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Abstract. We investigate the category structure of categories common
to conceptual modeling languages (i.e., the types used by languages such
as actor, process, goal, or restriction) to study whether they more closely
approximate a discrete or graded category. We do this for three distinct
groups: students, beginning modelers and experienced modelers. We find
that overall most categories exhibit more of a graded structure, with
experienced modelers displaying this even more strongly than the other
groups. We discuss the consequences of these results for (conceptual)
modeling in general, and in particular argue that when a model con-
tains graded categories, it should follow that the (conceptual) validity of
instantiations of it should be judged in a graded fashion as well.
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1 Introduction

We categorize the world around us in different ways depending on the sub-
ject matter. Some things we categorize more discretely, like natural things (e.g.,
fruits and plants), some things we categorize in a more graded way, such as ar-
tifactual things (e.g., tools, vehicles). These different categorization tendencies
have been shown many times in research, starting around the time of Rosch et
al. [22, 23]. Also, they have been investigated by many others explicitly elaborat-
ing on the category structure for a number of natural and artifactual categories
(cf. [8, 4, 9, 10]). On the other hand, some work investigating this has had dif-
ficulties in finding significant differences in categorization tendencies between
artifactual and natural categories (cf. [17]). There are also arguments that the
natural/artifactual distinction is not granular enough, requiring us to also distin-
guish emotion categories [3]. Regardless of the debate whether particular kinds
of categories are usually categorized in a particular way, it is clear that we do
not categorize everything in the same way.
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The categorization we speak of here deals with membership judgments. That
is, whether a certain thing is judged to be a member of a given category. For
example, most people would have no problem saying that an apple is a member
of the category fruit4, and they will likely reject the notion of a newspaper
being so. However, when borderline cases are introduced interesting effects oc-
cur [13, 14]. Given, for instance, cases that do not have clear or crisp boundaries,
like tomatoes or rhubarb, people have more difficulty deciding with certainty
whether they are fruits or not. In such cases people often tend to give graded
judgments – things being members of a category to a certain degree. This preva-
lence of (strongly) graded membership judgments is then often correlated with
the structure of the category being graded. Given that many of our modeling
efforts (be they the creation of domain models, ontologies to formalize knowledge
or support reasoning with, databases to implement schemata, etc.) require us to
be as exact as possible about what we aim to model, it is clear that being aware
of such differences in membership judgments is an important aspect of properly
representing a given domain and the things in it.

The importance of being aware of these different judgments starts during the
modeling phase, particularly in settings where there is collaborative modeling
and integration efforts (e.g., enterprise modeling). The uncertainty of member-
ship judgments (i.e., what is a valid instantiation for this type, is this instanti-
ation as valid as others) creeps into models, and is often lost, unless explicitly
elicited and written down. The effect this has on the validity of a model can occur
on two levels, the level of the categories from the domain (i.e., the concepts from
the universe of discourse) and the level of the categories from the language (i.e.,
the types used by a modeling language). Domain categories – the concepts from
the universe of discourse – often receive great attention in discussions between
modelers and stakeholders as well as in discussion between modelers themselves.
This ensures (to some degree) that modelers know what things the stakehold-
ers want to see in a model, and that they understand those things in the same
way [16]. However, categories from the language receive such detailed attention
far less often, e.g., by asking “What exactly is this type ‘actor’ from the language
we are using? Does it allow us to model the acting elements from the universe
of discourse we know about?”. Instead, we often end up using the semantics of
our own natural language [25] – together with all the category structures and
nuances that come with it. Because of this, the language that ends up actually
being used often differs from the (formal definition of the) modeling language
that is used on paper [15]. For example, a modeling language might formally de-
fine an actor as a rather specific thing (e.g., requiring it to be a singular abstract
entity, and whatever other features might apply), which makes it fairly easy to
determine whether something is a valid instantiation of that type – a human
being here definitely not being one. On the other hand, one of the modelers (or
any reader of the model) might not use (or indeed, be aware of) those semantics,
and instead see the type as having a different range of conceptually valid instan-
tiations. This is problematic because it means that important semantics of the
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model might be lost when it is interpreted by other people not involved in the
original modeling process (e.g., during model integration), or stakeholders who
were not aware of some of the not explicated particularities. This is exacerbated
by the fact that we do not have an insight into the structure of these categories
as used by people, because not only do we not know what is considered valid,
we do not know whether some things are considered more valid than others.

