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Abstract: In this paper we are concerned with the degree to which modeling lan-
guages explicitly accommodate conceptual distinctions. Such distinctions refer to the
precision and nuance with which a given modeling concept in a language can be in-
terpreted (e.g., can an actor be a human, an abstraction, or a collection of things). We
start by elaborating on the notion of conceptual distinctions, while also providing a
list of common modeling concepts and related distinctions that are relevant to enter-
prise modeling. Based on this, we will then analyze a number of conceptual modeling
languages to see whether they accommodate the explicit modeling of (potentially im-
portant) conceptual distinctions – that is, whether they have specific language elements
to model conceptually distinct entities with. On basis of these findings we then further
discuss how to ensure such different distinctions are captured in created models, how
to know which of them to support in modeling languages, and where existing methods
fall short. We conclude by discussing what impact our findings may have on the use
(and validation) of modeling languages.

1 Introduction

The creation of conceptual models, in particular when they represent a part of an en-

terprise, involves a myriad of stakeholders and informants, each of which has its own

background and views on the domain that is modeled. As a result, conceptual modeling

is considered to be an inter-subjective activity [PS01, Moo05], where modeling “ideally”

boils down to the representation of a shared social reality. Most concepts common to con-

ceptual modeling languages and methods (e.g., goal, process, resource, actor, etc.) can

be interpreted in a number of conceptually distinct, yet equally valid, ways. This is par-

tially reflected in the already large, and diverse, amount of terminology used by modeling
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languages and their users. For example, in the context of business processes, one may

choose to interpret actors as being human beings who take decisions and execute actions.

At the same time, however, interpreting them as being abstract agents or dedicated pieces

of hardware might be equally valid in another context. One could also choose to interpret

actors as being a collection of things that, together, execute some actions (e.g., an organiza-

tional department composed of many employees, a cluster of computers) instead of being

a single thing executing an act. Depending on the context of the domain to be modeled,

the stakeholders and other modelers we interact with, and the goal of the model itself, we

often choose among the different possible interpretations. These different interpretations

of the same concept can lead to a host of semantic considerations. For example, if an actor

is a human being, one can never be as sure that s/he will behave as expected compared to,

say, a computer. If an actor is seen as a composite entity (i.e., an organizational depart-

ment) the issue of the responsibility of the actions the department takes comes into play as

well, since in the end, a concrete, specific person needs to be held (legally and/or socially)

responsible. These considerations hold in the case of many of the common concepts. For

example, interpreting a resource as an immaterial thing (e.g., using a piece of information

as a resource) will require one to carefully distinguish between the actual resource and its

physical representation (e.g., the collection of paper and ink blobs).

It is important that such different interpretations can be modeled distinctly. It would not

do well for the overall clarity and semantic quality of a model if we conflate semantically

different interpretations (e.g., human beings, abstract entities and material objects) under

the same banner (e.g., ‘actor’) and pretend that they are one and the same thing. Yet,

this is often the case with modeling languages. Frequently, the designers of a modeling

language define a type (e.g., actor) and allow it to be instantiated with a wide diversity

of entities (humans, hardware, abstract and mathematical entities) which have no com-

mon ontological basis. Sometimes modeling languages do accommodate (some of) these

conceptual distinctions, but then do so only implicitly. That is, in their specification or

meta-model they assume a particular interpretation. As such, all instantiations of a model

are then implicitly assumed to abide by that interpretation (e.g., all actors in the given

model are assumed to be human things, all goals are assumed to be hard goals). An exam-

ple of a language doing so is the i* specification as found in the Aachen wiki [GHYA07],

which defines agents (the acting entities) as having “a concrete physical manifestation”.

This implicitly makes it semantically incorrect to use abstractions (e.g., agents as they are

commonly understood) and furthermore, perhaps ontologically incorrect to use composite

agents – market segments – as the composition itself is not physically manifested.

