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Abstract

Information plays an increasingly important role in our lives. Often we retrieve this infor-
mation by querying the Web: data resources found on the web may provide the information
that we’re looking for. This implies that the Web may be seen as an information market: authors
supply information and searchers may find it. In this article we present a formal framework for
the syntactic aspects of the information market. We explore the information landscape using a
modeling approach. An important part of this model is a (syntactic) framework for transforma-
tions, which allows us to deal with the heterogeneity of the data resources found on the Web.
Last but not least we attempt to give an outline how our framework, which in essence focuses
on the data resources on the Web, may lead to a better understanding of how information is
supplied via the Web. For this we use an example from the field of information retrieval.

Keywords: Transformation, Information supply, Typing, WWW

1 Introduction

The Web today can be seen as an information market, where information supply meets information
demand. Information is offered via the Web in the form of resources, which can be accessed (some-
times at a cost) by anyone interested in these resources. Information supply is of a heterogeneous
nature. This heterogeneity is due to at least the following causes:

• There are many different ways to represent information. For example using a webpage, a
document, an image or some interactive form.

• There are many different formats that may be used to represent information on the Web. For
example, using formats such as Pdf, Html, Gif.

∗Corresponding author, can be reached via telephone at +31-(0)24-3652632 and fax at +31-(0)24-3653356. Postal ad-
dress: Tournooiveld 1, room A-4031, NL-6525 ED Nijmegen, The Netherlands
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The following example illustrates this heterogeneity. Imagine yourselves browsing the Web using
a PDA which is connected to the internet by way of a mobile-phone connection. You are on your
way to an important meeting with stockholders of your company and need some last minute
information on the price of your stock and that of your most important competitors. Using your
favorite search engine you find a large spreadsheet with not only the latest stock price, but also
their respective history, several graphs and predictions for the near future. In itself, this is a very
useful resource. However, several problems occur at this point. First of all, the document is
rather large which is inconvenient because you are on a slow (and possibly buggy) connection.
Secondly, it may be that your PDA does not have the proper software to view this spreadsheet.
Last but not least, you may not have the time to study a complex spreadsheet, hence the form
of the resource is off too. This kind of heterogeneity of information supply is likely to cause
problems in a retrieval setting, whenever there is a mismatch between the user’s wishes on the
one hand and the actual form and/or format in which the resources are available on the other
hand. In order to investigate the problem area more closely we have developed a conceptual
model for information supply (Gils et al., 2003a; Gils et al., 2003b).

In this paper we focus on transformations. Transformations play an important role in several
areas. Two main application areas are recognized as follows (see also (Lammel, 2004)). On the one
hand, transformations are essential in system development in general, and in transformational
specification strategies in particular. On the other hand, when a system has been developed and
is being used in a practical context, particular user objects may be available in a heterogeneous
environment only (e.g. documents in the context of the WWW). This introduces the need for
appropriate transformations.

We hypothesize that having a set of appropriate transformations available, which may be applied
automatically by the search infrastructure, will improve upon the current situation. The trans-
formations we refer to here, are transformations of web resources in general; we do not limit
ourselves to database transformations (see e.g. our earlier work on transformations in (Bommel
et al., 1994; Proper, 1997)). In terms of (Ullman, 1989), the set of resources available on the web
can be seen as a (large!) extensional database. Use of transformations yields a practically infinite
intensional database. The extensional web thus consists of the resources that are directly available,
whereas the intensional web also includes the resources that can be derived from the former re-
sources using transformations. As a result, searchers are no longer limited to the extensional web
when selecting resources. The resources from the much larger intensional web can be selected as
well.

Resources from the extensional web may exhibit several properties of interest, such as its file type
and file size, relations to other resources, etc. These properties will be affected by the transfor-
mations by which the intensional web is be derived from the intensional web. In this article, we
therefore have a particular interest in the effects that these transformations may (and are desired
to have) on the resources.

As most practical sets of transformations of resources can be applied repeatedly, the intensional
web is practically infinite. This makes that searching can only be done practically if branch-and-
bound like optimization strategies are used to reduce search space. We will present a search
strategy based that is essentially based on a push-down selection strategy as used in database
query optimization (Ullman, 1989):

• First select the resources from the extensional web that are topically relevant.

• Use transformations to increase the aptness of the resources.

In selecting topically relevant resources from the extensional web, we should aim for a high re-
call. In other words, it is much less desired to miss potentially relevant resources than it is to
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include irrelevant ones. The final selection on topical relevance can still be made at a later stage.
This initial selection yields a more workable set of resources, upon which transformations can be
applied that tailor the available resources to the specific requirements of the searcher. In other
words, the transformations are used to increase the aptness of the resources (Gils et al., 2003a).
The example given above, already eluded to the fact that aptness involves more criteria than just
topical relevance.

Several approaches to the study and application of transformations are found in the literature.
An important line of research deals with graph transformation, where transformations are de-
fined in terms of rules applied to a source (or parent) graph, resulting in a target (or child) graph.
An overview is presented in (Andries et al., 1999). Other lines of research focus on specific appli-
cation domains, such as bibliographic applications (e.g. (Al-Mishwat, 2000) and biological appli-
cations (e.g. (Yang et al., 2005)).

The main contributions of this article are twofold. We start by refining our original conceptual
model (Gils et al., 2003a; Gils et al., 2003b) with a distinction between resource space (defining
the expanse of possible resources) and a resource base (representing the set of resources that are
available for retrieval at some point in time), we then extend our model with a typing mechanism.
This typing mechanism is a prerequisite for the second contribution: a formal model for trans-
formations in the information market. In (Gils and Schabell, 2003) we have presented a retrieval
architecture that uses transformations.

The remainder of this article is therefore organized as follows: we start by introducing our model
for information supply in Section 2. In Section 3 we formalize the (relevant) parts of this model.
A more elaborate overview is presented in (Gils et al., 2003a). Section 4 formally introduces the
typing mechanism that we use in our model. This typing mechanism is also the basis for Section 5
in which we discuss transformations in detail, whereas we discuss the effects of transformations
in Section 6. Last but not least, in Section 7 we show how transformations can be used in practice.
In Section 8 we present our conclusions.

2 The model

We present our model in two steps. We start out by informally introducing our model after which
we constrain it by presenting its formal properties in Section 3.

Our model of information supply is based on the distinction between data and information. The
entities found on the Web, which can be identified by means of a URI (Berners-Lee, 1994), are
data resources. These data resources are information, if and only if they are relevant with regard
to a given information need as it is harbored by some user. Data resources may, at least partially,
convey the same information for some information need. Hence, we define information resources
to be the abstract entities that make up information supply. Each information resource has at
least one data resource associated to it. Consider for example the situation in which we have two
data resources: the painting Mona Lisa, and a very detailed description of this painting. Both
adhere to the same information resource in the sense that a person seeking for information on the
Mona Lisa will consider both to be relevant.

In a way, data resources implement information resources; a notion similar to that reported in e.g.
(Feng et al., 2001) where facts in the document subspace are considered to be proof for hypothe-
ses in the knowledge subspace. Note that each data resource may implement the information re-
source in a different way. One data resource may be a graphical representation of an information
resource whereas another data resource may be a textual representation of the same information
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resource. We define a representation to be the combination of a data resource and an information
resource, and a representation type to indicate exactly how this data resource implements the in-
formation resource it is associated to. Examples of representation types are: Full-content, Abstract,
Keyword-list, Extract, Audio-only etcetera.

As an example, consider the information resource called Mona Lisa which has two data resources
associated to it. One of these resources is a photograph of this famous painting whereas another
may be a very detailed description of the Mona Lisa. For the former data resource the repre-
sentation type would be Graphical full-content whereas the other would have representation type
Description.

As mentioned before, many different types of data resources can be distinguished on the Web
today, such as documents in different formats (Html, Pdf, etc.), databases and interactive Web-
services. This is reflected in our model by the fact that each data resource has a data resource type.
Furthermore, data resources may have several attributes such as a price or a measurement for
its quality. Such attributes can be defined in terms of an attribute type and the actual value that a
data resource has for this given attribute type.

Last but not least, data resources can be interrelated. The most prominent example of this inter-
relatedness on the Web is the notion of hyperlinks (Conklin, 1987; Bush, 1945), but other types of
relations between data resources exist as well. Examples are: an image may be part of a webpage
and a scientific article may refer to other articles.

The following summarizes our model:

• Information Resources have at least one Data Resource associated to them;

• A Representation denotes the unique combination of an Information Resource and a Data
Resource;

• Representations have at least one Representation Type;

• Data Resources have at least one Data Resource Type;

• Data Resources are related via Relations with a source and a destination;

• Relations have at least one Relation Type;

• Data Resources may have attributed values which are typed;

• An Attribute denotes the combination of a Data Resource and a Data Value;

• Attributes have at least one Attribute Type.