Thus, in this paper we aim to clarify whether the categories common to many
modeling languages and methods (i.e., those types used by a language to instan-
tiate domain concepts by) are categorized in a discrete or graded fashion. The
implications of this for model creation and usage (particularly for models used
to capture and document a certain domain) are important to be aware of. If a
category from a language is typically judged in a discrete fashion, the semantics
of models are likely easier to communicate, formalize, and keep coherent. How-
ever, if such a category is typically judged in a graded fashion, communicating
it to others becomes more involved, requiring more explicit discussion, and the
formalizations and tools we use need to explicitly support this structure (e.g.,
by using ontologies with support for features as typicality and centrality).

To the best of our knowledge there has been little empirical research on cat-
egory structure in the domain of conceptual modeling. In general the field of
conceptual modeling lacks empirical research that tests (cf. [7, 20, 19]), while in
this particular case work on formalizations and tools to support graded structures
has already been done (e.g, [27, 6]). The focus of this work is thus to present an
exploratory empirical investigation into the structure of categories from model-
ing languages to determine whether the potential issues we described realistically
come into play (i.e., there are categories from modeling languages that are of a
graded nature). Based on our findings we will discuss how an understanding of
these categories can be used to guide the process of model creation and use, for
instance by helping modelers and stakeholders in capturing as much useful in-
formation about the allowed range of instantiation for a model, enabling others
to read and use the model as it was intended by the creators.

The primary findings that we will show in this paper are that most of the cat-
egories from modeling languages tend to exhibit a graded structure, that many
of the terms used for them are considered partial members, while a surprising
amount of terms are also considered clear non-members. The possible compli-
cations that might arise because of these and other findings, and what kinds of
models they affect are discussed in more detail in the rest of the paper.

The remainder of this paper is structured as follows. We detail our exper-
imental setup in section 2, present the results in section 3, and discuss the
consequences they may have for modeling and modeling languages in section 4.
Finally, in section 5 we conclude and propose directions for future research.

2 Experimental setup

What we wish to achieve is examine whether a number of categories more closely
resemble graded or discrete categories. We can do this by performing a category
membership experiment for the target categories and a number of benchmark



categories of which we know whether they are typically judged in a discrete or
graded fashion, and to what extent their members are judged so.

2.1 Considerations

There are a number of considerations to take into account with this investigation.
First is the issue of the potential participants and their (natural) language. Most
importantly, when we ask whether a certain thing is a member of a category or
not, we would optimally do that in the participant’s native language. However,
as the terms used by most modeling languages and methods (i.e., the terms we
will use in our experiment ) are in English, we need to either use them as-is, or
translate them. Given that most modelers use the terms as given by languages
(i.e., in English), albeit often appending their own semantics, we will perform
the experiment with the terms without localizing them.

For the benchmark we will use datasets from previous research. However, an
issue with the existing and still often used datasets is that they can be outdated
(e.g., the commonly used Barr & Caplan dataset was published in 1987), and
they can be sensitive to cultural differences. Category judgments can shift as
certain objects fall out of common use and are replaced by entirely different
things, as well as certain objects can be seen differently in different cultures. For
example, while in Barr & Caplan’s dataset bicycles are found to not be strong
members of the category vehicle, repeating the experiment with Dutch, Danish
or German participants (who are far more likely to use a bicycle as a mode of
transport [21]) will likely lead to significantly different results. As such, care will
have to be taken when interpreting the results from the benchmark categories
to place them into the correct frame of time and culture. While there are other
datasets available that were gathered from non-English native speakers (e.g.,
Ruts et al. [24] who performed an exemplar generation study amongst Belgian
students) that might be used to create a more even dataset, they often only
include full members and lack the necessary borderline and non-members.