It is more useful if a modeling language accommodates such conceptual distinctions ex-

plicitly, to the extent needed in relation to its expected and planned use. That is, instead

of relying on the underlying semantics to define every concept they allow (or perhaps re-

quire), to use a notation that explicitly encodes information about our interpretation – and

do so by providing distinct notational elements for all the important different conceptual

distinctions. This can mean for instance, having exclusive (visual) elements to represent

such distinct concepts by (e.g., the amount of ‘stick puppets’ in in ArchiMate actor type

denoting whether it is a single actor or a collection of them). This is important from a

cognitive point of view as it improves the quality of the notation by ensuring there is no
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notational homonymy. Many researchers have proposed methods and frameworks to an-

alyze the degree to which languages are complete in this sense [GW04, BJWW09], often

ontological in nature (e.g., UFO [GW10], Bunge-Wand-Weber [WW90] and their applica-

tions [FL03, GHW03]), although some have been criticized as being poorly suited when

applied to the information systems domain [WK05]. A major effort on this topic was un-

dertaken by e.g., Moody in his work on a general “physics of notation” [Moo09]. Several

modeling languages have been analyzed to estimate their cognitive quality in terms of this

framework (e.g. i* [MHM10], BPMN [GHA11], UCM [GAH11], and UML [MH09]).

However, most of these analyses are aimed at the semantics of the (visual) syntax, and

forego a more detailed analyses of the semantics of the individual elements of meaning

themselves. By this we mean that they analyzed the semantic quality of the formaliza-

tion of grammar or the syntax (i.e., which elements interoperate in what way), but spent

less attention to the question what the elements arranged by this syntax actually means

to the users of the language (e.g., what is this element called ‘agent’, what thing does it

really represent). From a quality perspective, important related issues are semiotic clar-

ity (one-to-one correspondence between semantic constructs and graphical symbols) and

perceptual discriminability (symbols should be clearly distinguishable) [Moo09]. This is-

sue comes into play more clearly with domain-specific modeling languages than it does

with general-purpose languages like UML, ER or ORM (even though these languages

were originally designed for specific purposes like software and database engineering) be-

cause they have more native specialized semantic elements (i.e., types) to represent the

important aspects from their domain by. It is thus important that these domain-specific

languages have the ability to explicitly express important semantic distinctions that might

arise in needed specific situations.

The goal of this work is not to provide detailed individual analyses of all the languages

involved, but to explore whether there is a trend in modeling languages to support enough

distinctions or not, and on basis of that argue what kinds of research and engineering efforts

are needed to deal with optimizing the conceptual completeness of modeling languages.

Hence the initial purpose of our work is to gain a deeper (empirical) understanding of

the issues and challenges involved, rather than ‘jumping’ to the creation/suggestion of

mechanisms to possibly deal with them. Therefore, the work reported on in this paper

specifically looks at the cognitive quality of a number of modeling languages and methods

in terms of the semiotic clarity of their semantic constructs. These constructs can be

both visual (for visual notations) and textual (for textual notations), but both require a

proper correspondence between semantic constructs and symbols used for them. We do

so in the context of Enterprise Modeling, as there are many conceptually different aspects

of enterprises that need to be modeled (e.g., goals, processes, rules). These are often

captured in specialized (domain-specific) languages, which reflect the different conceptual

landscapes of each aspect, and should thus be a good source of finding different kinds of

accommodated conceptual distinctions. To do so we will provide an initial (likely non-

exhaustive) overview of different aspects of enterprises that are explicitly modeled today,

and show to what degree relevant conceptual distinctions can be explicitly modeled in the

languages and methods used for them.

The rest of this paper is structured as follows. In Section 2 we introduce the different as-
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pects and modeling languages we selected for our investigation. In Section 3 we introduce

the conceptual distinctions and analyze to what degree they are supported by the selected

languages. We discuss our findings and the consequences for modeling (languages) in

Section 4, and conclude with needed future work in Section 5.

2 Aspects of enterprises and associated languages

Enterprises are large socio-technical systems encompassing many aspects (e.g., business

processes, value exchanges, capabilities, IT artifacts, motivations, goals), which them-

selves are often the domain of specialized (groups of) people. As these models are pro-

duced by different people, often using different languages, integration is a vital step in

order to have a coherent picture of the enterprise [Lan04, KBJK03, DDB05]. Ensuring

that different conceptual distinctions are modeled explicitly is thus especially important

in this context, as much information can be lost in this integration step, leading to enter-

prise models that are no longer correct or complete in regards to the semantics intended

to be expressed (and possibly only done so implicitly) in the models made of each of the

distinct aspects. Traditionally processes and goals received a lot of attention in terms of

explicit models and dedicated modeling languages and frameworks, while recently more

and more aspects are being considered equally as important to deal with. Other aspects

such as motivations and goals, value exchanges, deployment and decision making now

have dedicated, often formally specified, modeling languages available. This increases

the amount of languages (ideally) capable of explicitly supporting conceptual distinctions

important to the individual aspects that are in use, but perhaps at the cost of fragmenting

the modeling landscape itself. Table 1 gives a brief overview of some current languages

and the aspects they are, or can be used for.