3 Formalization of resource space

3.1 Resource space

As discussed in the previous sections, resource space consists of two types of resources: information
resources and data resources. Information resources form an abstract landscape presenting the
“semantics; the “things we know something about”. Data resources, on the other hand, are
information that is physically stored in one way or the other. The representations relation, as
discussed above, forms a bridge between these two worlds. Furthermore, in the data resource
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world we distinguish two types of connections: attributions, which couple a data value to a data
resource, and relations between data resources. Figure 1 illustrates the concepts that we use to
model resource space1. Note that some of the concepts (such as resource element and accessor) have
not yet been defined in the information overview in the previous section. The main purpose
of this figure is to provide the reader with a graphical overview of the model throughout the
discussion of its formalization in the remainder of this section. Formally, the basic concepts of

Informaton Resource Data Resource Data Value

Relation

Representation Attribute

Connection

Accessor

Data Element

Resource ElementTypes

src dst

HasType

DResIRes src dst

EU

Figure 1: Concepts in resource space

our model are: information resources, representations, data resources, attributions and relations.
These basic concepts are represented by the following sets:

information resources: IR representations: RP
data resources: DR attributions: AT

data values: DV relations: RL

Because we consider these to be elementary these sets must be disjoint:

Axiom 1 (Disjoint Base Sets) IR,DR,DV,RP ,RP AT ,RL are disjoint sets

Collectively, the data values and data resources are referred to as data elements:

DL ! DR∪DV

Attributions connect data values to their respective data resources, and relations are used to in-
terconnect data resources. Hence, attributions and relations form all possible connections between

1The figure uses the object role modeling (ORM) notation. The reader is referred to (Halpin, 1995; Hofstede and Weide,
1993) for details.
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the data elements. Let CN be the set of all these connections:

CN ! RL∪AT

Connections can be used to construct complex data elements. The intuition is that complex elements
can be created by connecting them. A characteristic of complex objects is that their existence de-
pends on the composing data elements, similar to the notion of aggregation in modeling languages
such as UML (See e.g. (Booch et al., 1999)). This mechanism for creating complex data elements
is further elaborated in Section 4.2. The following examples exemplify the main idea: A Zip-file
consisting of a number of PostScript files, is a complex element (a complex data resource, to be
precise). An office document containing embedded objects, such as a diagram and tables, is a
complex element as well. The connections that are used to construct complex data elements are
referred to as accessors; they provide access to the constituent elements of a complex element. Let
AC ⊆ CN be the set of accessors in resource space. Accessors can be thought of as handles which
provide access to the data elements that were used to create complex elements. For example, a
Zip-file may be regarded as having an accessor (with type Payload), which offers access to the files
that were used to create this specific Zip archive.

Note that not all connections in a complex instance have to be accessors. It is, for example, quite
possible to store two Html files in a Zip file that refer to each other.

The sources and destinations of connections between data elements are yielded by the functions
Src, Dst : CN →DL respectively. As an abbreviation we introduce:

s
c
" d ! Src(c) = s ∧ Dst(c) = d

s" d ! ∃c [s
c
" d]

For example, a.zip"b.doc denotes the fact that a.zip and b.doc are related via some re-
lation, the document is part of the Zip archive. Another example is x.html"UTF-8, which
denotes that x.html uses the UTF-8 encoding.

Since Src and Dst are total functions it follows that for each connection c ∈ CN its source and
destination can not be void:

Corollary 1 c ∈ CN =⇒ ∃e1,e2∈DL [e1
c
" e2]

Connectors can not be connected to by yet other connectors. In other words, connectors cannot
be nested:

Lemma 1 e1
a
" e2 =⇒ {e1, e2} ∩ CN = ∅

Proof:
Let e1

a
" e2. From the definition of " we know that Src(a) = e1 ∧ Dst(a) = e2. From

the definitions of Src and Dst we know that e1, e2 ∈ DL. From Axiom 1 it now follows that
e1, e2 can not be members of CN and thus that {e1, e2} ∩ CN = ∅

#

Recall that relations connect data resources to data resources and that attributions connect data re-
sources to data values. Hence it follows that the source of a connection is always a data resource,
that the destination of a relation is a data resource and that the destination of a attribution is a
data value:

Axiom 2 (Attributions) ∀a∈AT [Src(a) ∈ DR∧Dst(a) ∈ DV ]
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Axiom 3 (Relations) ∀r∈RL [Src(a) ∈ DR∧Dst(r) ∈ DR]

The construction of complex instances (by means of accessors) is restricted in the sense that cyclic
behavior is forbidden: it is considered illegal if an instance a is used to construct b while at the
same time b is used to construct a:

Axiom 4 (Acyclic construction)
The graph spanned by the relation R defined as e1 R e2 ! ∃a∈AC [e1

a
" e2] is acyclic.

Recall that a representation is the combination of an information resource and a data resource.
They form the bridge between the abstract world of information resources and the concrete world
of data resources. Hence we define IRes : RP → IR to be a function yielding the information
resource that is associated to a representation and DRes : RP →DR to be a function providing
the data resource associated to a representation.

Each information resource should have some representation and each data resource should be
involved in some representation. The intuition is that each data resource is about at least one
information resource (See for example (Huibers et al., 1996)):

Axiom 5 IRes is a surjective function.

Axiom 6 DRes is a surjective function.

In sum, we define resource space to be defined by the following signature:

Σ ! 〈IR,RP ,DR,RL,AT ,DV,AC, IRes, DRes, Src, Dst〉

This signature (as well as the above axioms) constrain the extra temporal population of resources;
that is: every possible population at any point in time. The following section defines resourcebase.
The importance of the distinction between these two is further explained in Section 4.5.

3.2 Resource base

A resource base consists of those resources in resource space that are available at some moment
in time. This set spans a sub-space of resource space. Given a resource space Σ, a resource base
therefore essentially corresponds to a substructure of Σ that on itself forms a resource (sub)space
as well. More formally, a resource base ΣB is a sub-structure of Σ:

ΣB ! 〈IRB,RPB,DRB,RLB,AT B ,DVB,ACB, IResB , DResB, SrcB, DstB〉

such that:

• the XB ⊆ X for all the base sets,

• IResB, DResB, SrcB, DstB are restricted to the respective base sets,

• all the above discussed axioms apply to the sub-structure.
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4 Typing mechanism for descriptive elements

Before we are able to discuss transformations on data resources, we first need to introduce a
typing mechanism on resource space (and consequently any resource base within this space).
This typing mechanism allows us to limit the applicability of transformations to specific types of
resources. In this section we therefore aim to extend resource space Σ with a typing mechanism.

All elements in resource space are typed. Let RE therefore be the set of all elements in resource
space:

RE ! RP ∪DR∪RL∪AT ∪DV

The resource space elements form the basis for a uniform typing mechanism.

Let TP to be the set of all types and HasType ⊆ RE × TP be the relation for typing descriptive
elements in our model. Our typing mechanism is inspired by abstract data types as introduced
in e.g. (Goguen et al., 1977). This implies that we can perform operations on the instances of
these types. Note that such a strategy can deal with both static as well as dynamic resources.
For example, the approach as described in (Bruce and Wegner, 1990) actually uses many-sorted
algebra’s to formalize the behavior of objects as used in object-oriented approaches. In the case
of data resources, examples of these operations/methods are:

• give me the first byte,

• give me the n’th character,

• (in the case of an Xml document) give me the first node in the DOM-tree.

In previous work we presented an example in which we showed how the type Ascii can be de-
scribed by set of Characters, the set of Integers, the function len that gives the length of an Ascii-
string and a function char that gives the n’th character of an Ascii-string. See (Gils et al., 2003a)
for details.

4.1 Types and population

Given some element from resource space, we can use HasType to determine the set of types of
this element. For example, the types of a given file (a data resource) may be Xml, Sgml and File
or, the type of a relation may be Part of or Refers to. Conversely, we can also determine the set of
elements of a given type. Formally, we use the functions τ and π respectively to yield these sets:

τ (e) !
{

t
∣

∣ e HasType t
}

π(t) !
{

e
∣

∣ e HasType t
}

These functions may be generalized to sets of elements and types respectively:

τ (E) !
⋃

e∈E τ (e) π(T ) !
⋃

t∈T π(t)

If X ⊆ RE is a set of resource elements, in particular one of the basic sets such as RP and DR,
then we will abbreviate τ (X) as Xτ . The following example illustrates this. Let DR = {e1, e2, e3}
be the set of all data resources such that e1 HasType t1, e2 HasType t2 and e3 HasType t2. Then
DRτ = τ (DR) = {t1, t2}.