Finally, there is the question of the granularity of the categories from the
modeling languages that we will investigate. On the highest level there is the
distinction between entities and relationships (and sometimes values), which are
the main categories used by certain non-domain-specific languages (e.g., ER,
ORM). However, it would be more interesting to look into the more specific cat-
egories (e.g., process, resource, actor) used by domain-specific languages
(e.g., BPMN, e3Value, ArchiMate) as they are more likely to yield discriminat-
ing results. This will also make it possible to eventually distinguish between
groups with different focuses (e.g., the BPM community, the ArchiMate com-
munity) and find out if there are significant differences between them in terms
of categorization. Thus, for this investigation we will focus on categories found
in domain-specific languages.

2.2 Method

Participants: Fifty-six participants participated in the present study. Twenty-
one of them were advanced (3rd or 4th year) students at an undergraduate



university of applied science with a focus on computing science and model-
ing, thirty-five were professional modelers employed at a research institute
with a focus on IT and used modeling languages and tools to varying de-
grees. All participated voluntarily and received no compensation for their
participation.

Materials: The materials used for the benchmark in the experiment were based
on the list of exemplars reported on by Barr & Caplan [4]. We used 5 full,
5 partial and 5 non-members terms for both of the benchmarks. They were
translated and presented in Dutch for the twenty students, but presented in
English for the participants at the public research center, given that this was
the only shared language between all participants and all participants were
sufficiently fluent. In this text we consistently refer to them in English. For
this benchmark we included the categories fruit and vehicles (see Table 4
in the appendix). For the modeling part of the experiment we investigated the
categories actor, event, goal, process, resource, restriction and
result. These categories and related terms result from an earlier performed
analysis on modeling languages and methods commonly used in enterprise
modeling, which was reported on in [18]. The terms used for the members
of these categories are the terms as used by the modeling languages and
methods, based on the official (or most-used) specification (see Table 2 in
Ref. [18] for the entire list, not replicated here due to space considerations).

Procedure: The procedure was based on Estes’ [9] setup. Participants were di-
vided into three groups (students, beginning modelers and expert modelers)
and completed the task through on online survey. In this survey, partici-
pants were instructed to judge whether a list of given terms were either full,
partial or non-members for the current category. Participants were informed
beforehand that partial member scores meant that the exemplar belonged
to the category, but to a less degree than others. This was first done for the
two benchmark categories, and followed in the same way for each of the in-
vestigated categories from the modeling languages. The orders of the terms
in each category were randomized for each participant. Care was taken to
validate that participants filled out the survey seriously by comparing results
and checking for long strings of repeating answers that the randomization
should have prevented from occurring.

3 Results

The proportion of graded membership judgments for the terms used in the bench-
mark which are partial members are shown in detail in Table 1. The terms listed
here are solely the partial members (as determined by the original datasets).
What was to be expected is that the typically discrete category (fruit) would
show lower proportions of graded judgments compared to the typically graded
category (vehicles). The given scores indicate the proportion of partial mem-
ber judgments (e.g., 19% of students, 13% of beginning modelers, and 30% of
expert modelers considered an avocado as a partial member of the fruit cate-



gory). Shown are respectively the scores for students, beginning modelers, expert
modelers, and the scores as reported by Barr & Caplan [4], and Estes [9].

Table 1: Partial member proportions for the partial member terms of the benchmark.

Category Term Student Beginner Expert Ref. [4] Ref. [9]

fruit avocado 0.19 0.13 0.30 0.37 0.16
coconut 0.24 – 0.05 0.38 0.37
tomato 0.33 0.27 0.25 0.34 0.05
cucumber 0.19 – 0.25 0.23 0.21
rhubarb 0.14 0.20 0.15 0.45 0.26

vehicles gondola 0.24 0.20 0.20 0.50 0.21
tricycle 0.14 0.13 0.10 0.64 0.58
wheelchair 0.29 0.27 0.50 0.70 0.63
horse 0.48 0.27 0.55 0.54 0.50
husky 0.38 0.27 0.55 0.27 0.21

A more detailed overview of the average amount of full, partial and non-
member judgments for each investigated category is given in Table 2. The results
are given for each investigated group (students, beginning modelers and expert
modelers), and indicate the proportion of membership judgments. For example,
students considered 47% of the presented terms for the actor category to be full
members, 18% to be partial members and 35% to be non-members. The primary
points of interest here are the higher scoring partial and non-member results,
as they indicate words actually used by modeling languages that are either only
considered to be partially reflective of their category (e.g., a ‘market segment’
would be only considered somewhat an actor), or are considered not to be
exemplars of that category (e.g., a ‘requirement unit’ would not be considered
an actor).