This increased amount of focus on specific aspects has thus, amongst other factors, led

to a plethora of modeling languages, methods and frameworks. Some were proposed or

designed solely by academia, some invented in industry, most of them having different fo-

cus and purpose. Some aspects have a large amount of dedicated languages differing only

slightly in their actual notation or specification (e.g., as evidenced by the large amount

of overlap between the notations used in goal modeling such as i*, GRL, KAOS, TRO-

POS, etc.). In order to have an overview of modeling languages from a wide array of

subjects, we selected a number of languages, both languages proposed in academia, and

languages widely used in industry for the different aspects listed in Table 1. We chose

these specific languages in order to have a diverse amount of of languages and notations,

while not necessarily ensuring an exhaustive list of all aspects or methods and languages.

Instead, our focus was on ensuring we included languages covering as many aspects as

possible, so as to be able to investigate potential issues with the accommodation of con-

ceptual distinctions as broadly as possible. Modeling languages that are typically used for

general purpose modeling such as UML, ER and ORM were not included as these lan-

guages themselves do not (and by design perhaps should not) contain specialized semantic

constructs for domain concepts (e.g., goal, process). A part of the selection for Table 1

was based on the languages integrated into the Unified Enterprise Modeling Language
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Table 1: A cross-section of aspects of modern enterprises, and some modeling languages used, or
usable to represent them.

Aspect of an Enterprise Related languages

Architecture ArchiMate [The12] (1.0, 2.0), ISO/DIS 19440, ARIS

(Business) Processes BPMN [Obj10b], (colored) Petri nets, IDEF3,

EPC [vdA99]

Design decision-making EA Anamnesis [PdKP12], NID [GP03], OMG DMN

(proposed, seemingly unfinished)

Deployment of IT artifacts ADeL [Pat10]

Goals & Motivations i*, GRL, KAOS [DvLF93], TROPOS [GMP03],

AMORE [QEJVS09], ArchiMate [The12] 2.0’s motiva-

tional extension, OMG BMM [Obj10a]

Management of IT artifacts ITML [FHK+09]

Strategy & Capability Maps TBIM [FDM13], OMG BMM [Obj10a], Capability

Maps [Sco09]

Value exchanges e3Value [GA03], REA-DSL [SHH+11], VDML (under

development)

(UEML) [ABH+10], which incorporates ARIS, BMM, BPMN, colored petri nets, GRL,

IDEF3, ISO/DIS 19440, KAOS, and some diagram types from UML.

3 Conceptual distinctions for aspects & languages

The different aspects that are focused on in enterprise modeling, typically have a number

of (not necessarily overlapping) specific conceptual distinctions, which are important to

be aware of. For example, a motivational model describing the things to be achieved

by an enterprise and the reasons for wanting to achieve them is likely to require more

detail (and thus fine-grained conceptual distinctions) for what goals are than, say, a model

describing the related process structure. Such distinctions can be for instance whether

goals absolutely have to be achieved, whether the ‘victory’ conditions for achieving it are

known, whether the goal itself is a physical thing to be attained or not, and so on. On

the other hand, a model describing the process undertaken to achieve a certain goal (e.g.,

bake a pizza) might require conceptual distinctions like whether the actors involved are

human entities or not, whether it is one or more actors responsible for ensuring the goal’s

satisfaction, and so on. Thus, not all conceptual distinctions that are relevant to one aspect

(and the modeling language used for them) will be as relevant (and necessary to model

explicitly) for other aspects.