Using the definitions of τ it follows that an element may have more than one type. An example
from the domain of data resources illustrates this. Suppose that E = {1.htm,2.xml} such that
1.htm HasType Html, 1.htm HasType Xml and 2.xml HasType Xml. In this case τ (E) =
{Html, Xml}. We now have:
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π(Html) = {1.htm} τ (π(Html)) = {Html}
π(Xml) = {1.htm,2.xml} τ (π(Xml)) = {Html, Xml}

This example also shows that τ (π(Html)) ⊂ τ (π(Xml)). We will get back to this when we discuss
subtyping in Section 4.4.

We assume that all elements have a type:

Axiom 7 (Total typing) τ (e) /= ∅

Conversely, in our model we presume types to exist only when they have a population:

Axiom 8 (Existential typing) π(t) /= ∅

Note that the above two axioms refer to resource space and not to a specific resource base. If B
is a resource base, then π(t) ∩ B can quite well be empty. In resource space, however, it does not
make sense to allow for types that can not have a population.

As a consequence we can now prove that an element is in the population of its type:

Lemma 2 e ∈ π(τ (e))

Proof:
Let t ∈ τ(e). Due to Axiom 7 we know that such a t exists. From the definition of τ it follows
that e HasType t. It also follows that e ∈ π(t). Since t ∈ τ(e) we have e ∈ π(τ (e)).

#

We can also prove that a type is in the type-set of its population:

Lemma 3 t ∈ τ(π(t))

The proof of this follows that of Lemma 2. Two types are equal if their populations are equal.
This axiom is of particular relevance for the definition of subtying in Section 4.4.

Axiom 9 (Equal types) π(s) = π(t) =⇒ s = t

The partitioning of elements from resource space over RP ,DR,DV,AT ,RL should be obeyed by
their types as well:

Axiom 10 (Partitioning of types) RPτ ,DRτ ,DVτ ,ATτ ,RLτ form a partition of TP
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4.2 Typing of connectors

The sources and destinations of connectors (CN ) should be reflected at the typing level as well.
We can not, however, simply introduce a Src and Dst pendant at the type level. The reason
for this is that a single connection type may provide connections between instances of different
combinations of types. For example, both a Zip-file and a Tar-file may have a Payload (connector
type!) consisting of Pdf -files. In one case, the connector type Payload connects between Zip and
Pdf and in the other case between TAR and Pdf. As a result, there is no functional dependency (as
e.g. created by the Src and Dst functions) between connector types and the underlying types that
are connected.

The connections between elements of different types that can be made by a connector type, are
therefore formally represented by the relation:

−→ ⊆ TP × CNτ × TP

If t1
t
−→ t2, then the intuition is that complex type t1 has, via connector type t, at its base the type

t2. Note that not all types of resources, such as Zip-file and Multi-part E-mail, will have a Payload.
For example, in the case of a type such as Postal address it does not make sense to attach it to a
connector of type Payload. This kind of restriction can also be reflected at the typing level using
the above relationship. The actual enforcement of this behavior on the instances, will be enforced
by one of the axioms introduced below.

Since types follow instances, if t1
t
−→ t2 holds, then there must at least be some instances to make

this true, the evidence for this observation:

Axiom 11 (Soundness of −→ ) t1
t
−→ t2 =⇒ ∃e1∈π(t1),a∈π(t),e2∈π(t2) [e1

a
" e2]

Note that even though we already enforced total typing (Axiom 7), the above axiom is still
needed. Due to total typing, if tt

t
−→ t2 then π(t1), π(t) and π(t2) are all non-empty. There is how-

ever, no way to enforce there to be an instance of π(t) that actually bridges (provide evidence)
between the populations of t1 and t2.

To illustrate why the above axiom is needed, let t1 = Zip, t = Payload and t2 = File, then t1
t
−→ t2

represents the fact that Zip-files have a payload consisting of files. Axiom 11 states, then, that at
least one Zip file exists that has at least one file in its payload.

Conversely, if a connector a exists such that e1
a
" e2, then this must be reflected at the typing

level. In other words, we know that the types of these instances behave as follows:

Axiom 12 (Completeness of −→ ) e1
a
" e2 =⇒ ∃t1∈τ(e1),t∈τ(a),t2∈τ(e2) [t1

t
−→ t2]

Figure 2 illustrates this situation. For any given connector (e.g. a or b) there must be instances
attached to this connector such that both the connector and the elements it connects have the
proper types. A direct result of Axiom 11, is that Lemma 1 can be translated to types as well.
Simply put, if the types t1 and t2 are connected via a connection type t, then they can not be
connection types themselves:

Corollary 2 (No connector nesting) t1
t
−→ t2 =⇒ {t1, t2} ∩ CNτ = ∅

For a given type, the set of connector types that are attached to it, can be determined by:

Conn(t1) !
{

t
∣

∣ ∃t2 [t1
t
−→ t2]

}

To show the proper behavior of this relation we show that if two types have the same outbound
connections then this must be reflected by the Conn relation. More formally:
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Figure 2: Behavior of connectors and their types

Lemma 4 ∀u,t [s1
u
−→ t ⇔ s2

u
−→ t] =⇒ Conn(s1) = Conn(s2)

Proof:
Let us suppose that ∀u,t [s1

u
−→ t ⇔ s2

u
−→ t], then:

⊆ Let u ∈ Conn(s1). From the definition of Conn it follows that there are u, t such that s1
u
−→ t.

Under the assumption made it follows that s2
u
−→ t. From the definition of Conn it follows

that u ∈ Conn(s2)

⊇ Due to the symmetry of ⇔, this follows from the above.

Therefore Conn(s1) = Conn(s2)
#

4.3 Complex data resources

As mentioned before, some data resources can be regarded as being composed of other resource
elements. In other words, some data resources may depend on the existence of other elements
from resource space. For example, some data resource may be constructed in terms of other data
resources, and/or it may have some data value associated to it as an attribute.

At the instance level, we already introduced a special class of connections, the accessors (AC),
to signify that a specific data resource should be regarded as being composed of other elements
(Section 3.1). A special class of connection types are therefore the accessor types ACτ . A complex
type is a type that has an (outgoing) accessor type associated to it. The set of accessor types that
are indeed associated to a type is defined as:

Act(t) ! Conn(t) ∩ACτ

Using the definition of Act we can define the set of complex types to be:

TPc !
{

t
∣

∣ Act(t) /= ∅
}

Since ACτ ⊆ CNτ we can show that the −→ must behave properly for accessor types as well;
similar to what we showed in Lemma 4.

Corollary 3 ∀u,t [s1
u
−→ t ⇔ s2

u
−→ t] =⇒ Act(s1) = Act(s2)

Thus far we have not associated any semantics to accessors and complex types in terms of their
influence on a population in resource space. Complex instances are constructed by means of other
instances. Instances of complex types should indeed be constructed by means of other instances.
In other words, if an instance has a complex type then it must have at least one accessor with an
instance at its base:
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Axiom 13 (Complex instances and accessors) e1 ∈ π(TPc) =⇒ ∃a∈AC,e2
[e1

a
" e2]

The definition of Act can be overloaded to include the instance level as follows:

Act(e) !
⋃

t∈τ(e)

Act(t)

Note that it may be the case that some of the accessor types in an instance of a complex type are
unused. For example, not every Zip file has a comment or a password associated to it.

As an example of how the accessor mechanism works in practice, consider the following example:
suppose x.zip is a Zip-file, while it’s payload consists of three files, a.doc, b.ps and c.pdf.
They can be accessed via their respective accessors a1, a2 and a3 which all have accessor type
Payload. Furthermore, there is a comment and a password attached to the Zip-file which are
accessed via accessors a4 and a5 which have accessor types Comment and Password respectively.
These accessor types originate from attributions. More formally:

π(DR) = {x.zip,a.doc,b.ps,c.pdf}
π(DRτ ) = {Zip, Doc, PostScript, Pdf , file}

π(DV) = {“some comment”, “secret”}

π(DVτ ) = {String}

π(CN ) = {a1, a2, a3, a4, a5}

π(CNτ ) = {Payload, Comment, Password}

π(AT ) = {a4, a5}

π(ATτ ) = {Comment, Password}

Note that for a ∈ {a1, a2, a3} it holds that Zip
a
−→ File2. Similarly, for a ∈ {a4, a5} it holds that

Zip
a
−→ String.

Figure 3 provides a graphical depiction of the above sketched situation. The left-hand side of the
figure is at the instance level, whereas the right-hand side is at the typing level.

Figure 3: Accessors and typing

2The notion of subtyping is introduced in Section 4.4.
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4.4 Subtyping

In many modeling languages (such as for example Object Role Modeling, Entity Relationship Model-
ing and UML) a subtyping mechanism is used to denote an is-a relation between sets of elements
(See e.g. (Halpin, 1995; Chen, 1976; Booch et al., 1999)). For example, the statement “each woman
is a person” has the same connotation as the statement “woman is subtype of person”.