Table 2: Average amount of membership scores (full, partial and non-members) for
each group of investigated categories.

student (n = 20) beginner (n = 15) expert (n = 21)
Category full partial non full partial non full partial non

actor 0.47 0.18 0.35 0.30 0.14 0.55 0.41 0.25 0.35
event 0.46 0.14 0.41 0.39 0.16 0.45 0.29 0.19 0.51
goal 0.65 0.11 0.23 0.60 0.16 0.24 0.56 0.20 0.24
process 0.66 0.14 0.20 0.62 0.22 0.16 0.41 0.32 0.28
resource 0.59 0.19 0.22 0.62 0.19 0.20 0.54 0.22 0.24
restriction 0.50 0.21 0.29 0.55 0.18 0.27 0.39 0.24 0.37
result 0.73 0.16 0.11 0.86 0.07 0.08 0.76 0.16 0.09

fruit 0.44 0.10 0.45 0.47 0.05 0.42 0.49 0.09 0.41
vehicle 0.48 0.14 0.37 0.49 0.13 0.37 0.51 0.20 0.29



Table 3 gives a detailed overview of specific modeling language terms consid-
ered partial members by at least ≥ 30% of one of the investigated groups. A clear
difference can be seen between the groups for most categories, with the expert
modelers displaying on average a much higher amount of graded judgments than
the students or beginning modelers. On average students considered 15% of the
investigated terms to be partial members, while beginning modelers did so for
32% and expert modelers considered 83% to be partial members.

Table 3: Terms considered partial members by ≥ 30% of at least one group. The
terms listed here are only those considered partial members, thus not including the
terms considered full or non-members. The amount of terms listed here is respectively
43%, 32%, 26%, 48%, 50%, and 25% of the total amount of terms investigated for each
respective category.

Category Term Student Beginner Expert
actor unit X

requirement unit X
infrastructural component X X
organizational component X
device X
application software X
organizational unit X
hardware X
software X X

event behavior X
function X
interaction X
activity X
task X X
service task X
value activity X X
contribution X
operation X

goal expectation X X X
requirement X
consumer needs X
target X

process organizational service X
infrastructure service X
information service X
other service X X
IT service X X
service X
sub flow X X
process flow X
dependency path X
game X X



Table 3: (cont.)

task X
resource artifact X X

hd X
location X
data object X X
business object X
object X X
data input X
input X
value object X X
network device X
representation X
value port X
device X

restriction belief X
priority X
value X
interface X
catching X
throwing X X
license X
trust X
interrupting X
non-interrupting X
strategy X
strategic objective X X X

result end event X X
payoff X

4 Discussion

We will first discuss the results in general, showing how they support the as-
sumption that there are categories in modeling languages that are of a graded
nature. We will then discuss in more detail to what kind of models and modeling
languages our results are most applicable and consequences our findings entail
for them. Finally, we also discuss a number of limitations of our current study
that should be kept in mind when interpreting the results.

4.1 General discussion

It was expected that the partial member judgments for the natural and artifac-
tual benchmark categories would show a difference, with the artifactual category



displaying a higher proportion of graded judgments. Although compared to the
results from Barr & Caplan [4] and Estes [9] the overall amount of graded judg-
ments seems to be lower, the relative distribution still seems intact. This is the
case for both the beginning and expert modelers (the proportion of some graded
judgments for vehicles being at least twice as large compared to the ones for
fruits). This is not the case for the student group, as the difference between
the benchmark categories there was found to be much smaller. This could be
explained by the lower amount of experience with (and exposure to) modeling
(and modeling languages) students have. This is further reflected in Table 3
where there are far less words considered partial members by students than by
the more experienced modelers.