In order to systematically talk about whether the selected modeling languages accom-

modate different conceptual distinctions we need both a set of common modeling con-

cepts and a set of distinctions to analyze. We base ourselves on an analysis of mod-
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eling languages and methods commonly used in (enterprise) modeling as reported on

in [vdLHLP11], which resulted in a set of concepts common to most modeling languages,

and a set of conceptual dimensions which were often found to distinguish between spe-

cific interpretations. From this we take a set of common concepts shared between most

languages: ACTORS, EVENTS, GOALS, PROCESSES, RESOURCES, RESTRICTIONS and

RESULTS. For each of these concepts we look at whether one of the following conceptual

distinctions is relevant for that concept, namely whether something is considered to: natu-

rally occur (natural), be human (human), be a single thing or composed of multiple (com-

posed), be intentional or unintentional (intentional), be a logical necessity (necessary),

be physically existing (material), and whether something is well specified (specific). The

result of this step was the basis for Table 2. We started with a full list including each pos-

sible conceptual distinction for each concept, resulting in many different possible points

of analysis. We then went through all the concepts and removed the distinctions that we

deemed less relevant or interesting (e.g., whether a process is human, whether a result is

intentional, and so on), ending up with a list table in which each concept has a number of

potentially relevant distinctions. We then show for each concept-distinction combination

why it can be useful to be aware of this distinction, and what modeling language supports

doing so.

Table 2: This table gives an overview of a number of relevant conceptual distinctions for common modeling. For

each of the concepts, we list relevant conceptual distinctions, show what they are useful for, and what languages

support modeling them explicitly, might support it, or (where relevant) make a specific implicit interpretation.

Dimension Useful to . . . Supported by . . .

ACTOR

human Distinguish between actors that can be

more fickle than pure rational agents.

BPMN through the explicit use of a ‘Human Per-

former’ resource type, VDML does contain a ‘Per-

son’ subtype of Actor which is specified to be hu-

man, but does not distinguish in the visual notation

between types of Actors.

composed Distinguish whether an actual entity acts

or whether a group of them does, which

impacts responsibility judgments for ac-

tions

ArchiMate, TROPOS via ‘composite Actor’, some-

what as well with differentiation between ‘role’ and

‘position’, e3Value somewhat through differentiation

between actor and market segments, VDML distin-

guishes between an ‘actor’ being a singular partici-

pant, and modeling ‘collaboration’ or ‘participant’ as

potentially multiples.

material Know whether an actor physically inter-

acts with the world (and can thus be af-

fected by it directly – think hardware vs.

software)

i* assumes that an agent is an actor “with a concrete

physical manifestation” (iStar Wiki)

intentional Know whether an actor is considered an

explicit part of a system, i.e., is expected

to act or not on certain things, in contrast

to actors from outside the systems scope

which may act but were not regarded or

thought of to do so

Implicit in most languages, mentioned as such in

TBIM, depending on interpretation could be argued

to be explicit in OMG BMM with differentiation be-

tween internal and external influencer.

specific Knowing whether an actor is a specific

thing (i.e., an instantiation) or a general

thing (i.e., a role)

Supported by some (e.g., ArchiMate), through

type/instantiation dichotomy, explicit in TBIM by the

claim that an agent “represents a concrete organiza-

tion or person” ArchiMate, implicit in e.g., e3Value

and RBAC by automatic use of roles (types).
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Table 2: (cont.)

EVENT

intentional Distinguish between events that should,

or will happen given a set of circum-

stances, and events that happen (seem-

ingly) unprovoked.

Arguably explicitly supported by BPMN through the

use of ‘None’ type triggers for Start Events.

GOAL

composed Distinguish between complexity level of

goals, i.e., whether they are an overarch-

ing strategy or directly needed goals.

TBIM explicitly models composite goals as ‘business

plan’ types, implicit in some other languages focused

on strategy/tactics (e.g., OMG BMM).

material Distinguish between objects and their

representations, i.e., is the goal to achieve

an increment in the integer on a bank ac-

count, or to hold an n amount of cur-

rency.

necessary Distinguish between goals that have to be

attained and those that should.

specific Distinguish between goals for which the

victory conditions are known and not,

i.e., hard vs. soft goals.

Most goal modeling languages/methods/frameworks

(e.g., i*, GRL, KAOS, AMORE) support this explic-

itly. Surprisingly1 ArchiMate’s motivational exten-

sion does not.