We assume the existence of subtyping for types in our model. Let SubOf ⊆ TP × TP therefore
define a subtyping relationship, where s SubOf t indicates that type s is a subtype of, or equal to
type t. Conversely, let s SubOf t denote that s is a subtype of t. The mapping to sets of elements
is given by the following:

s SubOf t ! π(s) ⊂ π(t)
s SubOf t ! π(s) ⊆ π(t)

From these definitions we can prove that:

Corollary 4 s SubOf t =⇒ s SubOf t ∧ ¬t SubOf s

Furthermore, we know that SubOf is transitive, irreflexive and asymmetric and that SubOf is
transitive, reflexive and antisymmetric:

Lemma 5 SubOf is transitive, irreflexive and asymmetric

Lemma 6 SubOf is transitive, reflexive and anti-symmetric

To illustrate what happens with connections (connection types) in case of subtyping consider the
following situation (Figure 4): s SubOf t, Conn(t) = {u} and Conn(s) = {u, v}.

Figure 4: Illustrating the behavior of accessors in case of subtyping

• Suppose we know that e1
a
" e2 such that e1 ∈ π(s) ∧ a ∈ π(v) ∧ e2 ∈ π(s1). Because of

subtyping we know that e1 ∈ π(t). Therefore, at the typing level we know that e1 may have
a connector with type u, leading to an instance of type t1. Without evidence for this at the
instance level, we only know that s

v
−→ s1.

• Suppose we know that f1
b
" f2 and assume that f1 ∈ π(s) ∧ b ∈ π(u) ∧ f2 ∈ π(t1). Based

on this information we know that ∃c,f3
[f1

c
" f3] such that c ∈ π(v) ∧ f3 ∈ π(s1), otherwise

there would be no proof for f1 ∈ π(s)! This follows from the definition of CN and Axiom 11.
From the definition of CN it follows that s

v
−→ s1 and Axiom 11 states that there must be at

least one set of instances to provide evidence for this observation at the typing level. We
can now conclude that s

u
−→ t1 ∧ s

v
−→ s1.
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• Suppose we know that g1
c
" g2 such that g1 ∈ π(t) ∧ c ∈ π(u) ∧ g2 ∈ π(t1). We may already

conclude that t
u
−→ t1. If we find evidence for g1

d
" g3 such that d ∈ π(v) ∧ g3 ∈ π(s1) then

we have g1 ∈ π(s) and may also conclude that s
v
−→ s1.

This also has consequences for applications that work on complex instances. Consider the situa-
tion where t is the Zip-type and s extends the standard Zip with a password. Take an e ∈ π(s) and
consider it from the perspective of type t (this is allowed since s SubOf t and thus π(s) ⊂ π(t).
Similar to what we know from interfaces in object orientation (see e.g. (Booch et al., 1999)), the
interface of t will simply ignore the additional specificities of the interface of s. In the real world
this means that applications may fail if they implement the t-interface and receive an instance
built according to the s-interface.

These insights lead to the following: Firstly, connector types and their respective bases are inher-
ited across a subtyping relation. That is, subtypes inherit the connector types associated to their
super types (but not vice versa!):

Axiom 14 (Completeness of connections) s SubOf t ∧ t
u
−→ v =⇒ s

u
−→ v

It follows immediately that:

Corollary 5

• s SubOf t =⇒ Conn(t) ⊆ Conn(s)

• s SubOf t =⇒ Act(t) ⊆ Act(s)

• s SubOf t ∧ t ∈ TPc =⇒ s ∈ TPc

Following the same line of reasoning the base of connector types must also be complete:

Axiom 15 (Completeness of base) s
u
−→ t1 ∧ t2 SubOf t1 =⇒ s

u
−→ t2

For the remainder of the discussion we need to introduce the notion of type relatedness. We define
that two types are related if their populations overlap:

s∼ t ! π(s) ∩ π(t) /= ∅

We already discussed subtyping which is one form of type relatedness. From e.g. LISA-D (Hof-
stede et al., 1993) we know that other forms of type relatedness may exist as well. For example:
assume a type (e.g. Zip) has two distinct subtypes, each with its own subtype defining rule (e.g.
Zip with password and Zip with comment). It may be possible to have an instance that is in both
the subtype (i.e. a specific Zip file may have both a password and a comment associated to it).

Using this intuition we can more easily specify the soundness of the base of accessor types:

Axiom 16 (Soundness of Base) s
u
−→ t1 ∧ s

u
−→ t2 =⇒ t1 ∼ t2

This allows us to prove that if a subtype and a supertype share an accessor then their bases must
at least be type related:

Lemma 7 s1 SubOf s2 ∧ s1
u
−→ t1 ∧ s2

u
−→ t2 =⇒ t1 ∼ t2

14



Proof:
Let s1 SubOf s2 ∧ s1

u
−→ t1 ∧ s2

u
−→ t2. From Axiom 14 we know that s1

u
−→ t2 ∧ s1

u
−→ t1. From

Axiom 16 we can now conclude that t1 ∼ t2
#

Note that we did not include a “soundness of complex” axiom. The following example illustrates
why such an axiom is not desirable:

• Let s = Zip, t =E-mail, u = Html and v = Payload (v ∈ ACτ )

• Furthermore, let s
v
−→ u and t

v
−→ u

In other words, both Zip and E-mail have an accessor type Payload that offers access to a Html
base. If we were to introduce a soundness axiom for complex we would be forced to conclude
that Zip and E-mail are type related, which is undesirable.

4.5 Typed resource space

In sum, we define a typed resource space to be defined by the following signature:

Στ ! 〈Σ, TP , HasType 〉

The disctinction between resourcespace and resourcebase is important with respect to the obser-
vation that, in our model, types follow instances. Without this explicit distinction, if the last
instance of a type would be removed then the type would cease to exist. This can be particularly
inconvenient in case an application depends on the existence of this type. The world of transfor-
mations (as described in Section 5) is a typical example since, as we will show, transformations
can be describe in terms of input types and output types.

Similarly to a resource base, a typed resource base corresponds to those resources and their types,
that are available at some moment in time. This set spans a sub-space of a typed resource space,
consisting of a resource base and its typing. Given a typed resource space Στ , a typed resource
base therefore corresponds to a substructure of Στ that on itself forms a typed resource (sub)space
as well. More formally, a typed resource base Στ

B is a sub-structure of Στ :

Στ
B ! 〈ΣB, TPB, HasType B〉

such that:

• the ΣB is a resource base in resource space Σ,

• TPB ⊆ TP , HasType B ⊆ HasType

• all the above discussed axioms apply to the sub-structure.
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5 Transformations

In this section we introduce transformations, a way to change the nature of structure of instances.
These transformations can be very usef in practice to solve several problems. For example:

• Suppose we have an image in Eps file that we want to view. Unfortunately we don not
have a viewer for this file-type. We do have a viewer for Jpeg files, though. By means
of a transformation we may be able to transform the Eps file to Jpeg and thus access the
information we need.

• Managers of large organizations often have to read many lengthy reports. Because of time
constraints it is not always possible to read all these reports. Again, transformations may
help. Transformations exist to generate abstracts of these documents.

In other words, transformations help us to have a more flexible view on the information land-
scape.

In the context of databases, one can distinguish between an extensional database and intentional
database (Ullman, 1989; Date, 2003). The extensional database corresponds to the a set of basic
facts known about the world, whereas the intentional database represents the facts that may be
derived from the extensional database by applying inference rules. Translated to our model this
means that:

• The resource base is extensional, it consists all the resources that exist in a certain situation

• By means of transformations, new instances (which already existed in resource space) may
be arrived at.

Simply put, the transformations can be regarded as inference rules on the extensional database
(information supply as we know it), resulting in a larger intentional database.

The remainder of this section is organized as follows. In Section 5.1 we define what transforma-
tions are and show their basic properties. Section 5.2 elaborates and presents complex transfor-
mations. In Section 5.3 we will present an example. Section 6 discusses the effects of transforma-
tions.

5.1 Basic Properties

Before we begin our discussion on transformations, recall that IRes finds the unique information
resource associated to a representation, and that DRes finds the unique data resource associated
to a representation. Essentially, a representation is information represented on a medium, and
the representation type expresses how of to what extent this is done.