On average the proportion of partial member judgments is 0.16 for students,
0.16 for beginning modelers, and 0.23 for expert modelers. When we compare
these scores to the average proportion of partial member judgments for the
discrete and graded benchmark categories in Table 2 (respectively 0.10 and 0.14
for the students, 0.05 and 0.13 for the beginning modelers and 0.09 and 0.20 for
the expert modelers), we can see that for the two groups of modelers most scores
shown for the categories from modeling languages more clearly reflect the graded
benchmark category than the discrete one. Thus, as a careful first investigation
we seem to have found support that most categories from modeling languages
are of a graded nature. Given that the distribution of terms for these categories
was not the same as the benchmark categories (i.e., the benchmark categories
were made up of equal amounts of full, partial and non-members, while for the
categories from the modeling languages we were unaware of this distribution,
with them likely containing proportionally more full members) this makes it all
the more acceptable to support the idea described in the introduction that these
categories can be seen as exhibiting a graded structure.

Another interesting finding is the high amount of non-member judgments
found in many of the categories. It is striking that the terms we have used
in modeling languages and methods are sometimes considered absolute non-
members of their related category. In particular, it can be seen that events are
the largest category for non-members across all groups (respectively 0.41, 0.45,
and 0.51), while actors and restrictions also have a high amount of non-
members in some groups. A possible explanation for this is that people are
quicker to judge about things they are specialized in, for example a process
modeler having more snap judgments about concepts to do with processes, and
thus also being more willing to rule out terms. In practice this means that the
terminology we use originating from some languages might not reflect our innate
category judgments at all, raising the question whether this is a bad thing (e.g.,
because the terminology is far away from our naive understanding and semantics)
or perhaps not that much of a problem (e.g., because the mismatch between a
term and our understanding of it in a given context makes it easier to ‘redefine’
and use it in that context).

As already hinted at and most clearly visible in Table 3, there is a striking
difference between the groups we investigated when it comes to the proportion
of partial member judgments. The expert modelers have a far higher amount of



partial member judgments compared to the students, and in a lesser degree to the
beginning modelers. An exception to this are processes and resources, which
are judged more comparably between beginning and advanced modelers. This
might be explained by the fact that the department of the research institute
which the majority of the participants were working in has a strong focus on
service science and is thus focused on many efforts involving processes (e.g.,
process modeling). An explanation for the difference between these groups might
be that students simply have had less exposure to modeling terminology and are
thus more likely to give absolute judgments. On the other hand, there is also
the possibility that the (expert) modelers are, through training and experience,
cognitively better equipped to deal with situations with abstract and vague
concepts (cf. [26]), which could manifest in a higher amount of graded judgments.

4.2 Applicability of our findings

Before we move on to discuss the consequences of these findings for model cre-
ation and use, we need to specify more clearly to what kinds of models and
languages they are applicable. Models created with more general modeling lan-
guages like UML, ER, and ORM are less affected by the existence of graded
categories, as the main types (i.e., entities and relationships) they use are al-
ready so abstract that one would not so much expect subtle misunderstandings
that stay unnoticed to arise in the same way as they would in domain specific
languages. Furthermore, when languages like these need to be made more spe-
cific, they can do so by, e.g., explicitly capturing the necessary facts in ORM,
or using UML stereotyping to create the needed new semantics. The semantics
given by the modelers can then become an explicit part of the language.

However, when it comes to domain-specific languages our findings become
much more relevant. This is because the semantics of the types used by (and
often pre-defined in) these languages are less abstract than the ones mentioned
above, and the risk of subtle misunderstandings that are not immediately no-
ticed is higher. With the plethora of domain-specific languages (e.g., ArchiMate,
BPMN, e3Value, i*, ITML, ADeL) in active use today all with their own focus
(e.g., enterprise architecture, processes, value exchanges, goals, IS implementa-
tions, IS deployments) our findings could have consequences for many modeling
efforts. The consequences we discuss should thus be taken to be most relevant
for domain-specific modeling languages like these and any artifacts based on the
models created with them.