PROCESS

composed Distinguish between black (closed, sin-

gular) and white (open, composed)

boxes.

Arguable either way for BPMN with the use of pools,

which can function as black boxes, however, those do

not allow for linking sequence flow to it, and are thus

self-contained.

intentional Know whether they are part of an in-

tended strategy or something that has to

be dealt with (i.e., negative environmen-

tal processes)

specific Know whether the structure is (supposed

to be) clear (deterministic) or not (fuzzy).

RESOURCE

natural Know whether a resource requires a ‘fab-

rication’ process.

Somewhat related, TBIM explicitly models resource

types as being either animate or not.

human Know whether resources can act on their

own and produce issues, e.g.., be unreli-

able, not always generate the same out-

comes

material Distinguish between objects and their

representations, i.e., whether a given re-

source a collection of paper and ink

blobs or the information contained within

them.

Explicit in ITML through the use of hard-

ware/software dichotomy.

RESTRICTION

natural Distinguish between restrictions we can-

not do anything about and those we can.

intentional Distinguish between restrictions we stip-

ulate from those that arise holistically

(whether good or bad).

Some languages implicit, e.g., EA Anamnesis, and

BPMN through use of ‘Potential Owner’.

necessary Distinguish restrictions that can be bro-

ken from those that cannot.

(supported by some GPML, e.g., ORM 2.0).

1Given that it was derived from AMORE, which does explicitly support soft/hard goal distinctions
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Table 2: (cont.)

specific Distinguish restrictions for which we

know when they are broken and not.

RESULT

natural Know whether a result requires some

kind of ‘fabrication’ process

material Distinguish between an object and its

representation, i.e. whether the physical

pizza or the status update in the IS saying

a pizza was baked is the result of a given

step in the pizza making process.

specific Know whether a result is (supposed to

be) clear (deterministic) or not (fuzzy).

Arguably supported in BPMN through the use of

‘None’ type End Events.

4 Discussion

Around half of the conceptual distinctions we analyzed were explicitly supported by at

least one modeling language, with some cases being arguable either way. Languages used

for specific aspects do seem to explicitly accommodate some basic (and often widely ac-

cepted) necessary conceptual distinctions. For example, the de facto used language for

process modeling, BPMN, has explicit support for differentiating between human and

non-human actors, which can be important to know for critical steps in a process. Most

modeling languages used for motivations and goals also accommodate the distinction be-

tween goals with well-specified victory conditions and those with vague or unknown con-

ditions by means of separate hard and soft-goal elements. These explicit distinctions in

the notation are likely correlated with the conceptual distinctions being widely accepted

as important and having become part of the basic way of thinking. However, taken over-

all, there does not seem to be a consistent or systematic pattern behind what language

explicitly accommodates (or lacks) which conceptual distinctions.

As such, there are a number of conceptual distinctions for which we found no explicit sup-

port by any modeling languages. For example, we found no support for explicitly model-

ing goals and results as being material things. It also did not seem possible to explicitly

model goals as being a logical necessity in the investigated languages. The distinction

whether results were things that naturally occurred or fabricated was also not supported.

When it comes to processes we found no support to model them explicitly as being in-

tentional, and distinguishing between specific (i.e., well-defined) processes and processes

more fuzzy in their structure. Modeling resources as being humans was also not supported,

while this is likely not an unthinkable interpretation – effective management of ‘human re-

sources’ being important for large enterprises. Finally, we found no explicit support for

modeling restrictions as naturally occurring and specific things. We will discuss some of

these distinctions in more detail.

24



4.1 Some unaccommodated conceptual distinctions

Surprisingly, we found no explicit support for differentiating between goals with vary-

ing levels of necessity and obligation. While many common methodologies (e.g., the

MoSCoW technique [CB94] of dividing requirements into must, should could, and would

haves) call for such distinctions, many modeling languages conflate them all into a single

kind of goal. Arguably in certain aspects it would make sense to make an implicit choice,

as in e.g., process modeling it is necessary for certain steps in a flow to be reached before

the flow continues, which can be seen as an analog to logically necessary goals. However,

goal models in dedicated languages seem not to make this distinction, even though there is

a strong focus on differentiating between hard and soft-goals, which seem correlated with

different levels of necessity (e.g., one cannot as certainly rely on a soft-goal to be achieved

compared to a hard-goal, especially for mission critical goals).