As was stated before, with transformations we can transform data resources. This paper does
not present a language for specifying what a specific transformation does, nor does it present a
language for composing transformations. We focus on general properties of transformations and,
hence, view them as a black box for the time being.
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Let TR be the set of all transformations. The semantics of a transformation specify what this
transformation actually does. For any transformation T ∈ TR, the semantics of T is given by the
function:

SEM : TR→ (DR$DR)

In other words, transformations transform a representation to another. As an abbreviation, let−→
T ! SEM(T ), T ∈ TR. In logic M % A is often used to denote the fact that M is a model for A.
Here we use the symbol to denote something similar: i |= d denotes the fact that data resource d
is associated to information resource i via some representation:

i |= d ! ∃r∈RP [IRes(r) = i ∧ DRes(r) = d]

Simply put: since we consider data resources to be an implementation for an information re-
source, we can also consider an information resource to be a model for a dataresource.

If a data resource is transformed, then the resulting data resource is associated to the same infor-
mation information resource as the original information resource.

Axiom 17 (IR neutral transformations)

i |= d ∧
−→
T (d) = d′ =⇒ i |= d′

Any given transformation has a fixed input and output for which it is defined, similar to the
notion of mathematical functions having a domain and a range: Input, Output : TR→DRτ . In
other words, each transformation has an input type and an output type, which must at least exist
in resource space3.

Let t
T
−→ u denote the fact that transformation T ∈ TR can be applied on instances of type t and

results in instances of type u:

t
T
−→ u ! Input(T ) = t ∧ Output(T ) = u

Any given transformation is only defined for all instances that are of the correct input-format.
Even more so, it can only produce instances of its output-format:

Axiom 18 (I/O of Transformations)

if t
T
−→ u then

−→
T : π(t)$ π(u)

This allows us to define how a transformation T can be applied to a set of data resources. Let
E ⊆ DR be a set of data resources. Then:

−→
T (E) !

{

e
∣

∣ e ∈ E ∧ e /∈ π(Input(T ))
}

∪
{−→

T (e)
∣

∣ e ∈ E ∧ e ∈ π(Input(T ))
}

Simply put this means the following. If a transformation T is applied to a set of data resources E
then the transformation will only transform the resources for which it is defined. In other words,−→
T (E) is define as follows

• all data resources in E whose types are in Input(T ) are transformed

• all data resources in E whose types are not in Input(T ) (i.e. the remaining data resources)
are left untouched.

3We will return to this discussion in Section 6 where we discuss the effects of transformations.
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Another property of transformations is the fact that they are closed under composition:

Axiom 19 (Closed under composition)

t1
T1−→ t2 ∧ t2

T2−→ t3 =⇒ ∃T3
[t1

T3−→ t3 ∧
−→
T 3 =

−→
T 1 ◦

−→
T 2]

This axiom states that if the output type of a transformation T1 equals the input type of another
transformation T2 then the semantics of these two transformations can be combined by applying
T2 after T1 (resulting in a T3). Note that there may also be a T4 such that e

T4−→ g with completely
different semantics! The following example illustrates this:

• Let t1 be the LaTeX type, t2 denotes the Dvi type and t3 denotes the Pdf type.

• Let T1 be the transformation from LaTeX to Dvi, T2 be the transformation from Dvi to Pdf
and T4 be the transformation directly from LaTeX to Pdf

• Since Output(T1) = Input(T2) we know from Axiom 19 that there is a t1
T3−→ t2 which com-

bines the semantics of T1 and T2.

• Note that Input(T3) = Input(T4), Output(T3) = Output(T4) but not
−→
T 3 =

−→
T 4.

5.2 Complex Transformations

In the previous subsection we presented a framework for transformations and showed how trans-
formations can be composed by sequencing them using the ◦ operator. In this section we discuss
a more complex way of composing transformations, relying heavily on the accessor types pre-
sented in previous sections. A transformation is complex if:

• it operates on (instances of) a complex type

• has an effect on the instances that were used to construct the complex instance (that is,
instances at the base of an instance of a complex type).

There are two types of complex transformations which, like all transformations, may be se-
quenced using the ◦ operator.

The first complex transformation is used to remove an accessor and the instance(s) at its base. For
example, it may be desirable to remove a comment from a Zip-file, or to remove an attachment
from an E-mail. Such transformation:

• takes an instance with a complex type as input;

• removes a specified accessor and its base from an instance with a complex type;

• leaves other accessors (and their bases) untouched.

We use # to denote such transformation. Let e be an instance with a complex type and u ∈ Act(e),
then #u(e) denotes the transformation where the accessor u as well as the instances at its base are
removed:

#u(e) = e′ ! e′ ! u = ∅ ∧ ∀b#=u [e′ ! b = e ! b]
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In the above definition we have used the following shorthand notation: Let e be a complex in-
stance and t an accessor type, then e ! t denotes the instances at the base of the accessor from e
with type t:

e ! t !
{

d
∣

∣ e
a
" d ∧ a ∈ π(t)

}

The intuition behind this shorthand is that e
a
" d retrieves all data elements that are used in con-

structing complex a data resource e via accessors of type t.

This type of transformations can be performed on each instance with a complex type, since such
an instance must have at least one accessor. If the last accessor of an instance is removed then #
is said to destruct the instance.

Axiom 20 (Existence of # )

if t ∈ TPc, u ∈ Act(t)
then ∃T∈TR [t

T
−→ t ∧

−→
T = #u]

The second class of complex transformations does a little more work; they are deep transforma-
tions in the sense that instances at the base of a complex type are transformed. For example, all
Doc files in a Zip archive may be transformed to Pdf. These transformations:

• takes an instance with a complex type as input, and returns an instance with a (possibly
different) complex type;

• Transform the instances a the base of an accessor;

• leave other accessors (and their bases) untouched.

More formally, Let e be an instance of a complex type, a ∈ Act(τ (e)) and T ∈ TR. Then αa:T (e)
denotes the transformation where the instances at the base of e’s accessor a are transformed with
transformation T :

αa:T (e) = e′ ! e′ ! a = T (e ! a) ∧ ∀b#=a [e ! b = e′ ! b]

These transformations are defined for all types t1, t2 as long as they have the same accessor types.
Even more, transformation T must at least be defined for the instances at the base of the specified
accessor:

Axiom 21 (Existence of α )

if Act(t1) = Act(t2) ∧ u ∈ Act(t1) ∧
∃b1,b2 [t1

u
−→ b1 ∧ t2

u
−→ b2 ∧ b1

T
−→ b2]

then ∃T ′∈TR [t1
T ′

−→ t2 ∧
−→
T ′ = αu:T ]

To illustrate how such a deep transformation can be used to transform an instance from complex
type t1 to complex type t2, consider the following situation. Let t1 denote the complex type E-
mail in UTF-8 encoding and let t2 denote the complex type E-mail in UTF-16 encoding. Instances of
these types have accessors leading to the payload of the E-mail in UTF-8 and UTF-16 encoding
respectively. If T is a transformation capable of transforming text in UTF-8 encoding to UTF-16
encoding then Axiom 21 dictates that a T ′ must exist such that t1

T ′

−→ t2.

So far we have shown different kinds of transformations between (instances of) types. Even
more, we have introduced the notion of subtyping. In many programming languages (some)
type casts are executed implicitly by the compiler. For example, the integer 13 is automatically
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cast to the float 13.0 when necessary. We propose to explicitly name and call these type casts. As
such, type-casting transformations are considered to be first class members of TR. Using these
type casts we can lift an instance to its supertype; i.e. consider an instance using the interface of
its supertype. The point is that the data resource itself does not change. More formally, if e ∈ π(s)
then:

ιs(e) ! e

These transformations are applicable for all instances of all types, as long as the types have a
supertype:

Axiom 22 (Existence of ι )

if s SubOf t then ∃T∈TR [s
T
−→ t ∧

−→
T = ιs]

5.3 Example

In this section we present an example that relies on Axioms 19, 20 and 21. That is, we show a
situation where two complex transformations (a removing transformation and a deep transforma-
tion) are concatenated. Consider the following: Let backup.zip be a Zip archive. Two files
(report.doc and letter.doc) form the Payload of this archive. Also, a Comment (“Backup”)
and a password (“Secret”) are associated to it. In other words:

τ (backup.zip) = Zip

Act(backup.zip) = {Payload, Comment, Password}

backup.zip! Payload = {report.doc, letter.doc}

backup.zip! Comment = “backup”

backup.zip! Password = “secret”

Now, let T1 be a transformation with Input(T ) = Doc and Output(T ) = Pdf . Then, αPayload:T1
is a

transformation that transforms the documents in the payload of any Zip archive to Pdf. Let #Password

be a transformation that removes the password of a Zip archive.