4.3 Consequences for modeling

When it comes to the modeling languages and models that are affected by our
findings, we see a number of different kinds of models:

1. models used to communicate between, and with different modelers and stake-
holders (e.g., conceptual models)

2. models used to formalize information from a given domain, for whatever
purpose (e.g., ontologies, models as documentation)



3. models used to execute by non-human systems (e.g., compiled source code)

This list is not intended as a taxonomy of models, nor as an exhaustive list of
the different kinds of models that are affected by graded category structures.
It is merely a starting point to reason about the different consequences we see
our work having for different kinds of models. We furthermore do not mean
to imply that kinds of models are mutually exclusive (e.g., that models used to
communicate are never used to formalize or transformed into executable models).

Models used to communicate involve conceptual models of many possible
purposes (e.g., capturing a domain, models used to guide decision making). As
we have shown that the categories used by modeling languages are likely of a
graded nature, the models created by them necessarily also contain categories of
a graded nature. The most important consequence here is that an instantiation
of a model is not just simply valid or invalid, but will display degrees of validity
as well. If the category goal is seen as a graded structure, with some things being
better goals than others, it is thus possible to instantiate a model that contains
some goal type with two different cases that are both valid, but not equally so.
As the formal semantics of most modeling languages do not explicitly support
such degrees of validity, it is important that we are clear about the limits of
conceptual validity of our models. In other words, to ensure people read and use
models in a similar way, we need to ensure that we provide clear examples of
possible valid instantiations, and perhaps more importantly, clear examples of
that which we consider invalid as well.

For example, while ‘hardware’ and ‘software’ are both considered partial
members (by at least the experienced modelers in our study) of the category
actor, the exact degree to which they are both considered so is something that
is likely different for different (groups of) people. If we are creating a model used
for the implementation of an information system, which would likely incorporate
such terms for the things that act to support and execute business activities, we
need to be clear to what degree they can both be seen as actors. For instance,
the modelers or stakeholders might envision the hardware as the actual acting
part, with the software providing the instructions for doing it so, and thus find
a model where ‘hardware’ is said to act out a business function more valid than
where ‘software’ does so. However, others might disagree and see ‘software’ as
the actual thing that acts. As these interpretations can be different from group
to group, it is thus important to involve explicit discussions about the degrees
of validity for different things we use in our models during model creation.

Models used to formalize are for instance models that capture knowledge
about a certain domain and attempt to formalize it in order to reduce the amount
of ambiguity. A formalization involving graded categories needs to ensure that
membership requirements are not discrete, and more important, take into ac-
count the relevant properties of a graded category (e.g., centrality and typicality
of members). There is work in the field of ontology engineering that strives to-
wards explicitly supporting these structures, e.g., [2] and explicit modification of
ontology formalizations to incorporate the noted features [27, 28], and critiques
and extensions of proposed work, e.g., [6]. If such formalizations are not used, and



instead a classical approach based on discrete judgments is used, much semantic
information about the domain and the judgments from the original modelers is
lost. This can lead to misinterpretations by other readers and users of the model
if there is no communication between them and the original modelers anymore.
For instance, someone might consider a horse as a vehicle (albeit an atypical
one) and thus consider it to be somewhat of a valid vehicle in their created
ontology. However, when this is formalized discretely, any other member of the
vehicle category (e.g., a car) would be considered on equal footing with the
horse, while this has no grounding in the real world whatsoever. As such, the
formalization can no longer be considered a correct representation of the real
world and loses a lot of its value.

Models used to execute are for instance source code which is run by an inter-
preter, or compiled and then executed. Other options are models interpreted by
model provers, expert systems, or ontologies used for automated reasoning and
so on. For example, a model used by an expert system to check for a number
of possible cases (e.g., a medical advice system) might need graded structures
and judgments in order to correctly reason with the real-world information. A
number of formalizations for e.g., descriptive logics have been proposed to in-
corporate graded features like typicality and centrality [5, 12, 11]. These models
are affected in a similar way to the ones used to formalize, meaning that their
formalizations need to support any graded structures found in them. This is all
the more important to ensure here, as executable models are often no longer
read and interpreted by people, and thus any errors or oversights in them are
less likely to be corrected.