Another seemingly unaccommodated distinction is the necessity of restrictions, that is,

whether some restriction (e.g., a rule, principle, guideline) is an alethic condition that can-

not be broken or whether it is not and thus can be broken. While in the context of enterprise

modeling there is a strong differentiation of terminology used for different kinds of nor-

mative restrictions that can be considered breakable, or at least not strictly enforceable

(e.g., principles, guidelines, best practice), these often seem to be used outside of mod-

eling languages in their own approaches – e.g., architecture principles [PG10]. It seems

problematic that many languages used for aspects of enterprises, and languages used to

describe the actual enterprise architecture like ArchiMate do not have explicit notational

support for these different kinds of restrictions. Many models that are analyzed a pos-

teriori (e.g., when they are integrated in other models, and the original modelers are no

longer involved or available) then become difficult to interpret, as the notation of different

kinds of restrictions can be ambiguous and lead to situations where it is not clear whether

a restriction can be relaxed or not. Surprisingly the only language that seems to support

this conceptual distinction is ORM (in particular version 2), which supports the explicit

modeling of restrictions as being either alethic or deontic conditions through its visual

notation.

Another conceptual distinction that is typically not accommodated by most languages is

whether something is material or not. In particular, the material status of resources is

often defined in a conceptually ambiguous way. For example, in TROPOS, resources are

stated to be “physical or informational entities”, which makes it difficult to know whether

a modeled resource is the actual ‘object’ (e.g., some information) or its representation

(e.g., a collection of paper and ink blobs that represents that information). It is important

to be aware of this distinction as this has consequences for the way in which the resource

can be interacted with, and in what way it can be manipulated, and possibly consumed.

For example, if we have a process in which a human actor performs a certain task for

which they need clear instructions, we can see those instructions as being a vital resource.

Modeling them as the physical representation – a paper printout of the instructions – means

that this specific resource is only available to one actor. On the other hand, if we model

it as the actual informational object, it is available to more than just one actor at a time.

Furthermore, when a resource is material, it also has the possibility of being consumed.
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For example, when we model the process of baking a pizza, some of the resources involved

(i.e., the ingredients) are consumed. It is important to be aware of this, as that means it is

necessary to keep track of stock levels, and perhaps optimization thereof via e.g., system

dynamics models.

Finally, a conceptual distinction that is not explicitly accommodated by many languages

is whether an actor is a human being or not. BPMN was the only language we analyzed

which explicitly supports it by having a notional element ‘Human Performer’ which is

only used for human actors (albeit called a resource in the BPMN jargon). It is important

to be aware of this, especially when responsibility comes into play, which is for instance

done in KAOS models, by making some agent responsible for some goals. However, the

actual responsibility for any given thing cannot, from a legal and social perspective be

placed on a non-human entity. At the end of the day (or chain of responsibility), there

is always a person held responsible (and accountable) for some given action. In the case

of software engineering, for example a programmer is held responsible for the downtime

caused by bugs, in the case of a building collapsing after a summer breeze the architect

is held responsible for not properly analyzing the environment and soil conditions, and so

on. When responsibility is modeled, it thus seems prudent to know whether an actor is the

actual responsible party or whether it defers its responsibilities to a different, human entity.

Another important aspect of human beings is that they are not necessarily rational and

reliable. Thus, when a given task or process depends on a specific human actor, it is quite

possible that the process is not performed as well as needed, or at all. As such, knowing

that a process involves human actors, a certain level of fault tolerance and redundancy

would be needed. Conflating human actors with non-human actors makes it far more

difficult to know where this is necessary, and could thus lead to models (and predictions

made with them, e.g., efficiency or execution time of a process) not holding true to the real

world situation.