If we want to transform backup.zip such that the documents in its payload are transformed to
Pdf and its password is removed then we can achieve this as follows:

T = αPayload:T1
◦ #Password−→

T (backup.zip) = new.zip

The result of this transformation is a new archive new.zip such that:

τ (new.zip) = Zip

Act(new.zip) = {Payload, Comment}

new.zip! Payload = {report.pdf, letter.pdf}

new.zip! Comment = “backup”

6 Effects of transformations

Transformations can be applied to data resources. The key point about a transformation is that
the data resource is somehow changed. For example, the data resource type or its resolution is

20



altered. In this section we study these effects. This section builds on previous work presented
in (Gils et al., 2003a; Gils et al., 2005). The study of specific properties of transformations has
been conducted in many other contexts as well. As examples we mention properties concerning
clustering (e.g.(Song et al., 2002)) and performance (e.g. (Rahayu et al., 2001)).

The remainder of this section is organized as follows. In Section 6.1 we will start out by defining
several classes of effects that a transformation may have and how they are measured in resource
space. In Section 6.4 we drill down to resource base. Finally, in Section 7 we show how this
framework for transformations can be used to study transformations in practice, i.e. for a real
resource base like the Web.

6.1 Classes of effects

The above example shows that a transformation may remove a certain property of a data re-
source, where a property may be any predicate over Στ . This is not the only possible effect a
transformation may have, though. We discern the following 4 classes of effects, when a single
instance is concerned:

1. A transformation is neutral with regard to some property. For example, a transformation
that transforms Html files to Pdf may be neutral with regard to the price attribute.

2. A transformation may alter a certain property. For example, a transformation that lowers
the resolution of an image may lower its price too.

3. A transformation may remove a certain property. For example, a transformation that trans-
forms Html files to Ascii may remove all hyperlinks.

4. A transformation may introduce a certain property. For example, a transformation may add
a password to a Zip file.

This is illustrated in Figure 6.1. The left circle depicts the input type of a transformation
and the right circle depicts its output type. Some properties are unchanged, which is de-
picted by the intersection of both circles. Also, some properties are changed, depicted by the
from and to sections of both circles. Finally, properties may be removed or introduced. Let
ECi = {neutral, alter, remove, introduce} be the set of effect classes. At the typing level, the rea-

change
from

change
to

remove introduce

neutral

Figure 5: Effects of transformations

soning is slightly more complex. In this case, the effect of a transformation on instances of a
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certain data resource type with a certain property is studied. In other words, the conclusion that
a transformation has a certain effect at the instance level must be generalized to the type level.
In Section 6.3 we will see how this is done and show that at the type level, the effect class is
ECt = {neutral, remove, introduce, hybride}.

6.2 Properties

In this section we study the effect that a transformation may have on instances which (may or
may not) have certain properties. We consider any binary predicate over Στ to be a property,
where the first argument of the predicate concerns a data resource. For example, r Has hyperlinks
is a unary property, while r Is based on s is a binary property. In general, properties can have any
arity higher than one. To model this formally, we will presume a property to be represented in
general as ϕ(e, W ) where e is a data resource and W is a sequence of (zero or more) resource
space elements or types. The language for properties is denoted by Φ. If ϕ(e, W ) then resource
e is said to have property ϕ with resources W . Note that W must be a sequence, as opposed to
an unordered set, since ϕ resembles the notion of a predicate. The ordering of the elements in W
matters! An example of a property ϕ would be the property named ϕp such that:

ϕp(e, [x, y]) ! ∃r∈RP,a∈AT [DRes(r) = e ∧ r HasType x ∧ e
a
" y ∧ y HasType Encoding]

Given a resource base and an instande (data resource) e the expression
ϕp(e, [Keyword-list, UTF-8]) may evaluate to either true or false. To be able to evaluate this
truth-assignment of ϕ for a given instance e we use the function Γ : DR×Φ→℘(RE∗):

Γ(e, ϕ) !
{

W
∣

∣ ϕ(e, W )
}

In other words, Γ(e, ϕ) returns the set of sequences of resource space elements W for which ϕ
is true, given a data resource e. If Γ(e, ϕ) returns {[∅]} then ϕ(e, W ) apparently does not hold.
Continuing the previous example where ϕp was defined, if

Γ(e, ϕp) ⊃ {[Keyword-list, UTF-8]}

then apparently data resource e indeed is a Keyword-list in the UTF-8 encoding. Two more exam-
ples illustrate how properties and their truth-assignments can be used in practice:

• Let ϕt(e, [t]) ! e HasType t denote the typing property. For an instance e with τ (e) =
{t1, t2} we have Γ(e, ϕt) = {[t1], [t2]}.

• Let ϕt(e, [ ]) ! e HasType Pdf denote the property is of type Pdf. For an instance e with
Pdf ∈ τ(e) we have Γ(e, ϕt) = {[ ]} denoting that e indeed has this property. For an instance
f with Pdf /∈ τ (f) we have Γ(f, ϕt) = {[∅]} denoting that f does not have this property.

6.3 Effects: instance and type level

Using this Γ relation, it is straightforward to find out the effect class of a transformation T ∈ TR
with regard to a specific ϕ. Let Effect : TR×DR×Φ→ECi be the function that finds the effect
class of a transformation T ∈ TR on a data resource e ∈ DR with regard to a property ϕ. This can
be achieved by comparing the sets of objects that make Γ true for both the input and the output
instance of the transformation:
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• If these sets are equal, then for this (input) instance, the transformation is neutral with
regard to this specific ϕ. For example, in case of the typeping property ϕt defined above and
both the input instance and output instance have the same types then the transformation is
neutral with regard to data resource types.

• If the input set is a subset of the output set, then the transformation, for this (input) instance,
apparently is introducing with regard to this ϕ. In case of this means that the input type of
the transformation is a subtype of its output type (a direct consequence of the definition of
SubOf).

• Similarly, if the output set is a subset of the input set, then the transformation, for this
(input) instance is removing with regard to this ϕ. In case of the typing property ϕt, this
means that the output type of the transformation is a subtype of its input type.

• If neither of the above applies then, for this (input) instance, the transformation is said to
be altering with regard to this ϕ. We describe this as follows: let e be the input instance of
the transformation and

−→
T (e) = f be the output instance of the transformation T . In case of

the typing property ϕt this implies the following:

– The sets τ (e) and τ (f) overlap such that τ (e) /⊆ τ (f) ∧ τ (f) /⊆ τ (e). For example, e
and f do have a supertype in common (both are files) but apart from that they are
completely different.

– The sets τ (e) and τ(f) are disjoint. This implies that e and f have no (super)type in
common.

Summarizing, the effect of transformation T on data resource e with regard to property ϕ is the
following:

Effect(T, e, ϕ) !
if Γ(e, ϕ) = Γ(

−→
T (e), ϕ) then neutral

if Γ(e, ϕ) ⊂ Γ(
−→
T (e), ϕ) then introduce

if Γ(e, ϕ) ⊃ Γ(
−→
T (e), ϕ) then remove

else alter

A similar line of reasoning explains how the definition of Effect may be generalized to the typing
level such that Effect : TR×DRτ × Φ→ ECt. In this case the effect that a transformation has on a
certain property must be analyzed for all instances of a certain type.

• If a transformation is neutral with regard to a ϕ for all instances of a given data resource
type then, at the typing level, the transformation is said to be neutral with regard to this
specific ϕ.

• It seems apparent that, at the type level, a transformation is introducing for a given ϕ
if the transformation is introducing for every instance of this type. A simple example
shows that this not the case. Consider the property “has relations of type Hyperlink” and
a transformation T . Furthermore let e be an instances that, indeed, has hyperlinks. Then:
Effect(T, e, ϕ) = remove. If the transformed instance

−→
T (e) = f is transformed again, using

the same transformation then Effect(T, f, ϕ) = neutral since f did not have any hyperlinks
in the first place.

Therefore the rule must be: if a transformation is introduction with regard to a ϕ for at least
one instance and neutral for all others, then at the typing level the transformation is said to
be introducing with regard to this specific ϕ.
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• For similar reasons, if a transformation is removing with regard to a ϕ for at least one
instance and neutral for all others, then at the typing level the transformation is said to be
removing for this specific ϕ.

• Again, it may seem that at the typing level a transformation is altering with regard to a
property if it is altering for all instances of this type. However, this is not the case. Other sit-
uations may occur also, for example: a transformation may be introducing for one instance,
and altering for another. This occurs when a transformation sets the version attribute to the
value 2.6, regardless of the fact that data resource already had a version attribute. If it did,
the transformation is likely to be altering for this property. If it did not, the transformation
would be introducing. In this case, we are indecisive about the effect that a transformation
has on a certain property.

Summarizing, the effect of a transformation T with regard to a property ϕ, considered at the type
level is the following:

Effect(T, t, ϕ) !
if ∀e∈π(t) [Γ(e, ϕ) = Γ(

−→
T (e), ϕ)] then neutral

if ∀e∈π(t) [Γ(e, ϕ) ⊆ Γ(
−→
T (e), ϕ)] then introduce

if ∀e∈π(t) [Γ(e, ϕ) ⊇ Γ(
−→
T (e), ϕ)] then remove

else hybride

6.4 Transformations, resource space and resource base

In this section we will discuss how the above can be applied to the resource space and resource
base. In this context, the key distinction between them is that:

• in the resource base we can observe the effect a transformation has on a specific instance

• in the resource space we can observe the total effect a transformation may have.