4.4 Limitations

While it is good to find that our results hint towards the modeling categories
having a graded nature, care must be taken not to immediately extrapolate this
finding and use it to judge the structure of the investigated modeling categories
in general. For one, this has been only one study, with two of our groups of
participants being people with professional experience in conceptual modeling.
For these reasons repeating the study presented here with additional groups of
(experienced) people to validate whether they share the same graded structure
would be a prudent thing to do.

Furthermore, as categorization judgments are something inherent to people,
it would also be useful to perform this study on specific subgroups of modelers
(e.g., process modelers, enterprise architects, goal modelers) to analyze whether
the proportion of graded responses is different for specific categories or not (i.e.,
test whether categories that modelers are focused on receive less partial member
judgments). One could for instance hypothesize that people who are specialized
in a topic have less semantic flexibility in regards to the categories of that topic.

Related to the terms we used, it might also be interesting to see whether
the introduction of model context (i.e., presenting the terms while being used in
a model) instead of the isolated terms themselves would yield different results.
Nonetheless, the results from our study investigating the terms in isolation also



provides useful insight into the amount of terms that would typically not be
considered as good representatives of their functional category. Furthermore, this
might provide an additional source of complexity and confusion for participants,
as with the amount of terms we used in the study, a large amount of different
modeling languages would be used, some of which participants are likely not
familiar with.

It should also be noted that the study presented here talks about the structure
of the category in terms of it being graded or discrete, but does not aim to give
a representation of the internal structure. Further studies involving explicitly
eliciting typicality and centrality of the terms investigated here could be done in
an attempt to discover such structures. It is very likely that the internal structure
of the categories (which is regardless of the graded or discrete question) is specific
to different groups of people, as it can be readily expected that process modelers
will have a different central core for a number of categories than, for example,
goal modelers. Thus, such studies should also be performed with a number of
different groups of modelers.

Finally, as referred to earlier, the distribution of the terms for the modeling
categories was not optimal (i.e., not evenly divided between full, partial and
non-member), which makes it more difficult to infer detailed general statements
about the structure. Such work on the detailed structure of these categories like
described above can be undertaken in further research, where the individual
category members are rated on typicality and centrality in order to attempt
to build an actual representation of a shared category structure. Such findings
could then be used to create a more evenly distributed set of modeling terms for
further membership judgment experiments.

5 Conclusion

We have presented a study into the category structure of types used by most
modeling languages. This study showed that many of these modeling categories
are likely of a graded nature (that is, some things are considered to be better
members than others), which can have an effect on the semantics of models and
their derivatives. We have discussed the implications for validity of models and
proposed that more study into the understandings specific groups have of such
categories would be a worthwhile avenue of research. The main contribution of
this work has been empirically showing that the categories we use to model are
likely of a graded nature, which before was only assumed (or worse, ignored).
More specifically, we have shown that the modeling terminology from actual
modeling languages and methods are affected by this graded nature as well. In
future work we hope to extend this research to different groups with a strong
focus on a specific domain to investigate potential categorization differences
between different people operating in different domains.
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Appendix

Table 4: The categories and terms for the benchmark as adapted from [4] and [9],
followed by the used Dutch translations for the student group.

Category Term

fruit (discrete) apple, pear, plum, banana, pineapple, avocado, coconut, tomato,
cucumber, rhubarb, carrot, onion, potato, rose, spinach

vehicles (graded) bus, car, truck, van, taxi, gondola, tricycle, wheelchair, horse, roller
skates, husky (dog), lawnmower, bus driver, carton, newspaper

fruit (discrete) appel, peer, pruim, banaan, ananas, avocado, kokosnoot, tomaat,
komkommer, rabarber, wortel, ui, aardappel, roos, spinazie

vehicles (graded) bus, auto, vrachtwagen, busje, taxi, gondel, driewieler, rolstoel,
paard, rolschaatsen, husky (hond), grasmaaier, buschauffeur, doos,
krant