4.2 Consequences

The overall lack of explicitly accommodated conceptual distinctions (of which there might

be more than just those we discussed) in many modeling languages are especially relevant

for enterprise modeling. It makes it much more difficult to ensure that integrated models

are valid (or complete) representations of the semantics intended by the original modelers,

as sometimes these modelers simply lack the notational elements to express important se-

mantics. While it is possible to ‘simply’ denote this information by annotating the models

with extra text, it would be a more ideal solution if modeling languages supported these

distinctions. Furthermore, while some languages do offer explicit notational support, their

specification or meta-model does not necessarily enforce correct use of these elements

(e.g., ArchiMate does not enforce correct distinction between composite and singular ac-

tors). There are many languages we analyzed which have an implicit interpretation of some

of the conceptual distinctions, sometimes specific (e.g., i*’s handling of agents as having a

concrete physical manifestation) sometimes vague (e.g., TROPOS’ handling of resources),

which further complicates matters, as this interpretation of the language might not be the
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interpretation a modeler wishes to take for a given context. The fact that some languages

have semantics which are considered to remain vague (e.g., GRL [HSD06], i* [LFM11])

only adds to this. Most languages seem to have a well-defined and formalized semantics

of the syntax, while lacking much, if any, formalization of the semantics of the elements

of meaning themselves (e.g., EPC [Kin04]).

Thus, it seems necessary to stimulate a move towards more explicit focus on (formaliza-

tion of) the semantics of the elements of meaning of modeling languages. The lack of

coverage for some of the distinctions shown in Table 2 makes it clear that more work is

needed on extending the specification of relevant languages with the ability to explicitly

distinguish between these different conceptual understandings. This could, and perhaps

should, be done in accordance with the actual practitioners in the field, by investigating

what conceptual distinctions are important for them, and what they need to be able to ex-

plicitly model, instead of solely relying on analyzing languages with pre-existing reference

material like Bunge-Wand-Weber or UFO. It is important to not do this just once, but keep

up to date with the changing conceptual distinctions that the practitioners and stakeholders

have in order for our modeling languages to stay relevant and capable of representing to

the real world. Given the existence of a large number of different dialects of modeling

languages sometimes only differing slightly (e.g., i*, GRL, TROPOS for goal modeling),

it seems that supporting many different conceptual distinctions in a single notation would

be welcomed by many.

4.3 Needed next steps

One of the more important things that has to be done in order to deal with the issue of

lacking conceptual distinctions in modeling languages, from a research point of view, is to

ensure a detailed insight into what distinctions are conceptually relevant and important to

actual users of modeling languages (i.e., modelers) and a created model’s end-users (i.e.,

stakeholders). This might seem to be in contrast to what would intuitively be important

to find out: whether particular modeling languages accommodate enough conceptual dis-

tinctions. However, until we become aware of what is actually important to accommodate,

it would not make sense to analyze and criticize a modeling language’s quality in this re-

gard. Thus, we should focus on doing empirical work based on finding out what entities

(and with which properties they manifest) are vital to modelers and stakeholders for the

typical domains they model, and in doing so determine what the conceptual needs are for

domain-specific languages for particular domains (e.g., that goal modeling languages need

to at least explicitly distinguish between hard and soft goals, goals that have to be achieved

versus goals that ought to be achieved, and so on).

Much existing work, both research, and methods actually used to improve the conceptual

landscape of modeling languages lack this particular personal aspect – they tend to focus

on postulating a priori or analyzing only language specifications. While the (cognitive)

mapping approach that many of these frameworks (e.g., Bunge-Wand-Weber or UFO) use

in their analysis of the ontological completeness of a modeling language, they do so on

basis of data that is in itself not directly based on the actual people involved in the model-
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ing process. The mapping approach (e.g., ensuring that each conceptually distinct element

is represented by a distinct element in the language) itself is the correct way to do this,

but the data for the conceptual elements needs to be tailored to the specific people from

the domain. This means that if we wish to analyze whether a goal modeling language is

conceptually or ontologically complete that we need to figure out which things are impor-

tant for the modelers and stakeholders to represent, and only then continue to the mapping

approach and determine whether the language does that correctly and completely. This

is important for a number of points. Firstly, many of the ontologies used for such map-

ping exercises are either solely or predominantly upper ontologies (i.e., the more abstract

conceptual elements and properties), which makes them less suited to speak about the con-

ceptual completeness of a domain-specific language, as with such a language one should

expect more lower ontology level conceptual elements to appear in the language. Where

such lower ontologies exist for particular domains, they can of course be used if found

to be an up-to-date representation of the conceptual needs of users in that domain. Fur-

thermore, many other mapping approaches (or integration efforts such as UEML) rely on

analyzing existing text corpuses or language specifications. As such specifications are not

necessarily a correct or complete representation of how the language is actually used or

abused, one cannot safely say that all the conceptual needs of a particular domain’s users

can always be found in the specification of the modeling languages they use.

