaratively in natural-language sentences for

the business audience.
5.1 Business rules should be expressed in such a way that they can be validated

for correctness by business people.
5.2 Business rules should be expressed in such a way that they can be verified

against each other for consistency.
5.3 Formal logics, such as predicate logic, are fundamental to well-formed ex-

pression of rules in business terms, as well as to the technologies that imple-
ment business rules.

7.1 Rules define the boundary between acceptable and unacceptable business
activity.

8.4 More rules is not better. Usually fewer good rules is better.
8.5 An effective system can be based on a small number of rules. Additional,

more discriminating rules can be subsequently added, so that over time the
system becomes smarter.

We have no space here to discuss in detail the apparent match of the TOGAF
“good principles” characterizations and the BRA in view of our exploration of
the formalization of architecture principles, but trust the reader can observe for
herself at least a clear similarity of the rationales behind principles and rules.
There is one striking difference between TOGAF principles and BRA rules.
The Business Rule Approach aims to help create agile information systems.
Rules should be easily changeable, and preferably automatically lead to system
adaptations; this should greatly improve agility in business-IT alignment. This
sharply contrasts the explicitly phrased Stability characteristic of Principles.
However, obviously the possible agility that results of the BRA does not imply
that rules have to change often; in fact, many business rules are extremely static.
Note that modality of rules plays an important part in dealing with rule formal-
ization [4]. This is expected to hold also for architecture principles. However, we
do not go into modality issues here.
There is one article in the Business Rule Manifesto that deserves some further
discussion in view of our formalization goal:

3.1 Rules build on facts, and facts build on concepts as expressed by terms.
This statement, sometimes referred to as the “Business Rule Analysis Mantra”,
explicitly points towards the approach to formalization shown in the remainder of
the paper. Starting from the middle level of analysis, ORM is explicitly designed
to deal with the formalization of facts. It is no coincidence that in the BR
Manifesto, facts are mentioned so explicitly: ORM is an important means of
analysis and representation used in the business rules community [3]. The third
level of analysis, term level, is not discussed in detail here but can be seen as
the “ontological level” at which intensional and mostly lexical meaning is added
to the predicate structures represented in ORM. A typical language/framework



used for modelling this level in the BR community is SBVR [13]. The first level
of analysis boils down to adding constraints to the basic ORM role/predicate
structures. If constraints are not too complex, they can be expressed as ORM
graphical constraints (internal or external); a way of expressing (more) complex
constraints verbally is by using Object Role Calculus or ORC (see next section).

3 Stating Principles: ORM and ORC

In this section we scrutinize two sample architecture principles taken from [10].
Each time, the goal is to interpret the sample architecture principle as an
ORM/ORC expression.
As mentioned before, the Object-Role Calculus (ORC) aims to re-integrate the
Lisa-D and ConQuer branches of RIDL. It therefore also has a configurable def-
inition of its semantics in the sense that a distinction is made between four
abstraction layers, and that at each layer specific choices can be made with re-
gards to the semantic/syntactic richness of the language. The bottom level is a
counting layer concerned with an algebra defining how the the occurrence fre-
quency of results of ORC expressions should be combined. The next layer up,
the calculus layer, defines logical predicates, connectives and an associated in-
ference mechanism. The next layer, the paths layer, deals with paths through
an ORM schema including connectives enabling the construction of non-linear
paths. Finally, the fourth layer is the presentation layer. At this level, the path
expressions from the paths layer are presented either graphically, or verbalized
using a textual language. In this section we only show expressions at the presen-
tation level. We will do this either graphically (corresponding to the traditional
graphical constraints), or textually in a naturalized but fully formalized format
that is a slightly enriched version of traditional Lisa-D.
We will now stroll through the examples and provide some comments on issues
raised during analysis of the principles. We provide an interpretation based on
our own knowledge of architecture issues and, admittedly, on guesses. In a real
modelling context, such guesses would of course have to be systematically vali-
dated by the relevant stakeholders. All graphical (ORM) information we provide
is concentrated in Figure 1. Please note that none of the internal uniqueness and
total role constraints in the diagram could be directly derived from the prin-
ciples; they too are interpretations and therefore educated guesses that would
have to be validated. The only constraints in the diagram that were more di-
rectly derived from the analysis of the principles are the external constraints in
the ‘TOGAF Principle 1’ ORM model (the upper half of Figure 1).

Data is Shared (TOGAF1): “Users have access to the data necessary to per-
form their duties; therefore, data is shared across enterprise functions and
organizations.”

Concerning TOGAF1: what is an enterprise function? TOGAF does not pro-
vide a definition. According to a (presumably related) ArchiMate [8] definition,
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Fig. 1. ORM models underlying the TOGAF principles



a business-function “offers functionality that may be useful for one or more
business processes”. We presume that in the same vein, enterprise functions are
production activities that are part of one or more of the enterprise’s operations.
Another issue concerns the meaning of “therefore”. It does not seem to be equiv-
alent to a regular logical imply, but rather something like “p is enabled by q”.
We assume that because users need to perform their duties they have access
to data, and that users are both part of organizations and support enterprise
functions (see Figure 1; the paths in the diagram can be best traced by focusing
on the capitalized words in the formulations below; these words correspond to
object types in the diagram). We thus have two related rules, both implied by
TOGAF1:
1.a Each Enterprise-function has access to Data which some User [ that supports that Enterprise-function ]

needs for some Duties

1.b Each Organization has access to Data which some User [ that belongs to that Organization ]

needs for some Duties

In this interpretation, we assume that there are two ways to decompose an en-
terprise: into functions and into organizations. Either decomposition type now
requires its own data access rules. Obviously, this apparent redundancy in the
model could be avoided by making explicit that both organizations and enter-
prise functions are “enterprise parts” and then make one rule for enterprises
parts. However, this might mean a considerable infringement of the domain
model/language for sake of elegant modelling. The two issues may represent
two related but separate concerns that require explicitly separate formulation
in the eye of the stakeholders. Therefore, the newly suggested component-rules
would have to be validated. For now, we would suggest to maintain the rule as
a conjunction of 1.a and 1.b:

1.c Each ( Enterprise-function or Organization ) has access to Data needed by some User

[ that ( supports or belongs to ) that ( Enterprise-function or Organization ) ] for some Duty

The TOGAF1 example has allowed us to show how a moderately complex ar-
chitecture principle can be analyzed using ORM/ORC, through a reasonably
straightforward interplay between analysis, questions, and propositions. TO-
GAF2 will show that more complex situations may occur, in which the ability
to perform basic formal reasoning can be helpful (we will return to this briefly
at the end of this section).

Common Use Applications (TOGAF2): “Development of applications used
across the enterprise is preferred over the development of duplicate applica-
tions which are only provided to a particular organization.”

The TOGAF2 conceptual analysis is related to that of TOGAF1. We again as-
sume that organizations are part of enterprises. We interpret “applications being
used across the enterprise” as applications being used in two or more organiza-
tions. In addition, we model the notion of “duplication” as a distinct predicate.
Lexically, it corresponds to some measure or judgement concerning great simi-
larity in functionality of two applications. Another issue is the interpretation of



the term “preferred”. We assume, maybe naively, that a development is either
preferred or not. However, in practice it seems possible to provide a rated inter-
pretation, for example by counting the number of duplicates occurring (decreas-
ing preference), or the number of times a single application is used in different
organizations being 1 or larger (increasing preference as the count goes up).
In correspondence with Figure 1, we now have:
2. If an Application A [ that is used in an Organization O ] results from some Development, and

this Application A is not a duplicate of another Application

[ that is used in another Organization than O ], then that Development

is preferred by the Enterprise that includes both Organizations and both Applications.

So this is our our formalized interpretation of the original TOGAF2a rule. How-
ever, as we were performing the ORM analysis of TOGAF2, it became clear
that “duplications” and “use across organizations” relate to essentially different
concepts (the first to similarity in functionality between different applications,
the second to distributed use of the same application). Consequently, we saw
that logically, “Duplication” alone could do the job:

2.a If an Application results from some Development, and that Application is not a Duplicate of

another Application, then that Development is preferred by the Enterprise.

This boils down to the simple informal rule “no duplicate applications”. Rule
2.a is stronger than rule 2, which it subsumes (i.e. makes it redundant). Its
extensional interpretation includes duplicates that occur within one organization.
To make absolutely sure this is correct (obvious thought it may seem), we should
therefore validate rule 2.b:

2.b If an Application A [ that is used in some Organization ] results from some Development,

and that Application is not a duplicate of any other Application that is used in the same Organization,

then that Development is preferred by the Enterprise that includes Application A.

2.a would make 2.b redundant (just as it subsumes 2). However, perhaps this
logic-based assumption should not be embraced too rashly. It seems equally
reasonable to assume that 2 was put forward (and not 2b) to emphasize the
preferred status of “acrossness” in application development. However, even if
this were the case, and therefore principle 2 (or rather, the natural language
equivalent thereof) was maintained, then still we would like rule 2.a and rule 2.b
to be explicitly validated to safeguard the correct interpretation of principle 2.
Note that some assumptions made in the discussion above could be, and to some
extent would need to be, formally verified or proven. For example:

– Does (1.a AND 1.b) indeed amount to 1.c?
– Does 2.a indeed logically subsume 2? Also, does 2.a indeed logically subsume

2.b?
– Does 2.b indeed fail to be logically covered by 2?

Formal reasoning in order to answer such questions is possible with ORC, as we
have demonstrated in [6] (we cannot include the actual formal exercise here, for



reasons of both space and relevance). A sufficiently accessible way of performing
such formal reasoning would, in our conviction, be a welcome contribution to a
set of tools that aims to support the formalization of principles.

4 Conclusion

In this case paper, we demonstrated and discussed the formal analysis, using
ORM and ORC, of architecture principles. We provided two example analyses
based on principles taken from the TOGAF architecture framework. First, we
discussed why it seems a good idea to, at the least, explore the possibilities for
formalizing architecture principles as declarative rules, inspired on the Business
Rules Approach. Next, we reported in some detail the experiences and results of
analyzing the two principles.
We found not only that such analysis is quite possible, but more importantly that
it can lead to better understanding of and even improvement of the principles
as such, so apart from their formalization. Using ORM and ORC for principle
analysis helps give clear and unambiguous meaning to those principles. In our
example case, it led to reconsideration of formulations (both informal and formal)
that did not occur when we first read the principles in their original natural
language form. However, one has to take care not to discard formulations that
make explicit some specific stakeholder concern, even if they lead to redundancy
in the model resulting from formal analysis.
We have based the interpretations that inevitably underlie each analysis on as-
sumptions that were educated guesses; in a real analysis process, every assump-
tion should have been validated by relevant stakeholders. However, we have also
seen that the approach used makes it very clear which precise assumptions (and
formulations thereof) are to be validated. Also, ORC provides us with means,
beyond mere intuition, for verifying whether presumed logical relations between
propositions in fact hold true. Instead of demonstrating such proofs in detail in
this paper (which we have already done elsewhere, for similar cases), we iden-
tified them and indicated how they would help back up and consolidate the
analysis of principles.
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