We will start at the resource base level and then generalize to the resource base level. Recall that
the signature of the typed resource base is given by the following signature:

Στ
B ! 〈IRB,RPB,DRB,RLB,AT B,DVB,ACB, IResB, DResB, SrcB, DstB , TPB , HasType B〉

and that its population can be represented in terms of this signature. Any given population can
be represented in terms of this signature, even the population consisting of a single data resource
and its associated properties. For example: A person called John Doe has a webpage in Html
format. The current version of his webpage is 2.4. Furthermore, this webpage does not have any
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links to other sites. The following population exemplifies this:

IR = {John Doe}
RP = {r}
DR = {john-doe.html}
RL = ∅
AT = {a}
DV = {2.4}
AC = ∅
IRes = {〈r, John Doe〉}
DRes = {〈r,john-doe.html〉}
Src = {〈a,john-doe.html〉}
Dst = {〈a, 2.4〉}
TP = {webpage-of, Html, version}
HasType = {〈r, webpage-of〉, 〈john-doe.html, Html〉, 〈a, version〉}

The effect that a specific transformation has on this particular instance may be measure by
transforming the instance and comparing the two signatures. For example, let T ∈ TR and
Input(T ) = Html, Output(T ) = Ascii such that

−→
T (john-doe.html) = john-doe.txt. The

following denotes this new data resource and its properties:

IR = {John Doe}
RP = {r}
DR = {john-doe.txt}
RL = ∅
AT = {a}
DV = {2.4}
AC = ∅
IRes = {〈r, John Doe〉}
DRes = {〈r,john-doe.html〉}
Src = {〈a,john-doe.html〉}
Dst = {〈a, 2.4〉}
TP = {Document-about, Ascii, Version}
HasType = {〈r, Document-about〉, 〈john-doe.txt, Ascii〉, 〈a, Version〉}

The effects of the actual transformation can now be studied by comparing these two signatures.
More specifically, the effects can be found by computing Effect(T,john-doe.html, ϕ) for dif-
ferent ϕ:

• The input instance and output instance have different data resource types. More specifi-
cally, we transform an instance from type Html to type Ascii. For ϕt(e, [t]) ! e HasType t,
then Effect(T,john-doe.html, ϕ) = alter.

• Conform with Axiom 17, both the input instance and output instance of the transformation
are attached to the same information resource; the input instance has representation type
Webpage-of and the output instance has representation type Document-about. The property
would be:

ϕ(e, [ ]) = ∃r∈RP [DRes(r) = e ∧ r HasType Document-about]

Which leads to: Effect(T,john-doe.html, ϕ) = alter.

• Both the input instance and output instance have an attribute of type Version. The attributed
value is 2.4 in both cases. Hence, the property would be:

ϕ(e, [v]) = ∃a∈AT [a HasType version ∧ Src(a) = e ∧ Dst(e) = v]

Since the truth-assignment for both instances is the same (i.e. Γ(john-doe.html, ϕ) =
Γ(john-doe.txt, ϕ) = {[2.4]}) we know that Effect(T,john-doe.html, ϕ) = neutral
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Instances in the resource space, by definition, reflect the full extent of a given (data resource type)
in the sense that every possible property of a type has an instance. By locating the instance in
resource space that has every possible property, applying the transformation on this instance and
comparing the two signatures the total effect of a signature.

7 Towards implementation: transformation selection

When defining a transformational approach, we need to consider formal as well as practical
aspects (see e.g. (Polo et al., 2002) for a database-oriented approach). In this section we consider
transformation selection, in order to illustrate the application of our transformations in a practical
context.

In previous sections we have described a model for resource space as well as a framework for
transformations. These transformations may have effects on properties of the resources. In Sec-
tion 7.1 we will discuss how these effects can be learned in a real application. In Section 7.2 we
will focus on the basic patterns that we observe when looking at transformations, whereas pat-
terns for choosing between several transformation paths is the focus of Section 7.3. Last but not
least, in Section 7.4 we will discuss the foundations for a transformation selection algorithm.

7.1 Learning the effects of a transformation

In resource base, the effects of transformations and properties of types can be learned in the fol-
lowing manner:

• Initially, it is assumed that a transformation is neutral with regard to every property, similar
to the notion of being innocent until proven otherwise.

• After a transformation is performed on an instance (from resource base!), the properties of
the input instance and the output instance are compared to study the effects:

– We may discover a new property of a type. For example: before the transformation
was executed we did not have a single instance of the Pdf type with a price but after the
transformation we do. This implies that the next time we compose a transformation
(See Axiom 19) involving the Pdf -type we can use this additional knowledge.

– We may discover that a transformation is not neutral with regard to some property;
i.e. it may alter, remove or add certain properties. For example, we may learn that a
transformation from Html to PostScript removes all hyperlinks.

Being able to reason about transformations at this level is particularly convenient when com-
posing transformations. In any practical situation one would want to know that it is possible
to perform a certain transformation rather than knowing it is composed of several others. Be-
ing able to compose transformations automatically, based on the knowledge about its effects, is
therefore an important feature.

Recall that initially, we assume that transformations are neutral with regard to all properties.
This may not be the case and therefore it may not be possible to judge with 100% certainty what
a transformation will do and if a certain (composed / complex) transformation is possible. These
effects will have to be learned as time progresses, thus improving the quality of the transforma-
tion framework.
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7.2 Basic patterns of transformations

Transformations have an input type and an output type. Formally, if t1, t2 ∈ TP and T ∈ TR
then t1

T
−→ t2 denotes the fact that with transformation T , instances of type t1 can be transformed

into instances of type t2. Furthermore, the transformation may have some effect on a property ϕ.
For example: let ϕ(e, [t]) ! e HasType t be the type property of a data resource and e ∈ DR be a
data resource. Then Effect(T, eϕ) = neutral denotes that transformation T is neutral with regard
to the HasType property for this specific instance. In Section 6.3 we have described how these
effects can be determined at both the instance level and the type level.

Given the above, the two basic patterns are:

• A transformation from a type to a (different) type: t1
T
−→ t2. For example: a transformation

from Html to Pdf. A special case would be a a transformation from a type to the same type:
t1

T
−→ t1. For example: a transformation from Html to Html that removes all hyperlinks. This

pattern is illustrated in the following diagram:

• A transformation from a type to different type, combined with a transformation to (yet)
another type: t1

T1−→ t2 ∧ t2
T2−→ t3 ∧ T3 = T1 ◦ T2. For example, a transformation from Html

via PostScript to Pdf. A special case would be a transformation from a type to a different type,
combined with a transformation back to the first type: t1

T1−→ t2 ∧ t2
T2−→ t1 ∧ T3 = T1 ◦ T2.

For example, a transformation from Xml via Html to Html. Such a transformation may be
used to achieve a certain effect on a property. This pattern is illustrated in the following
diagram:

Using these two patterns a directed graph of transformations can be created: the nodes are data
resource types and the arcs are transformations between these types.

7.3 Patterns for transformation selection

The transformation selection problem is to find the right path from an input type to an output
type, which has to do with the properties that must or must not hold after the transformation
has been executed. In this section we will present the selection patterns that may occur in a
transformation graph.

Selection implies that a choice can be made. In other words, there must be at least two paths from
a certain node to another. We observe the following selection patterns:

• Two or more different paths exist from one type to another. In this case there are one ore
more paths from the input type to the output type. Each path may have different charac-
teristics in terms of what it does to properties. This pattern is illustrated in the following
diagram:
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• Another option is that there exist both a direct and an indirect path from a given input to
an output type. This pattern is illustrated in the following diagram:

• These patterns can, of course, be combined over and over to form even more complex struc-
tures. For example the situation where one can choose between many possible paths from
the input type via an intermediate type to an output type, as well as a direct transformation
from the input type to the output type. This is illustrated in the following diagram:

Using combinations of these patterns over and over results in the (directed) transformation
graph. The actual choice is based on properties: which properties must hold after the transfor-
mation and which must not hold. The (characteristics of the) algorithm for doing this selection is
described in the next section.

7.4 Transformation selection

We have stated before that transformations can be used to improve the aptness of a data resource
for users. In this section we discuss the issue of how to decide which transformation does this
best. The metric for assessing the quality of a transformation is based on properties. At a high
level of abstraction the decision boils down to comparing the properties that a data resource is
expected to have after a transformation with the properties desired by the user. In earlier work
(see (Gils et al., 2005)) we presented a specific algorithm that took not only the properties into
account, but also the length of the transformation path (in the directed graph where data resource
types are nodes and transformations are the arcs). In this section we ignore these path-lengths
for the time being.