Finally, it is important to be aware of the constantly changing conceptual landscapes that

modelers and stakeholders operate in. While a particular ontology might practically be

static (not being significantly updated in years), the concepts that become important to

modelers and stakeholders can appear and change much more quickly. For this reason

alone we should focus our efforts on a repeating empirical effort to elicit such conceptual

needs through research efforts. It is also important to keep in mind that in doing this, we

should not try to solve fundamental issues to do with the conceptualizations and repre-

sentations people have (e.g., is information actually a non-physical entity?), but ‘merely’

elicit represent them as accurately as we can.

This can be done by working with, and investigating the conceptual understanding of mod-

elers and stakeholders through experiments and observations adopting proven and well-

used protocols from cognitive science and (psycho)linguistics. While there are many dis-

cussions on the degree of conceptual information that we can discover through the use of

words as stimuli (see e.g., [MAG+11]), it is commonly accepted that finding the edges be-

tween concepts (i.e., where concepts would be considered distinct) can be done. Examples

of such experiments that can be done are for example categorization studies and feature

elicitation experiments (e.g., [BC87, Est03]). Categorization studies can reveal in detail

both the structure and typicality of particular concepts and to what degree certain elements

are considered members. For example, the answer to the question whether a human be-

ing is an actor gives us information whether it is considered an actor, but also whether

that judgment was made discretely (it being absolutely or absolutely not a member of the

category actor), or whether it was made in a graded fashion (a human being being some-

what of an actor). Especially in this later case eliciting the features people associate with

such concepts becomes interesting, as we can determine what the typical interpretation

for the concept is, what interpretations are also commonly used and accepted, and which
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interpretations are only considered poor examples.

For example, when it comes to the concept actor we might find that there are many graded

judgments in an initial categorization experiment (i.e., many terms are considered only

actors to a certain degree). If we then use a large group of modelers to elicit features we

might find such things like “is human”, “is autonomous”, “part of a group”, “responsible

for its actions”, and so on. Investigating afterwards how typical, or common each of these

features are for the concept can give us a ranking for (sets of) features, which will show us

the most common (and conceptually distinct) interpretations. We might for instance find

that the two most occurring sets of features are that an actor is “an autonomous human

being responsible for its own actions”, and that it is “an physical machine making deci-

sions”. Based on that empirical data we can then deduce at least that modeling languages

involving actors should explicitly distinguish between human and non-human actors.

We are currently in the stage of performing a large-scale study employing these methods

(some preliminary results having been published in [vdL13]) in which we aim to figure out

the feature structure of the common modeling concepts used in Table 2. After this step we

will investigate the typicality of all these possible features. In doing so, we will produce

both an overview of all (conceptually relevant) features that modelers and stakeholders

might need in order to represent their domains correctly, and more importantly: an analysis

of how typical or common (and thus important) such features are to the concepts. With

such data gathered, a ranking list of what kind of conceptual distinctions must, should and

ideally would be supported by a modeling language can then be systematically produced.

Performing such work for different specialized groups (e.g., business process modelers,

goal modelers) and repeating it on regular intervals should lead to a situation where we

do not only have useful methods to ensure that a modeling language is conceptually and

ontologically complete, but that they can be based on tried and proven relevant personal

insights as well.

5 Conclusion and future work

We have discussed the importance of explicitly modeling conceptual distinctions and an-

alyzed a number of modeling languages to investigate what kind of distinctions they sup-

port. We showed that, while some conceptual distinctions are explicitly supported by

relevant modeling languages, there are still a large amount of potentially relevant distinc-

tions that are not accommodated, or implicitly interpreted in a specific way by modeling

languages. We proposed that research on active practitioners should be done regularly to

keep up to date with conceptual distinctions deemed relevant and important by modelers

and stakeholders alike. Our future work will involve a broader empirical investigation into

which conceptual distinctions are deemed important by practitioners. Based on these latter

insights, we would then be in a position to develop/select better strategies to deal with the

challenges of conceptual distinctions.
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