The first step in this decision process is to determine the expected properties of a data resource af-
ter it is transformed (possibly by a composed transformation!). This can be achieved by calculat-
ing the expected truth assignment for every possible property after each possible transformation
on a given data resource.

Recall that the the truth assignment for a property, given a data resource, is a sequence of re-
source space elements. Hence, the he truth assignment for every possible property is given by
the function Ψ : DR→(Φ→℘(RE∗)). This relation is defined as follows:

Ψ(e) !
{

〈ϕ, Γ(e, ϕ)〉
∣

∣ ϕ ∈ Φ
}
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The following example illustrates the use of this relation. Let Φ be the language of all properties
such that there are exactly two properties ϕ1 and ϕ2. Furthermore, let e be a data resource of type
t. The first property is made true for e by exactly a resource space element w1 as well as element
w2 and the second property is made true by exactly the sequence of resource space elements
[w3, w4]. Then we know that:

Ψ(e) = {〈ϕ1, {[w1], [w2]}〉, 〈ϕ2, {[w3, w4]}〉}

This shorthand notation allows us to easily decide on the effects of a transformation by compar-
ing the truth assignment of the properties of a data resource with the truth assignment of the
properties of the transformed data resource. Continuing the previous example, if T1 is a transfor-
mation (with Input(T1) = t) such that

Ψ(
−→
T 1(e)) = {〈ϕ1, {[w1]}〉, 〈ϕ2, {[w3, w5]}〉}

Then we can conclude that this transformation is removing for property ϕ1 and removing for ϕ2.
This shorthand, together with the learned effects of transformations (see Section 7.1) provide the
machinery for estimating the expected truth assignment for a data resource after it is transformed.
For example, if T2 a transformation (with Input(T2) = t) for which we know that Effect(T2, t, ϕ2)
then we know that the data resource resulting from

−→
T 2(e) will not have property ϕ2; its truth

assignment will be void (i.e. Γ(
−→
T 2(e), ϕ2) = {[∅]}).

The second step is to compare the expected truth assignment of properties for the transformed
data resource to the wishes of the user with regard to these properties. Let U ⊆ Φ × IR denote a
preference assignment (as a real number) with regard to properties.

A positive preference assignment indicates that the property must be present, a negative assign-
ment indicates that the property must not be present and a zero-assignment denotes indifference.
For example:

U = {〈ϕ1, 10〉, 〈ϕ2,−5〉}

denotes that ϕ1 must be present and ϕ2 must not be present. Evenmore, the magnitude of the
preference assignment that this specific user finds the prences of ϕ1 twice as important as the
absence of ϕ2. This step is completed by comparing the truth assignment of properties for every
possible transformation to U . This is illustrated in the following example. Let

• e, f ∈ DR be data resources

• Doc, Pdf ∈ DRτ be two data resource types

• r1, r2 ∈ RL, T ∈ TR such that e
r1

" f and
−→
T (e)

r2

" f

• Hyperlink, Refernece ∈ RLτ be two relation types

• The language for properties is Φ = {ϕt, ϕs, ϕr} such that

– ϕt(e, [t]) ! e HasType t is the typing property

– ϕs(e, [ ]) ! e HasType Doc is a more specific typing property for it tests whether an
instance has the specific data resource type Doc.

– ϕr(e, [ ] ! ∃r [Src(r) = e ∧ r HasType Hyerlink] is the property denoting that a re-
source has outgoing hyperlinks.

Given the truth assignment for properties, as well as a vector of preference assignments U we can
now come to a decision with regard to the aptness of e and

−→
T (e) for this U . Let:
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• Ψ(e) = {〈ϕt, {[Doc]}〉, 〈ϕs, {[ ]}〉, 〈ϕr, {[ ]}〉}
in other words, e is of type Doc and indeed has an outgoing hyperlink.

• Ψ(
−→
T (e)) = {〈ϕt, {[Pdf ]}〉, 〈ϕs, {[∅]}〉, 〈ϕr, {[∅]}〉}

in other words,
−→
T (e) is of type Pdf and has no outgoing hyperlinks (instead the relation

can, for example, be of type Reference).

• U = {〈ϕt, 0〉, 〈ϕs,−10〉, 〈ϕr , 5〉}
in other words, the user refuses data resources of type Doc and would prefer them to have
outgoiing hyperlinks.

We can now simply calucate the quality/aptness score of both data resources with regard to the
users wishes. The quality score of e = −10 + 5 = −5. Sincie e is of type Doc it receives a penalty
of −10 and since it has outgoing hyperlinks it receives a positive score of 5. Similarly, the quality
score of

−→
T (e) = 10 − 5 = 5. Clearly the transformation increases the aptness given the current

preferences of the user.

7.5 In practice

Systems that deploy a transformation selection strategy face the problem of implementing an
algorithm to do so. A number of choices have to be made while doing so:

• What to do with cyclic transformation graphs: a depth-first exhaustive search may get stuck
and loop forever.

• What to do with very large transformation graphs: it may be impractical to perform an
exhaustive search in real time; it may simply take too long to calculate all possible paths. A
solution to this problem might be to adopt a penalty-based approach:

– long paths are penalized. This implies that each step receives a step-penalty

– after each step the penalty of the current path is calculated by comparing the expected
truth assignment of properties with the desired properties by the user.

if the current penalty exceeds a predefined penalty the path will no longer be considered.

• Even if the transformation graph is relatively small then an important question is: is the
user willing to wait while the algorithm executes as oposed to simply accepting the un-
transformed resource or going for the first possible transformation path that is found.

8 Conclusion

With the aparent rise of the Web as a medium for information supply it becomes increasingly im-
portant to deal with its heterogeneity (heterogeneity in terms of the form and format of resources).
In this article we zoom in on search tools on the Web and hypothesize that merely looking at top-
icality when selecting resources that conform to an information need is not enough. Because of
the heterogeneous nature of the Web, we propose to use aptness instead.

Searching for apt resources for a given information need (as opposed to topically relevant re-
sources) implies that the topicality of a resource, its form and its formt must be taken into ac-
count. To explore a system that for such a task we have taken the following steps. We firstly
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studied the resources that are available to us online (The resources that are available in a given
situation are together called a resource base. All potentional resource bases are called resource
space). This has resulted in a formal model for resource space (Section 3). The heterogeneity of
resource space (and thus all potential resource basis) comes to the for in the typing mechanism
for our model (Section 4). In our model we follow a types follow population approach, meaning
that the types are derived from the instances (instead of defining the types first and fitting the
population to the prescribed scheme as is common in e.g. database design).

The major contribution of this article, though, is the transformation framework as described in
Section 5 for it is the basis for dealing with heterogeneity in information supply be (search) tools
on the Web. The simplest definition of a transformation, in this context, is a piece of software
that transforms instances (of a certain type) to instances (of, potentially, another type). We de-
scribe what transformations are, what their characteristics are and how they can be composed to
make complex transformations. As for the search architecture: in Section 6 we extend the trans-
formation framework with a mechanism to measure the effect that a transformation may have
on (properties of) resources in a given resource base. Properties of resources are, in essense, any
relation, attribution or type that such a resource may have. These properties can either be neutral
to such a property (both the input instance and the output instance have this property), it can
remove a property (the input instance has it, but the output instance does not), it can introduce
a property (the input instance does not have it, but the output instance does) or it may alter the
property (both instances have it, but their respective values for this property are different).

The data resource types combined with the transformations form a directed graph: the types are
the nodes and the transformations are the edges. For each edge we (may or may not) know the
effect on properties.

These effects, which may be learned from a real resource base, provide a good starting point
for aptness-based search on the Web. We propose a push-down selection-like scheme. As soon
as a searcher’s information need is known (i.e. the query) the first step is to select the topically
relevant resources. In the second step we try to upgrade the aptness of resources by means of
transformations. That is: we know from the query which properties instances must have (the
topic being one of them) and try to transform the relevant resources so that they will have these
properties.

In Section 7.4 we have described how transformations can be selected to estimate which (com-
posed) transformations are “best” at performing the desired transformation on an input resource.
In theory this can be done by comparing the properties desired by the user with the expected
properties of data resources after a transformation has taken place. In real applications several
issues have to be resolved such as how to deal with cyclic transformation graphs and (very) large
graphs: it may simply take too much time to do an exhaustive search of all possible paths. A
penalty-based approach (penalizing long paths and undesireable manipulation of properties by
transformations) may resolve these issues.

A lot of work remains to be done in this area. We are currently working on an Web retrieval
system (i.e. a search engine) that combines the push-down selection mechanism with the trans-
formation selection algorithm. That is, we are working on a search engine for aptness-based
search.
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